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Abstract. We follow a stream of the history of positive matrices and

positive functionals, as applied to algebraic sums of squares decomposi-

tions, with emphasis on the interaction between classical moment prob-

lems, function theory of one or several complex variables and modern

operator theory. The second part of the survey focuses on recently dis-

covered connections between real algebraic geometry and optimization

as well as polynomials in matrix variables and some control theory prob-

lems. These new applications have prompted a series of recent studies

devoted to the structure of positivity and convexity in a free ∗-algebra,

the appropriate setting for analyzing inequalities on polynomials having

matrix variables. We sketch some of these developments, add to them

and comment on the rapidly growing literature.

1. Introduction

This is an essay, addressed to non-experts, on the structure of positive

polynomials on semi-algebraic sets, various facets of the spectral theorem for

Hilbert space operators, inequalities and sharp constraints for elements of a

free ∗−algebra, and some recent applications of all of these to polynomial

optimization and engineering. The circle of ideas exposed below is becoming

increasingly popular but not known in detail outside the traditional groups

of workers in functional analysis or real algebra who have developed parts

of it. For instance, it is not yet clear how to teach and facilitate the access

of beginners to this beautiful emerging field. The exposition of topics below

may provide elementary ingredients for such a course.

Partially supported by grants from the National Science Foundation and the Ford

Motor Co.
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The unifying concept behind all the apparently diverging topics men-

tioned above is the fact that universal positive functions (in appropriate

rings) are sums of squares. Indeed, when we prove inequalities we essen-

tially complete squares, and on the other hand when we do spectral analysis

we decompose a symmetric or a hermitian form into a weighted (possibly

continuous) sum or difference of squares. There are of course technical diffi-

culties on each side, but they do not obscure the common root of algebraic

versus analytical positivity.

We will encounter quite a few positivity criteria, expressed in terms of:

matrices, kernels, forms, values of functions, parameters of continued frac-

tions, asymptotic expansions and algebraic certificates. Dual to sums of

squares and the main positive objects we study are the power moments

of positive measures, rapidly decaying at infinity. These moments will be

regarded as discrete data given by fixed coordinate frames in the correspon-

dence between an algebra (of polynomials or operators) and its spectrum,

with restrictions on its location. Both concepts of real spectrum (in algebraic

geometry) and joint spectrum (in operator theory) are naturally connected

in this way to moment problems. From the practitioner’s point of view, mo-

ments represent observable/computable numerical manifestations of more

complicated entities.

It is not a coincidence that the genius of Hilbert presides over all aspects of

positivity we will touch. We owe him the origins and basic concepts related

to: the spectral theorem, real algebra, algebraic geometry and mathematical

logic. As ubiquitous as it is, a Hilbert space will show up unexpectedly and

necessarily in the proofs of certain purely algebraic statements. On the other

hand our limited survey does not aim at offering a comprehensive picture of

Hilbert’s much wider legacy.

Not unexpected, or, better later than never, the real algebraist’s positivity

and the classical analyst’s positive definiteness have recently merged into a

powerful framework; this is needed and shaped by several applied fields of

mathematics. We will bring into our discussion one principal customer:

control theory. The dominant development in linear systems engineering in
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the 1990’s was matrix inequalities and many tricks and ad hoc techniques

for making complicated matrix expressions into tame ones, indeed into the

Linear Matrix Inequalities, LMIs, loved by all who can obtain them. Since

matrices do not commute a large portion of the subject could be viewed as

manipulation of polynomials and rational functions of non-commuting (free)

variables, and so a beginning toward helpful mathematical theory would be

a semi-algebraic geometry for free ∗-algebras, especially its implications for

convexity. Such ventures sprung to life within the last five years and this

article attempts to introduce, survey and fill in some gaps in this rapidly

expanding area of noncommutative semi-algebraic geometry.

The table of contents offers an idea of the topics we touch in the survey

and what we left outside. We are well aware that in a limited space while

viewing a wide angle, as captives of our background and preferences, we

have omitted key aspects. We apologize in advance for all our omissions in

this territory, and for inaccuracies when stepping on outer domains; they are

all non-intentional and reflect our limitations. Fortunately, the reader will

have the choice of expanding and complementing our article with several

recent excellent surveys and monographs (mentioned throughout the text

and some recapitulated in the last section).

