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A NON-COMMUTATIVE POSITIVSTELLENSATZ ON
ISOMETRIES

JOHN W. HELTON, SCOTT MC CULLOUGH, MIHAI PUTINAR

Abstract. A symmetric non-commutative polynomial p when evalu-
ated at a tuple of operators on a finite dimensional, real Hilbert space
H has a value which is a symmetric operator. We show that any such
polynomial which takes positive semidefinite values on the variety Z of
spherical isometries is represented as a sum of squares of polynomials
plus a residual part vanishing on Z. Here by spherical isometries we
mean tuples A = (A1, A2, . . . , An) of operators on H such that

AT
1 A1 + . . . + AT

nAn = I.

This observation improves prior theorems known only for strictly pos-
itive polynomials. It is known that for commutative polynomials the
result is false.

1. Introduction

The subject of positive polynomials on real algebraic varieties is related to
Hilbert’s 17-th problem and has a rather long and interesting history, see [2],
[9]. A variety of decomposition theorems for regular positive functions on
real algebraic or analytic varieties, known generically as Positivstellensatze,
is known, for instance [14], [12], [1]. The distinction between decompositions
of strictly positive functions and non-negative ones is sensible; only in recent
years has a better understanding of the role of the geometry of the underlying
(affine) variety in such theorems been revealed, see [12], [7], [13].

The natural correspondence between decompositions of polynomials into
sums of squares and moment problems was known for a long time, see [6],
[11]. The landmark contribution of Gilles Cassier [3] has established a new
and powerful technique of deriving decompositions into sums of squares from
simple separation arguments of convex sets. See for instance [10] and [13]
for such applications.

Motivated by optimization problems, the first author has considered ([4])
sums of squares of polynomials in non-commutative variables. In this case
the evaluations at tuples of matrices or operators are the analogue of point
evaluations in the commutative situation. The subsequent paper [5] studies
weighted decompositions into sums of squares of non-commuting polynomi-
als which are non-negative on a ”variety” of matrices. Not surprisingly, the
statements and the proofs in the non-commutative case are simpler than the
classical commutative ones. Indeed, the results in this paper are obtained by
adaptations of Cassier’s technique and are false in the commutative setting.
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The present note is a continuation of the work in [5]. Here we prove that
a non-negative, non-commutative polynomial on a set of isometric tuples of
operators can be decomposed into a sum of squares plus a necessary residual
part. We indicate several alternate versions of our main result with spherical
isometries replaced by other collections of operators. The fact that key sets
are closed is proved at a general enough level to accomodate possible further
applications.

2. Preliminaries

This section contains a few general facts about Hilbert space representa-
tions of a finitely generated free algebra.

Let n ≥ 1 be fixed and let P be the algebra of real coefficient polynomi-
als in the non-commuting indeterminates {x, y} = {x1, . . . , xn, y1, . . . , yn},
where the xj and yj are adjoint pairs as we now explain. We consider the lin-
ear involution a 7→ aT defined on the variables x, y by xT

j = yj and yT
j = xj ;

defined on words in the variables by

(zi1zi2 . . . zik)T = zT
ik

zT
ik−1

. . . zT
i1 ,

where z ∈ {x, y}; and extended to polynomials in P by linearity. The
polynomial p(x) is symmetric if p(x)T = p(x), that is, the coeffcients of a
monomial and its adjoint are equal. Often in the sequel yj is identified with
xT

j .
An n-tuple A = (A1, A2, . . . , An) of bounded operators acting on the

separable real Hilbert space H determines the evaluation map

P −→ B(H), p 7→ p(A),

which is a unital T -algebra homomorphism.
For a subset Z of tuples A as above, define the associated ideal I(Z) by

I(Z) = {p ∈ P; p(A) = 0, A ∈ Z},
let P(Z) denote the quotient P/I(Z) and let π : P → P(Z) denote the
quotient mapping. Note that the quotient is an algebra which, as I(Z)
is invariant under the involution, inherits an involution from P. Indeed,
π(p)T = π(pT ). We regard the algebra P(Z) as a space of functions defined
on Z.

