Non-negative hereditary polynomials in a free *-algebra

J.William Helton * Scott A. McCullough † Mihai Putinar ‡

December 8, 2003

Abstract

We prove a non-negative-stellensatz and a null-stellensatz for a class of polynomials called hereditary polynomials in a free *-algebra.

Mathematics Subject Classification: 46A55, 06F25, 41A63

1 Introduction and main result

This note is concerned with sums of squares decompositions in a free *-algebra. Already quite a few facts about such decompositions are known, see [3, 4, 5] and the references cited there. In particular, the article [4] contains a simple example showing that no analogue of the real nullstellensatz, as known in real algebraic geometry, exist. Another divergence between the commutative and the free * theories was singled out in [5], where a stronger than expected non-negative-stellensatz with supports was proved. We consider below another fortunate free case when both a simple non-negative-stellensatz and a nullstellensatz hold. The proofs are based on the same principles as before: Caratheodory's theorem about convex hulls, Minkovski's separation theorem and a general Gelfand-Naimark-Segal construction.

The notation of the article [5] will be used throughout the note. Specifically, \mathcal{P} is the space of polynomials in the non-commuting variables (x, x^T) =

^{*}Partially supported by NSF, DARPA and Ford Motor Co.

[†]Partially supported by NSF grant DMS-0140112

[‡]Partially supported by NSF grant DMS-0100367

 $\{x_1, x_2, \dots, x_n, x_1^T, \dots, x_n^T\}$. \mathcal{P}_v is the finite dimensional subspace consisting of all polynomials of degree less than or equal to v.

Call a polynomial **analytic** provided it contains no transposes. The corresponding space is denoted \mathcal{A} . Similarly, call a polynomial **hereditary** provided all transposes x_k^T appear to the left of x_j 's in any monomial. Denote the corresponding space by \mathcal{H} . We introduce notation for various types of polynomials of degree v:

$$\mathcal{A}_{v} = \mathcal{A} \cap \mathcal{P}_{v}$$

and let \mathcal{H}_{2v} be the vector space generated by $\mathcal{A}_v^T \mathcal{A}_v$. Thus, \mathcal{H}_{2v} is the vector space of polynomials of the form

$$q = \sum_{u,w} q_{u,w} u^T w$$

where the sum is over words of length at most v is the variables x.

In the following $p_1, ..., p_m \in \mathcal{A}$ will always denote analytic polynomials. The **left ideal** generated by them is

$$(p) := \{ \sum r_j p_j : r_j \in \mathcal{A} \};$$

the associated **left symmetrized ideal** is:

$$sym(p) := \{ \sum r_j^T p_j + p_j^T r_j : r_j \in \mathcal{A} \}.$$

The main result of this paper is the following theorem. A few extensions are given in Section 3.

Theorem 1.1 Let $p_1, ..., p_m \in \mathcal{A}$ be analytic polynomials. If a symmetric hereditary polynomial $q \in \mathcal{H}$ has

$$\langle q(X)v,v\rangle > 0$$

on all pairs (X, v) satisfying $p_{\ell}(X)v = 0$ $(1 \le \ell \le m)$, then:

(a)
$$q = \sum_{j=1}^{k} f_j^T f_j + g,$$
 (1)

where $g \in sym(p)$ and each f_j is analytic.

(b) If instead, $\langle q(X)v,v\rangle=0$, for all (X,v) satisfying $p_{\ell}(X)v=0$ for all ℓ , then $q\in sym(p)$.

2 Proofs

2.1 Zeroes and Ideals

Denote by V_p the (X, v) zero set of the p_j 's, that is the set of all pairs of tuples of (finite) matrices and vectors (X, v) satisfying $p_{\ell}(X)v = 0$ for all $\ell, 1 \leq \ell \leq m$. We stress that the rank of X or the dimension of the vector space where v belongs are finite, but free otherwise.