The authors thank the American Institute of Mathematics, Palo Alto,

CA, for the unique opportunity (during a 2005 workshop) to interact with

several key contributors to the recent theory of positive polynomials. They

also thank the organizers of the “Real Algebra Fest, 2005”, University of the

Saskatchewan, Canada, for their interest and enthusiasm. The second author

thanks the Real Algebra Group at the University of Konstanz, Germany,

for offering him the possibility to expose and discuss the first sections of the

material presented below.

We dedicate these pages to Tibi Constantinescu, old time friend and col-

league, master of all aspects of matrix positivity.1

1Advice to the reader. Although the ordering of the material below follows a logic

derived from a general theoretical and historical perspective, most of the sections, and

sometimes even subsections, can be read independently. We have tried to keep to a mini-

mum the number of cross references and we have repeated definitions.
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For instance, the reader oriented towards optimization and engineering applications

of the decompositions of polynomials into sums of squares can start with sections on the

Positivstellensatz §5.3, §3.4, then turn to sections on global optimization and engineering

§6 and sections §9, §10 on systems whose structure does not depend on the size of the

system (is dimension free). After this we suggest a tour for the bigger picture through

neighboring sections.

The operator theorist should find most of the paper straightforwrd to read with the

exception of Section 5 which relates this very functional analytic topic to logic. Also an

experienced operator theorist could start reading in many places, for example, in §8 or in

§3 or in §6 or even at the beginning. We reassure everyone that the important general

Positivstellensatz in §5.3 whose proof requires logic, is stated in a self-contained way.

Intriguing for the algebraist and logician might be Sections 2, 3, and 4 which contain

analytic material (mostly derived from the spectral theorem and its many facets) which has

cousins and even closer relatives in algebra.

In any case, all readers should be aware of the modular structure of the text, and try

non-sequential orderings to access it.
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2. The spectral theorem

The modern proof of the spectral theorem for self-adjoint or unitary op-

erators uses commutative Banach algebra techniques, cf. for instance [D03].

This perspective departs from the older, and more constructive approach

imposed by the original study of special classes of integral operators. In this

direction, we reproduce below an early idea of F. Riesz [R13] for defining

the spectral scale of a self-adjoint operator from a minimal set of simple

observations, one of them being the structure of positive polynomials on a

real interval.

2.1. Self-adjoint operators. Let H be a separable, complex Hilbert space

and let A ∈ L(H) be a linear, continuous operator acting on H. We call

A self-adjoint if A = A∗, that is 〈Ax, x〉 ∈ R for all vectors x ∈ H. The
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continuity assumption implies the existence of bounds

(2.1) m‖x‖2 ≤ 〈Ax, x〉 ≤ M‖x‖2, x ∈ H.

The operator A is called non-negative, denoted in short A ≥ 0, if

〈Ax, x〉 ≥ 0, x ∈ H.

The operator A is positive if it is non-negative and (〈Ax, x〉 = 0) ⇒ (x = 0).

We need a couple of basic observations, see §104 of [RN90]. The real

algebraists should enjoy comparing these facts with the axioms of an order

in an arbitrary ring.

a). A bounded monotonic sequence of self-adjoint operators converges (in

the strong operator topology) to a self-adjoint operator.

Indeed, assume 0 ≤ A1 ≤ A2 ≤ ... ≤ I and take B = An+k − An for some

fixed values of n, k ∈ N. Observe that 0 ≤ B ≤ I, so Cauchy-Schwarz’

inequality holds for the bilinear form 〈Bx, y〉. Use this to get: 〈Bx, Bx〉2 ≤
〈Bx, x〉〈B2x, Bx〉 ≤ 〈Bx, x〉〈Bx, Bx〉, from which

‖Bx‖2 = 〈Bx, Bx〉 ≤ 〈Bx, x〉

Thus, for every vector x ∈ H:

‖An+kx − Anx‖2 ≤ 〈An+kx, x〉 − 〈Anx, x〉.

Since the sequence 〈Anx, x〉 is bounded and monotonic, it has a limit. Hence

limn Anx exists for every x ∈ H, which proves the statement.

b). Every non-negative operator A admits a unique non-negative square

root
√

A: (
√

A)2 = A.

For the proof one can normalize A, so that 0 ≤ A ≤ I and use a convergent

series decomposition for
√

x =
√

1 − (1 − x), in conjunction with the above

remark. See for details §104 of [RN90].

Conversely, if T ∈ L(H), then T ∗T ≥ 0.
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c). Let A, B be two commuting non-negative (linear bounded) operators.

Then AB is also non-negative.