Fix a degree d ≥ 0 and denote by Pd the subset of all polynomials in P
of degree less than or equal to d. Let

Pd(Z) = π(Pd) =
Pd + I(Z)

I(Z)
=

Pd

Pd ∩ I(Z)
.

Note, for d′ ≥ d, the canonical inclusion

Pd(Z) ⊂ Pd′(Z)

holds, so that if Pd′(Z) is normed, then Pd(Z) is a closed subspace.
Define by Sym the subalgebra of P consisting of symmetric polynomials,

and analogously Symd, Symd(Z).
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Let
C2d = co{pT p; p ∈ Pd},

where co denotes convex hull, and let

C2d(Z) = π(C2d) =
C2d + I(Z)

I(Z)
.

Obviously, for an element g ∈ C2d(Z) and an A ∈ Z, the operator g(A) is
positive semi-definite (PSD); i.e., g(A) is symmetric and 〈g(A)h, h〉 ≥ 0 for
each h ∈ H where H is the Hilbert space on which each Aj acts. The main
result of the note consists of the converse to this observation under suitable
additional hypothesis on Z.

3. C2d(Z) is closed

We shall use a Hahn-Banach argument to seperate a polynomial from the
convex set C2d(Z). Thus it is important that C2d(Z) is closed and in this
section we show that at a great level of generality. First we construct a finite
dimensional faithful representation of Symd.
Lemma 3.1. Assume that the set Z of n-tuples of operators is invari-
ant under joint unitary invariance. For every d ≥ 0 there exists a basis
β1, β2, . . . , βk of the vector space Symd(Z) and a set B1, B2, . . . , Bk of tu-
ples of operators belonging to Z and acting on a finite dimensional Hilbert
space H, so that, for a distinguished vector ξ ∈ H, the relations

〈βi(Bj)ξ, ξ〉 = δij , (1)

hold, where δij is Kronecker’s symbol.

Proof. We will use several times the following elementary observation: if
A is a bounded symmetric operator acting on a real Hilbert space H, then
A 6= 0 if and only if there exists a vector v ∈ H such that 〈Av, v〉 6= 0.

Let g1, g2, . . . , gk be a basis of Symd(Z). Subsequently we will perform
certain linear operations on the vectors gj but, for simplicity, still denote
them with gj . Since g1 6= g2 there exists an element B1 ∈ Z such that
g1(B1) 6= g2(B1). Hence there exists a vector ξ ∈ H with the properties:

〈g1(B1)ξ, ξ〉 6= 〈g2(B1)ξ, ξ〉, 0 6= 〈g1(B1)ξ, ξ〉.
By replacing g1, g2 by a linear combination of these vectors we can assume
that:

〈g1(B1)ξ, ξ〉 = 1, 〈g2(B1)ξ, ξ〉 = 0.

Because the element g2 is non-zero, there exists K2 in Z and a vector
η2 ∈ H such that 〈g2(K2)η2, η2〉 = 1. Choose now a unitary transforma-
tion U on H such that Uη2 = ξ, and denote B2 = UK2U

T , where the
unitary conjugation on the tuple K2 is applied entry by entry. Whence,
〈g2(B2)ξ, ξ〉 = 1. Replace g2 by a linear combination of the form g2 + αg1

to obtain:
〈g2(B1)ξ, ξ〉 = 0, 〈g2(B2)ξ, ξ〉 = 1.
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In a similar manner, starting from 〈g3(K3)η3, η3〉 = 1 one can find a tuple
K3 ∈ Z such that 〈g3(K3)ξ, ξ〉 = 1. Replace it by a linear combination of
the form g3 + αg2 + γg3 to obtain:

〈g3(Bi)ξ, ξ〉 = 0, 〈g3(K3)ξ, ξ〉 = 1, i = 1, 2.