Lemma 2.1 If $a \in \mathcal{A}$ and $V_p \subset V_a$, then $a = \sum r_j p_j$ for some analytic polynomials $r_j \in \mathcal{A}$. If q and the p_j have degree no greater than d, then $V_p \subset V_a$ can be taken to be g-tuples in $R^{n \times n}$ with $n = (d+1)^2$.

Proof: The proof of this lemma, due to G. Bergman, is contained in [4].

Lemma 2.2 If the $f_j \in A$ are analytic polynomials and

$$\sum_{j=1}^{k} f_j^T f_j + sym(p) = 0 \quad on \ V_p,$$

then $f_j \in (p)$.

Proof: The conditions $p_i(X)v = 0$ imply

$$\sum \langle r_j(X)p_j(X)v,v\rangle = 0$$
 and $\sum \langle p_j(X)^Tr_j(X)^Tv,v\rangle = 0$

which imply $\sum_{j=1}^k \langle f_j(X)^T f_j(X)v, v \rangle = 0$. Thus $f_j(X)v = 0$. Now Lemma 2.1 yields the conclusion.

Proof of Theorem 1.1 part (b). Assume Theorem 1.1 part (a) is true. By Lemma 2.2 we get $f_i \in (p)$. Thus

$$q \in \sum_{j=1}^{k} f_j^T f_j + sym(p)$$

becomes $q \in sym(p)$.

Lemma 2.3 There exist N and points (X_k, v_k) , $1 \le k \le N$, in V_p that is, $p(X_k)v_k = 0$, such that the function $S : \mathcal{H}_{2d} \to R$ defined on h of the form

$$h = \sum r_j^T q_j$$
 with $r_j, q_j \in \mathcal{A}$

by

$$S(h) = \sum_{j=1}^{n} \sum_{k=1}^{N} \langle r_j(X_k) v_k, q_j(X_k) v_k \rangle, \tag{2}$$

has the property

$$S(f^T f) = 0$$
 implies $f \in (p)$

for any $f \in \mathcal{A}_d$.

Proof: Let W_1 denote the closed unit sphere in the finite dimensional space $W = \mathcal{A}_d/(p)_d$, endowed with an Euclidean norm. Given $h \in W_1$, since h is not in (p), by Lemma 2.1 we can pick $(X_h, v_h) \in V_p$, so that

$$\langle r(X_h)^T r(X_h) v_h, v_h \rangle_{\mathcal{R}_{2d}} > 0$$

for all r in an open neighborhood \mathcal{O} of h in W_1 . By the compactness of W_1 there exists a finite cover of such open sets \mathcal{O}_k for $k=1,\dots,N$, which in turn is associated with a finite set $(X_k,v_k)\in V_p$. Use these points in definition (2) of S. Then for any given h not in (p), a positive multiple of it lies in some open set \mathcal{O}_k , so $S(h^Th) \geq \langle h(X_k)v_k, h(X_k)v_k \rangle_{\mathcal{R}_{2d}} > 0$.

2.2 Proof of Theorem 1.1

Fix a large enough degree d. For instance the assumption

$$d > 4 \max(\deg(p_1), ..., \deg(p_n), \deg(q))$$

would be sufficient for the following proof.

Denote by \mathcal{R}_{2d} the subset of \mathcal{P}_{2d} consisting of sums of the form

$$\sum_{j=1}^{k} f_j^T f_j + sym(p)_{2d}, \tag{3}$$

with $f_j \in \mathcal{A}_d$ and the integer k arbitrary.

2.2.1 Separation

If the hereditary polynomial q in the statement of Theorem 1.1 admits a decomposition (1), then there exists a sufficiently large d with $q \in \mathcal{R}_{2d}$.

Henceforth we assume by contradiction that $q \notin \mathcal{R}_{2d}$.