Note that, if AB = BA, the above proof implies
√

BA = A
√

B. For the

proof we compute directly

〈ABx, x〉 = 〈A
√

B
√

Bx, x〉 =

〈
√

BA
√

Bx, x〉 = 〈A
√

Bx,
√

Bx〉 ≥ 0.

With the above observations we can enhance the polynomial functional

calculus of a self-adjoint operator. Let C[t], R[t] denote the algebra of poly-

nomials with complex, respectively real, coefficients in one variable and let

A = A∗ be a self-adjoint operator with bounds (2.1). The expression p(A)

makes sense for every p ∈ C[t], and the polynomial functional calculus for

A which is the map φ

p
φ7→ p(A)

is obviously linear, multiplicative and unital (1 maps to I). Less obvious is

the key fact that that φ is positivity preserving:

Proposition 2.1. If the polynomial p ∈ R[t] satisfies p(t) ≥ 0 for all t

in [m, M ] and the self-adjoint operator A satisfies mI ≤ A ≤ MI, then

p(A) ≥ 0.

Proof. A decomposition of the real polynomial p into irreducible, real

factors yields:

p(t) = c
∏

i

(t − αi)
∏
j

(βj − t)
∏
k

[(t − γk)2 + δ2
k],

with c > 0, αi ≤ m ≤ M ≤ βj and γk ∈ R, δk ∈ R. According to the

observation c) above, we find p(A) ≥ 0. ¥
The proposition immediately implies

Corollary 2.2. The homomorphism φ on C[t] extends to C[m, M ] and be-

yond. Moreover,

‖p(A)‖ ≤ sup
[m,M ]

|p| =: ‖p‖∞.



8 J. WILLIAM HELTON AND MIHAI PUTINAR

Proof. The inequality follows because sup[m,M ] |p| ± p is a polynomial non-

negative on [m, M ], so ‖p‖∞I ≥ ±p(A) which gives the required inequality.

Thus φ is sup norm continuous and extends by continuity to the completion

of the polynomials, which is of course the algebra C[m, M ] of the continuous

functions.

The Spectral Theorem immediately follows.

Theorem 2.3. If the self adjoint bounded operator A on H has a cyclic

vector ξ, then there is a positive Borel measure µ on [m, M ] and a unitary

operator U : H 7→ L2(µ) identifying H with L2(µ) such that

UAU∗ = Mx.

Here for any g in L∞ the multiplication operator Mg is defined by Mgf = gf

on all f ∈ L2(µ).

The vector ξ cyclic means

span {Akξ : k = 0, 1, 2. · · · } = {p(A)ξ : p a polynomial }

is dense in H.

Proof Define a linear functional L : C([m, M ]) 7→ C by

L(f) := 〈f(A)ξ, ξ〉 for all f ∈ C([m, M ]).

The Representation Theorem (see Proposition 3.2 for more detail) for such

L says there is a Borel measure µ such that

L(f) =
∫

[m,M ]
fdµ;

moreover, µ is a positive measure because if f ≥ 0 on [m, M ], then L(f) ≥ 0.

A critical feature is

(2.2)
∫

pqdµ = 〈p(A)ξ, q(A)ξ〉

which holds, since = L(pq) = 〈p(A)q(A)ξ, ξ〉. We have built our representing

space (using a formula which haunts the rest of this paper) and now we

identify H with this space.

Define U by Up(A)ξ = p which specifies it on a dense set (by the cyclic as-

sumption) provided Up1(A)ξ = Up2(A)ξ implies e(A)ξ := p1(A)ξ−p2(A)ξ =
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0; in other words, 0 = 〈e(A)ξ, q(A)ξ〉 for all polynomials q. Thus 0 =
∫

eqdµ,

so e = 0 a.e. wrt µ. Now to properties of U :

(1) U is isometric. (That is what (2.2) says.) Thus U extends to H and

has closed range.

(2) The range of U is dense since it contains the polynomials.

(3) UAp(A)ξ = xp(x) = xUp(A)ξ for all polynomials p. By the density

imposed by cyclicity for any v in H we have

UAv = MxUv.

Note the constrction gives Uξ = 1. ¥

2.2. A bigger functional calculus and spectral measures. Our next

aim is to consider a bounded, increasing sequence pn of real polynomial

functions on the interval [m, M ] and define, according to observation a):

f(A)x = lim pn(A)x, x ∈ H,

where f is a point-wise limit of pn. A standard argument shows that, if qn

is another sequence of polynomials, monotonically converging on [m, M ] to

f , then

lim qn(A)x = lim
n

pn(A)x, x ∈ H.