Putting all these relations together we have constructed another basis
g1, g2, . . . , gk of P2d(Z) and elements B1, B2, . . . , Bk ∈ Z, together with a
vector ξ ∈ H, such that:

〈gj(Bi)ξ, ξ〉 = 0, 〈gj(Bj)ξ, ξ〉 = 1, i < j ≤ k.

Finally, by choosing βj equal to a linear combination of gj , gj+1, . . . , gk

we can fulfill (1) by inductive elimination. ¤
As a consequence of Lemma 3.1,

|π(h)| =
k∑

j=1

|〈h(Bj)ξ, ξ〉|, h ∈ Symd,

defines a norm on the finite vector space Symd(Z). Moreover, if d is even
and h ∈ Cd ⊂ Symd, then

|π(h)| =
k∑

j=1

〈h(Bj)ξ, ξ〉,

because 〈f(A)T f(A)ξ, ξ〉 = ‖f(A)ξ‖2 ≥ 0.
As for the spaces Pc(Z), c ≤ d/2, we can define the norm:

‖f‖2 = |fT f |, f ∈ Pc(Z), c ≤ d/2. (2)

It is important to note that the above constructions, in particular the
finite dimensional real Hilbert space H, where the operators Bj act, depend
on d.

A set (or class) Z of tuples of operators is closed under joint unitary
transformation if whenever A = (A1, . . . , An) is in Z is a tuple acting on the
Hilbert space H, K is a Hilbert space, and U : H → K is unitary, then

UT AU = (UT A1U, UT A2U, . . . , UT AnU)

is in Z.
Lemma 3.2. Assume that the set Z of tuples of operators is invariant under
joint unitary transformations. Then for every d ≥ 0 the cone C2d(Z) is closed
in P2d(Z).

Proof. This is an application of Carathéodory’s theorem, see for instance
[11] for a similar derivation in the commutative case. Namely, if k−1 denotes
the dimension of Sym2d, then Carathéodory’s theorem says every element h
in the convex cone C2d can be written as a combination of at most k elements
from the set {fT f : f ∈ Pd}. Thus, there exists f1, . . . , fk ∈ Pd such that

h = fT
1 f1 + fT

2 f2 + . . . + fT
k fk.
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Suppose hν ∈ C2d, ν ∈ N, is such that the sequence π(hν) is Cauchy in
Sym2d(Z). For each ν there exists fν

1 , . . . , fν
k (some of them possibly equal

to zero) such that

hν =
k∑

j=1

fν
j

T fν
j .

Using the norm | ∗ |,

|π(hν)| =
k∑

j=1

k∑
`=1

〈(fν
j (B`))T fν

j (B`)ξ, ξ〉 =
k∑

j=1

‖π(fν
j )‖2. (3)

Since π(hν) is Cauchy, it follows from (3) that for each j the sequence
{π(fν

j )}ν is bounded in the norm (2) of the finite dimensional space Pd(Z).
Therefore, by passing to a common subsequence we can assume that for each
j, {π(fν

j )}ν is a convergent sequence in Pd(Z). Let gj = limν π(fν
j ) ∈ Pd(Z)

and choose fj ∈ Pd such that π(fj) = gj .
Arguing as in (3) it follows that there exists a universal constant γ > 0

with the property that, for j = 1, 2, . . . , k,

|π(fν
j

T fν
j ) − π(fT

j fj)| ≤ γ‖π(fν
j − fj)‖.

Consequently, the limit f of the sequence π(hν) in the norm | · | is of the
form π(f), where

f = fT
1 f1 + . . . + fT

k fk,

and this proves that the cone C2d(Z) is closed. ¤

4. Main result

4.1. Spherical isometries. The notation of the previous section will be
used throughout the rest of the note. Basically, P is the space of polynomials
in the non-commuting variables (x, xT ) = {x1, x2, . . . , xn, xT

1 , . . . , xT
n}, while

Z is a set of n-tuples of bounded operators acting on an arbitrary finite
dimensional Hilbert space H, and I(Z) is the ideal of polynomials vanishing
on Z.