Lemma 2.4 will show that \mathcal{R}_{2d} is closed. By Minkowski's separation theorem there exists a linear functional L_1 on \mathcal{P}_{2d} satisfying:

$$L_1(q) < 0 \le L_1(c), \quad c \in \mathcal{R}_{2d}.$$
 (4)

Note that $L_1(sym(p)) = 0$, since $L_1(sym(p)) \ge 0$ and sym(p) is a vector subspace. We modify L_1 to $L := L_1 + \epsilon S$ with S the function defined in Lemma 2.3 and with $\epsilon > 0$, chosen small enough to make

$$L(q) < 0 \le L(c), \quad c \in \mathcal{R}_{2d},\tag{5}$$

still hold true. In addition, L has the critical property: if $h \in \mathcal{A}_d$, then

$$L(h^T h) = 0$$
 implies $h \in (p)$.

2.2.2 The Hilbert Space

We consider again the vector space

$$W = \mathcal{A}_d/(p)_d$$

and denote by [f] or simply f the class of $f \in \mathcal{A}_d$ in W.

Next we define a symmetric positive semi-definite form on W by

$$\langle [a], [b] \rangle = \frac{1}{2} L(a^T b + b^T a).$$

We must check that the definition is independent of choice of representatives a, b:

$$L((a+rp)^{T}(b+sp) + (b+sp)^{T}(a+rp)) =$$

$$= L(a^{T}b+b^{T}a) + L(a^{T}sp+(sp)^{T}a) + L((rp)^{T}b+b^{T}rp) + L((rp)^{T}sp+(sp)^{T}rp).$$

The last three terms have the form L(sym(p)), so are 0; thus we have a well defined inner product on W. The inner product is strictly positive definite by the choice of L. Thus W is a Hilbert space.

2.2.3 Matrices

Let W' be the image in W of \mathcal{A}_{d-1} . Let $X_j:W'\longrightarrow W$ be the left multiplication by the variable x_j . This is well defined due to the degrees assumptions and the fact that $[m] \in (p)$ implies $[x_jm] \in (p)$. Extend arbitrarily X_j to a linear transformation from W into W, and denote the extension by the same letter. Then the adjoint X_j^T with respect to the hilbertian structure of W is unambiguously defined.

Suppose that our symmetric hereditary polynomial has the form $q = \sum_{k} (g_k^T h_k + h_k^T g_k)/2$ with deg g_k , deg $h_k < d-1$ for all k. Then:

$$L(q) = \sum_{k} \langle g_k, h_k \rangle = \sum_{k} \langle g_k(X)1, h_k(X)1 \rangle =$$

$$1/2 \sum_{k} \langle (h_k(X)^T g_k(X) + g_k(X)^T h_k(X)) 1, 1 \rangle = \langle q(X^T, X) 1, 1 \rangle.$$

Thus $\langle q(X^T, X)1, 1 \rangle = L(q) < 0$ and at the same time

$$\langle p_k(X)1, 1 \rangle = \langle [p_k], 1 \rangle = 0,$$

for all k.

In conclusion the pair (X, 1) contradicts the assumption in the statement of Theorem 1.1 and the proof is complete.

2.2.4 The Cone is Closed

Lemma 2.4 For every $d \geq 0$ the cone \mathcal{R}_{2d} is closed in \mathcal{P}_{2d} .

Proof: This is an application of Carathéodory's theorem, see for instance [9] for a similar derivation in the commutative case. Namely, if k-1 denotes the dimension of \mathcal{H}_{2d} , then Carathéodory's theorem says every element h in the convex cone \mathcal{R}_{2d} can be written as a combination of at most k elements from the set $\{f^T f + g : f \in \mathcal{P}_d, g \in sym(p)\}$ which generates it. Thus, there exist $f_1, \ldots, f_k \in \mathcal{P}_d$ such that

$$h = f_1^T f_1 + f_2^T f_2 + \ldots + f_k^T f_k + w.$$

with $w \in sym(p)$.

