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Abstract

We prove a non-negative-stellensatz and a null-stellensatz for a class
of polynomials called hereditary polynomials in a free ∗-algebra.

Mathematics Subject Classification: 46A55, 06F25, 41A63

1 Introduction and main result

This note is concerned with sums of squares decompositions in a free ∗-
algebra. Already quite a few facts about such decompositions are known,
see [3, 4, 5] and the references cited there. In particular, the article [4]
contains a simple example showing that no analogue of the real nullstel-
lensatz, as known in real algebraic geometry, exist. Another divergence
between the commutative and the free ∗ theories was singled out in [5],
where a stronger than expected non-negative-stellensatz with supports was
proved. We consider below another fortunate free case when both a simple
non-negative-stellensatz and a nullstellensatz hold. The proofs are based
on the same principles as before: Caratheodory’s theorem about convex
hulls, Minkovski’s separation theorem and a general Gelfand-Naimark-Segal
construction.

The notation of the article [5] will be used throughout the note. Specifi-
cally, P is the space of polynomials in the non-commuting variables (x, xT ) =
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{x1, x2, . . . , xn, xT
1 , . . . , xT

n}. Pv is the finite dimensional subspace consisting
of all polynomials of degree less than or equal to v.

Call a polynomial analytic provided it contains no transposes. The
corresponding space is denoted A. Similarly, call a polynomial hereditary
provided all transposes xT

k appear to the left of xj ’s in any monomial. Denote
the corresponding space by H. We introduce notation for various types of
polynomials of degree v:

Av = A ∩ Pv

and let H2v be the vector space generated by AT
v Av. Thus, H2v is the vector

space of polynomials of the form

q =
∑
u,w

qu,wuT w

where the sum is over words of length at most v is the variables x.
In the following p1, ..., pm ∈ A will always denote analytic polynomials.

The left ideal generated by them is

(p) := {
∑

rjpj : rj ∈ A};

the associated left symmetrized ideal is:

sym(p) := {
∑

rT
j pj + pT

j rj : rj ∈ A}.

The main result of this paper is the following theorem. A few extensions
are given in Section 3.

Theorem 1.1 Let p1, ..., pm ∈ A be analytic polynomials. If a symmmetric
hereditary polynomial q ∈ H has

〈q(X)v, v〉 ≥ 0

on all pairs (X, v) satisfying p`(X)v = 0 (1 ≤ ` ≤ m), then:

(a) q =
k∑

j=1

fT
j fj + g, (1)

where g ∈ sym(p) and each fj is analytic.
(b) If instead, 〈q(X)v, v〉 = 0, for all (X, v) satisfying p`(X)v = 0

for all `, then q ∈ sym(p).
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2 Proofs

2.1 Zeroes and Ideals

Denote by Vp the (X, v) zero set of the pj ’s, that is the set of all pairs of
tuples of (finite) matrices and vectors (X, v) satisfying p`(X)v = 0 for all
`, 1 ≤ ` ≤ m. We stress that the rank of X or the dimension of the vector
space where v belongs are finite, but free otherwise.

Lemma 2.1 If a ∈ A and Vp ⊂ Va, then a =
∑

rjpj for some analytic
polynomials rj ∈ A. If q and the pj have degree no greater than d, then
Vp ⊂ Va can be taken to be g-tuples in Rn×n with n = (d + 1)2.

Proof: The proof of this lemma, due to G. Bergman, is contained in [4].
¥

Lemma 2.2 If the fj ∈ A are analytic polynomials and

k∑
j=1

fT
j fj + sym(p) = 0 on Vp,

then fj ∈ (p).

Proof: The conditions pj(X)v = 0 imply
∑

〈rj(X)pj(X)v, v〉 = 0 and
∑

〈pj(X)T rj(X)T v, v〉 = 0

which imply
∑k

j=1〈fj(X)T fj(X)v, v〉 = 0. Thus fj(X)v = 0. Now Lemma
2.1 yields the conclusion. ¥

Proof of Theorem 1.1 part (b). Assume Theorem 1.1 part (a) is true.
By Lemma 2.2 we get fj ∈ (p). Thus

q ∈
k∑

j=1

fT
j fj + sym(p)

becomes q ∈ sym(p). ¥

Lemma 2.3 There exist N and points (Xk, vk), 1 ≤ k ≤ N, in Vp that is,
p(Xk)vk = 0, such that the function S : H2d → R defined on h of the form

h =
∑

rT
j qj with rj , qj ∈ A
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by

S(h) =
n∑

j=1

N∑
k=1

〈rj(Xk)vk, qj(Xk)vk〉, (2)

has the property
S(fT f) = 0 implies f ∈ (p)

for any f ∈ Ad.