A tuple A = (A1, . . . , An) of operators on a finite dimensional, real Hilbert
space H is an isometric tuple or spherical isometry provided

∑
AT

j Aj = I.
The collection of all isometric tuples is not actually a set, due to the ambi-
guity in choosing the Hilbert space H, but this causes no logical difficulties.
Theorem 4.1. Let Z be the class of spherical isometries (A1, A2, . . . , An),
i.e. AT

1 A1 + . . . + AT
nAn = I. If a polynomial q ∈ P is non-negative on Z,

then,

q =
k∑

j=1

fT
j fj + g, (4)

where g ∈ I(Z) and f1, . . . , fk ∈ P.
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Proof. We prove the contrapositive. Accordingly, suppose q does not have
the representation given in the theorem, that is q does not belong to C2c(Z)
for any c ≥ 1. In pursuit of a stronger theorem, let d − 1 denote the degree
of q. Then q /∈ C2d + I(Z) and so π(q) /∈ C2d(Z).

By Minkowski’s separation theorem there exists a linear functional L1 on
P2d satisfying:

L1(q) < 0 ≤ L1(c), c ∈ C2d(Z). (5)

Moreover, we can add to L1 a small positive multiple of the functional N
appearing implicitely in the proof of Lemma 3.2:

N(h) =
k∑

j=1

〈h(Bj)ξ, ξ〉.

To the effect that L = L1 + εN satisfies L(fT f) > 0, f ∈ Pd(Z) \ {0}.
Let Λ denote the functional on P2d obtained by pulling back L, that is

Λ(r) = L(π(r)). Define a symmetric positive semi-definite form on Pd by

〈a, b〉 =
1
2
Λ(aT b + bT a)

and let H denote the associated Hilbert space . As a matter of fact, since
the functional Λ is strictly positive, H = Pd(Z) as a vector space. Use
the notation [p] to indicate the class of a polynomial p ∈ Pd in H and let
M denote the subspace of H determined by Pd−1. Thus, M is the set
{[p] : p ∈ Pd−1}. Let N denote the orthogonal complement of M in H.

Define Xj and Yj as linear maps from M to H by Xj([p]) = [xjp] and
Yj([p]) = [xT

j p]. Observe, for a ∈ M,

〈a, a〉 −
∑

〈XT
j Xja, a〉 = Λ(aT a) −

∑
Λ((xja)T (xja)) (6)

= Λ(aT (1 −
∑

xT
j xj)a) = 0,

where the last equality follows from the fact that aT (1 − ∑
xT

j xj)a is in
I(Z). It follows that each Xj is well defined; i.e., if [a] = 0, then [xja] = 0.
Further, if a, b ∈ M, then

< Xja, b > = < xja, b > (7)

=
1
2
(Λ(bT xja) + Λ((xja)T b)

=
1
2
(Λ((xT

j b)T a)) + Λ(aT (xT
j b)T ))

= < a, Yjb > .

Thus, the restriction of XT
j to M is Yj ; i.e., XT

j on M is multiplication by
xT

j .
The computation in (6) shows that the mapping

X : M → H ⊕ H ⊕ . . . ⊕ H
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defined by

X[p] =




X1[p]
⊕

X2[p]
...
⊕

Xn[p]




is an isometry . Since dimM = dim(XM), the map X can be extended to
an isometry A , defined on H and with values in the direct sum ⊕H. Thus,
A = (A1, . . . , An) is an isometric tuple and the restriction of Aj to M is Xj .
Also, a simple computation shows that the operator AT

j compressed to M
is equal to Yj . More specifically, if p, r ∈ M, then, using (7),

< AT
j p, r > = < p, Ajr >

= < p, Xjr >

= < XT
j p, r >

= < Yjp, r > .