Suppose $h^{\nu} \in \mathcal{R}_{2d}$ is a Cauchy sequence in the topology of \mathcal{P}_{2d} . For each (positive integer) ν pick any $f_1^{\nu}, \ldots, f_k^{\nu}$ (some of them possibly equal to zero) in \mathcal{A}_d and w^{ν} in sym(p) such that

$$h^{\nu} = \sum_{j=1}^{k} f_j^{\nu T} f_j^{\nu} + w^{\nu}. \tag{6}$$

Now h^{ν} is bounded, and if the f_{j}^{ν} are also bounded we can choose convergent subsequences and the proof finishes.

Here we use the fact that \mathcal{A}_d is finite dimensional so that the bilinear mapping $\mathcal{A}_d \times \mathcal{A}_d \to \mathcal{H}_{2d}$ given by $(f,g) \mapsto g^T f$ is continuous.

To prove the lemma without assuming that the f_j^{ν} and w^{ν} are bounded sequences, first recall the linear functional $S: \mathcal{H}_{2d} \to \mathbb{R}$ from Lemma 2.3. Since S is a linear map on the finite dimensional vector space \mathcal{H}_{2d} and since the sequence $\{h^{\nu}\}$ is bounded, it follows that

$$S(h^{\nu}) = \sum_{j=1}^{k} \sum_{\ell} \|f_{j}^{\nu}(X_{\ell})v_{\ell}\|^{2}$$
(7)

is bounded. Recall also that

$$||[f]||^2 = \sum_{k} ||f(X_{\ell})v_{\ell}||^2$$

defines a norm on the quotient $W_d = \mathcal{A}_d/(p)$. Thus, equation (7) implies that each of the sequences $[f_j^{\nu}]$, j = 1, 2, ..., k, is bounded in \mathcal{W}_d (with respect to any norm) and therefore we may assume, by passing to a subsequence if necessary, that each of these sequences is Cauchy. Since \mathcal{W}_d is finite dimensional it is complete and thus each of the sequences $\{[f_j^{\nu}]\}$ converges. Let $[f_1], ..., [f_k]$ denote the limits which are independent of the norm on \mathcal{W}_d . Implicitly we have chosen representatives of the equivalence classes.

The mapping $\mathcal{A}_d \to \mathcal{W}_d$ given by $f \mapsto [f]$ is linear and onto and therefore has a right inverse T. Consequently, the sequences $\{g_j^{\nu} = Tf_j^{\nu}\}_{\nu}$ are bounded for each $j = 1, \ldots, k$. Since $f_j^{\nu} = g_j^{\nu} + r_j^{\nu}$ for $r_j^{\nu} \in (p)$,

$$h^{\nu} = \sum (g_j^{\nu})^T g_j^{\nu} + u^{\nu}$$

for some u^{ν} in sym(p).

3 Ramifications of the main result

This last part of the note contains a couple of generalizations of Theorem 1.1.

3.1 Analytic modules

The main result above can easily be adapted to more general polynomial sets. For instance consider a left \mathcal{A} -module $\mathcal{M} \subset \mathcal{P}$ which contains 1, hence contains \mathcal{A} .

Take elements $p_1, ..., p_m \in \mathcal{M}$ and consider the left \mathcal{P} -submodule $I = \mathcal{A}p_1 + \mathcal{A}p_2 + ... + \mathcal{A}p_m$ and its symmetrized form:

$$sym(I) = \{ \sum_{j} (r_j^T p_j + p_j^T r_j; \quad r_j \in \mathcal{P} \}.$$

Let h be a \mathcal{M} -hereditary element, that is:

$$h = \sum_{j} f_j^T g_j, \quad f_j, g_j \in \mathcal{M}.$$

Instead of Lemma 2.2 we assume that,

A. If a sum of squares

$$f = \sum_k f_k^T f_k, \;\; f_k \in \mathcal{M}$$

vanishes on all pairs (X, v) which themselves satisfy the condition $p_j(X)v = 0$, $1 \le j \le m$, then each $f_k \in I \cap \mathcal{M}$.