Proof: Let W1 denote the closed unit sphere in the finite dimensional
space W = Ad/(p)d, endowed with an Euclidean norm. Given h ∈ W1, since
h is not in (p), by Lemma 2.1 we can pick (Xh, vh) ∈ Vp, so that

〈r(Xh)T r(Xh)vh, vh〉R2d
> 0

for all r in an open neighborhood O of h in W1. By the compactness of
W1 there exists a finite cover of such open sets Ok for k = 1, · · · , N , which
in turn is associated with a finite set (Xk, vk) ∈ Vp. Use these points in
definition (2) of S. Then for any given h not in (p), a positive multiple of it
lies in some open set Ok, so S(hT h) ≥ 〈h(Xk)vk, h(Xk)vk〉R2d

> 0. ¥

2.2 Proof of Theorem 1.1

Fix a large enough degree d. For instance the assumption

d > 4 max(deg(p1), ...,deg(pn), deg(q))

would be sufficient for the following proof.
Denote by R2d the subset of P2d consisting of sums of the form

k∑
j=1

fT
j fj + sym(p)2d, (3)

with fj ∈ Ad and the integer k arbitrary.

2.2.1 Seperation

If the hereditary polynomial q in the statement of Theorem 1.1 admits a
decomposition (1), then there exists a sufficiently large d with q ∈ R2d.

Henceforth we assume by contradiction that q /∈ R2d.
Lemma 2.4 will show that R2d is closed. By Minkowski’s separation

theorem there exists a linear functional L1 on P2d satisfying:

L1(q) < 0 ≤ L1(c), c ∈ R2d. (4)
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Note that L1(sym(p)) = 0, since L1(sym(p)) ≥ 0 and sym(p) is a vector
subspace. We modify L1 to L := L1 + εS with S the function defined in
Lemma 2.3 and with ε > 0, chosen small enough to make

L(q) < 0 ≤ L(c), c ∈ R2d, (5)

still hold true. In addition, L has the critical property: if h ∈ Ad, then

L(hT h) = 0 implies h ∈ (p).

2.2.2 The Hilbert Space

We consider again the vector space

W = Ad/(p)d

and denote by [f ] or simply f the class of f ∈ Ad in W .
Next we define a symmetric positive semi-definite form on W by

〈[a], [b]〉 =
1
2
L(aT b + bT a).

We must check that the definition is independent of choice of representatives
a, b:

L((a + rp)T (b + sp) + (b + sp)T (a + rp)) =

= L(aT b+bT a)+L(aT sp+(sp)T a)+L((rp)T b+bT rp)+L((rp)T sp+(sp)T rp).

The last three terms have the form L(sym(p)), so are 0; thus we have
a well defined inner product on W . The inner product is strictly positive
definite by the choice of L. Thus W is a Hilbert space.

2.2.3 Matrices

Let W ′ be the image in W of Ad−1. Let Xj : W ′ −→ W be the left multipli-
cation by the variable xj . This is well defined due to the degrees assumptions
and the fact that [m] ∈ (p) implies [xjm] ∈ (p). Extend arbitrarily Xj to
a linear transformation from W into W , and denote the extension by the
same letter. Then the adjoint XT

j with respect to the hilbertian structure
of W is unambiguously defined.

Suppose that our symmetric hereditary polynomial has the form q =∑
k(g

T
k hk + hT

k gk)/2 with deg gk, deg hk < d − 1 for all k. Then:

L(q) =
∑

k

〈gk, hk〉 =
∑

k

〈gk(X)1, hk(X)1〉 =
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1/2
∑

k

〈(hk(X)T gk(X) + gk(X)T hk(X))1, 1〉 = 〈q(XT , X)1, 1〉.

Thus 〈q(XT , X)1, 1〉 = L(q) < 0 and at the same time

〈pk(X)1, 1〉 = 〈[pk], 1〉 = 0,

for all k.
In conclusion the pair (X, 1) contradicts the assumption in the statement

of Theorem 1.1 and the proof is complete.¥

2.2.4 The Cone is Closed

Lemma 2.4 For every d ≥ 0 the cone R2d is closed in P2d.