Since the degree of q is d − 1, we have q(A)[1] = q(X)[1] = [q]. Also,
[q] = [qT ] because q(B) ≥ 0 for every B ∈ Z. Therefore:

〈q(A)[1], [1]〉 = 〈[q], [1]〉 =
1
2
(Λ(q) + Λ(qT )) = Λ(q) < 0.

Thus, we have constructed an element A ∈ Z such that q(A) is not PSD.
¤

The proof gives a marginally stronger result than stated. Namely, if q has
degree d− 1 and is not in C2d(Z), then q is not in C2d′(Z) for any d′ ≥ d. In
other terms:
Corollary 4.2. For the class Z of spherical isometries and any degree d:

C2d′(Z) ∩ Pd−1(Z) = C2d(Z) ∩ Pd−1(Z), d′ ≥ d. (8)

This observation gives a quantitative version of Theorem 4.1, in the fol-
lowing sense. Let d− 1 be the degree of the polynomial q. Then q does not
belong to C(Z) if and only if q does not belong to C2d(Z); and in this case
the proof of Theorem 4.1 has produced a tuple A in Z, acting on the Hilbert
space H = Pd(Z) and with the property that q(A) is not PSD. Thus, by
negation, if q(B) ≥ 0 for all isometric tuples acting on the Hilbert space H,
then q(C) ≥ 0 for every isometric tuple C, regardless of the dimension of
the Hilbert space where C acts. Now, it is easy to evaluate:

dimPd(Z) ≤ dimPd ≤ (2n)d.

In conclusion, we have proved the following result.
Proposition 4.3. Let q be a non-commutative polynomial of degree d, in
the variables (x1, . . . , xn, xT

1 , . . . , xT
n ). Then q admits the representation (4)
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if and only if q(A) ≥ 0 for all isometric n-tuples A of operators acting on a
real Hilbert space of dimension (2n)d+1.

We have to point out that, in the commutative case, (i.e. polynomial
algebra with trivial involution xT

j = xj) Theorem 4.1 is not true in dimension
n ≥ 4. Indeed, in this situation Z would be the unit sphere in Rn, and for
instance Motzkin’s counterexample can then be localized to any point of Z.
See [12] for details.

4.2. Other supporting varieties. The proof of Theorem 4.1 can be
adapted to the following situations:

a. The set Z consists of all tuples of operators. In which case I(Z) = 0
and Theorem 4.1 gives the main result of [4].

b. Let S1, S2, . . . , Sk be a partition of the set {1, 2, . . . , n}. The set Z
consists of tuples (A1, A2, . . . , An) of operators satisfying:∑

j∈Si

AT
j Aj = I, 1 ≤ i ≤ k.

In particular this covers the case Si = {i}, 1 ≤ i ≤ n. That means that
each Aj is an isometry, and on a finite dimensional space we infer that each
Aj is an orthogonal transformation.

Similarly we can impose such isometric conditions only to a part of the n
tuple A, for instance to (A1, A2, . . . , Am) with m < n.

c. Let Q be a quadratic form in n variables, with real coefficients. Let Z
be the set of n-tuples A of real matrices subject to the condition:

Q(AT , A) = E, (9)

where E = 0 or E = I. Above we make the convention that all AT
j appear

to the left of Ak.
Then Theorem 4.1 remains true, because a tuple A of matrices satisfying

condition (9) on a subspace M of a real Hilbert space H can be extended to
the whole H. The proof of the last assertion consists in diagonalizing (over
the reals) the form Q, and extending the new tuple. More precisely, if A
admits the partition into sub-tuples A = (A1, A2, A3) and

Q(AT , A) = AT
1 A1 − AT

2 A2,

then the relation:
AT

1 A1 − AT
2 A2 = 0,

can be extended trivially by zero, while the relation

AT
1 A1 − AT

2 A2 = I,

can be extended as follows: A1 is extended by an isometric tuple on M⊥
and A2 is extended by zero.
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