With these notations and assumptions the following variant of Theorem 1.1 is valid.

Proposition 3.1 Let $\mathcal{M} \subset \mathcal{P}$ be an \mathcal{A} submodule containing 1 and let I be a left \mathcal{P} ideal generated by (finitely many) elements of \mathcal{M} . Suppose that \mathcal{M} satisfies condition A.

If a symmetric \mathcal{M} -hereditary element h satisfies

$$\langle h(X)v,v\rangle \geq 0$$
, whenever $I(X)v=0$,

then there are $f_j \in \mathcal{M}, \ 1 \leq j \leq N, \ such \ that$

$$h \equiv \sum_{k} f_k^T f_k \mod(symI).$$

Note that assumption A on I is parallel to the notion of a real ideal in the commutative case, see [2].

3.2 Complex coefficients

The case of a free complex *-algebra with antilinear involution is similar, with one little improvement in the second part of Theorem 1.1.

Namely we consider the *-algebra $\mathcal{P} \otimes_{\mathbf{R}} \mathbf{C}$ with involution $f \mapsto f^*$. The definitions of an analytic, respectively hereditary element are the same.

Proposition 3.2 Let I be a left ideal of $A \otimes_{\mathbf{R}} \mathbf{C}$ and let

$$V(I) = \{(X,v); \ f(X)v = 0, \ for \ all \ f \in I\}$$

be its zero set.

If an element $q \in \mathcal{P} \otimes_{\mathbf{R}} \mathbf{C}$ vanishes on V(I), that is $\langle q(X)v,v \rangle = 0$ for all $(X,v) \in V(I)$, then $q \in sym(I)$.

The proof can be reduced to the self-adjoint case treated by the analogue of Theorem 1.1 via the decomposition $2q = (q + q^*) + i[(q - q^*)/i]$.

References

- [1] J. Agler, An abstract approach to model theory, Surveys of some recent results in operator theory, Vol. II, 1–23, Pitman Res. Notes Math. Ser., 192, Longman Sci. Tech., Harlow, 1988.
- [2] J. Bochnack, M. Coste and J.-F. Roy, Géométrie Algébrique Réele, Springer, New York, 1987.
- [3] J.W. Helton, Positive non commutative polynomials are sums of squares Ann. Math **56**(2002, 675-694.
- [4] J.W. Helton and S. McCullough, A Positivstellensatz for Noncommutative Polynomials, Trans. Amer. Math. Soc., to appear.
- [5] J.W. Helton, S. McCullough, M.Putinar, A noncommutative Positivstellensatz on isometries, J. reine angew. Math., to appear.
- [6] A.Prestel and C.N.Delzell, *Positive Polynomials*, Springer, Berlin, 2001.
- [7] C. Procesi and M. Schacher, A noncommutative real Nullstellensatz and Hilbert's 17th problem, Ann. of Math. (2) 104 (1976), no. 3, 395–406.
- [8] M. Reed and B. Simon, Methods of Modern Mathematical Physics Vol. 1: Functional Analysis, Academic Press, San Diego, 1980.
- [9] B. Reznick, Sums of even powers of real linear forms, Mem. Amer. Math. Soc. 96 (1992) No. 463, Amer. Math. Soc., Providence, R.I.
- [10] C. Scheiderer, Positivity and sums of squares: a guide to some recent results, preprint 2003.
- [11] G. Stengle, A Nullstellensatz and a Positivstellensatz in semialgebraic geometry, Math. Ann. 289(1991), 203-206.
- J. W. Helton, Department of Mathematics, University of California at San Diego, La Jolla CA 92093

helton@osiris.ucsd.edu

- S.A. McCullough, Department of Mathematics, University of Florida, Gainesville, FL 32611-8105
 sam@mail.math.ufl.edu
- M. Putinar, Department of Mathematics, University of California, Santa Barbara, CA 93106 mputinar@math.ucsb.edu