Proof: This is an application of Carathéodory’s theorem, see for instance
[9] for a similar derivation in the commutative case. Namely, if k−1 denotes
the dimension of H2d, then Carathéodory’s theorem says every element h in
the convex cone R2d can be written as a combination of at most k elements
from the set {fT f + g : f ∈ Pd, g ∈ sym(p)} which generates it. Thus,
there exist f1, . . . , fk ∈ Pd such that

h = fT
1 f1 + fT

2 f2 + . . . + fT
k fk + w.

with w ∈ sym(p).
Suppose hν ∈ R2d is a Cauchy sequence in the topology of P2d. For

each (positive integer) ν pick any fν
1 , . . . , fν

k (some of them possibly equal
to zero) in Ad and wν in sym(p) such that

hν =
k∑

j=1

fν
j

T fν
j + wν . (6)

Now hν is bounded, and if the fν
j are also bounded we can choose convergent

subsequences and the proof finishes.
Here we use the fact that Ad is finite dimensional so that the bilinear

mapping Ad ×Ad → H2d given by (f, g) 7→ gT f is continuous.
To prove the lemma without assuming that the fν

j and wν are bounded
sequences, first recall the linear functional S : H2d → R from Lemma 2.3.
Since S is a linear map on the finite dimensional vector space H2d and since
the sequence {hν} is bounded, it follows that

S(hν) =
k∑

j=1

∑
`

‖fν
j (X`)v`‖2 (7)
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is bounded. Recall also that

‖[f ]‖2 =
∑

k

‖f(X`)v`‖2

defines a norm on the quotient Wd = Ad/(p). Thus, equation (7) implies
that each of the sequences [fν

j ], j = 1, 2, . . . , k, is bounded in Wd (with
respect to any norm) and therefore we may assume, by passing to a sub-
sequence if necessary, that each of these sequences is Cauchy. Since Wd

is finite dimensional it is complete and thus each of the sequences {[fν
j ]}

converges. Let [f1], . . . , [fk] denote the limits which are independent of the
norm on Wd. Implicitly we have chosen representatives of the equivalence
classes.

The mapping Ad → Wd given by f 7→ [f ] is linear and onto and therefore
has a right inverse T . Consequently, the sequences {gν

j = Tfν
j }ν are bounded

for each j = 1, . . . , k. Since fν
j = gν

j + rν
j for rν

j ∈ (p),

hν =
∑

(gν
j )T gν

j + uν

for some uν in sym(p). ¥

3 Ramifications of the main result

This last part of the note contains a couple of generalizations of Theorem
1.1.

3.1 Analytic modules

The main result above can easily be adapted to more general polynomial
sets. For instance consider a left A-module M ⊂ P which contains 1, hence
contains A.

Take elements p1, ..., pm ∈ M and consider the left P-submodule I =
Ap1 + Ap2 + ... + Apm and its symmetrized form:

sym(I) = {
∑

j

(rT
j pj + pT

j rj ; rj ∈ P}.

Let h be a M-hereditary element, that is:

h =
∑

j

fT
j gj , fj , gj ∈ M.
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Instead of Lemma 2.2 we assume that,

A. If a sum of squares

f =
∑

k

fT
k fk, fk ∈ M

vanishes on all pairs (X, v) which themselves satisfy the condition pj(X)v =
0, 1 ≤ j ≤ m, then each fk ∈ I ∩M.

With these notations and assumptions the following variant of Theorem
1.1 is valid.

Proposition 3.1 Let M ⊂ P be an A submodule containing 1 and let I be
a left P ideal generated by (finitely many) elements of M. Suppose that M
satisfies condition A.

If a symmetric M-hereditary element h satisfies

〈h(X)v, v〉 ≥ 0, whenever I(X)v = 0,

then there are fj ∈ M, 1 ≤ j ≤ N, such that

h ≡
∑

k

fT
k fk mod(symI).

Note that assumption A on I is parallel to the notion of a real ideal in
the commutative case, see [2].

3.2 Complex coefficients

The case of a free complex ∗-algebra with antilinear involution is similar,
with one little improvement in the second part of Theorem 1.1.

Namely we consider the ∗-algebra P ⊗R C with involution f 7→ f∗. The
definitions of an analytic, respectively hereditary element are the same.

Proposition 3.2 Let I be a left ideal of A⊗R C and let

V (I) = {(X, v); f(X)v = 0, for all f ∈ I}
be its zero set.

If an element q ∈ P ⊗R C vanishes on V (I), that is 〈q(X)v, v〉 = 0 for
all (X, v) ∈ V (I), then q ∈ sym(I).

The proof can be reduced to the self-adjoint case treated by the analogue
of Theorem 1.1 via the decomposition 2q = (q + q∗) + i[(q − q∗)/i].
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