See for details §106 of [RN90]. The new calculus f 7→ f(A) remains linear

and multiplicative.

In particular, we can apply the above definition to the step functions

χs(t) =

{
1, t ≤ s,

0, t > s.

This yields a monotonic, operator valued function

FA(s) = χs(A),

with the additional properties FA(s) = FA(s)∗ = FA(s)2 and

FA(s) =

{
0, s < m,

I, s ≥ M.
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With the aid of this spectral scale one can interpret the functional calculus

as an operator valued Riemann-Stieltjes integral

f(A) =
∫ M

m
f(t)dFA(t).

The spectral measure EA of A is the operator valued measure associated to

the monotonic function FA, that is, after extending the integral to Borel

sets σ,

EA(σ) =
∫

σ∩[m,M ]
dFA(t).

Thus EA(σ) is a family of mutually commuting orthogonal projections, sub-

ject to the multiplicativity constraint

EA(σ ∩ τ) = EA(σ)EA(τ).

As a matter of notation, we have then for every bounded, Borel measurable

function f :

(2.3) f(A) =
∫ M

m
f(t)EA(dt).

This is a form of the Spectral Theorem which does not assume cyclicity.

A good exercise for the reader is to identify the above objects in the case of

a finite dimensional Hilbert space H and a self-adjoint linear transformation

A acting on it. A typical infinite dimensional example will be discussed later

in connection with the moment problem.

2.3. Unitary operators. The spectral theorem for a unitary transforma-

tion U ∈ L(H), U∗U = UU∗ = I, can be derived in a very similar manner.

The needed structure of positive polynomials is contained in the following

classical result.

Lemma 2.4 (Riesz-Fejér). A non-negative trigonometric polynomial is the

modulus square of a trigonometric polynomial.

Proof. Let p(eiθ) =
∑d

−d cje
ijθ and assume that p(eiθ) ≥ 0, θ ∈ [0, 2π].

Then necessarily c−j = cj . By passing to complex coordinates, the rational

function p(z) =
∑d

−d cjz
j must be identical to p(1/z). That is its zeros and

poles are symmetrical (in the sense of Schwarz) with respect to the unit

circle.
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Write zdp(z) = q(z), so that q is a polynomial of degree 2d. One finds, in

view of the mentioned symmetry:

q(z) = czν
∏
j

(z − λj)2
∏
k

(z − µk)(z − 1/µk),

where c 6= 0 is a constant, |λj | = 1 and 0 < |µk| < 1.

For z = eiθ we obtain

p(eiθ) = |p(eiθ)| = |q(eiθ| =

|c|
∏
j

|eiθ − λj |2
∏
k

|eiθ − µk|2
|µk|2 .

¥
Returning to the unitary operator U we infer, for p ∈ C[z],

<p(eiθ) ≥ 0 ⇒ <p(U) ≥ 0.

Indeed, according to the above Lemma, <p(eiθ) = |q(eiθ)|2, whence

<p(U) = q(U)∗q(U) ≥ 0.

Then, exactly as in the preceding section one constructs the spectral scale

and spectral measure of U .

For an operator T we denote its “real part” and “imaginary part” by

<T = (T + T ∗)/2 and =T = (T − T ∗)/2i.

The reader will find other elementary facts (à la Riesz-Fejér’s Lemma)

about the decompositions of non-negative polynomials into sums of squares

in the second volume of Polya and Szegö’s problem book [PS25]. This par-

ticular collection of observations about positive polynomials reflects, from

the mathematical analyst point of view, the importance of the subject in

the first two decades of the XX-th century.

2.4. Riesz-Herglotz formula. The practitioners of spectral analysis know

that the strength and beauty of the spectral theorem lies in the effective

dictionary it establishes between matrices, measures and analytic functions.

In the particular case of unitary operators, these correspondences also go

back to F. Riesz. The classical Riesz-Herglotz formula is incorporated below

in a more general statement. To keep the spirit of positivity of the last
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sections, we are interested below in the additive (rather than multiplicative)

structure of polynomials (or more general functions) satisfying Riesz-Fejér’s

condition:

<p(z) ≥ 0, |z| < 1.

We denote by D the unit disk in the complex plane. Given a set X by a

positive semi-definite kernel we mean a function K : X×X −→ C satisfying

N∑
i,j=1

K(xi, xj)cicj ≥ 0,

for every finite selection of points x1, ..., xN ∈ X and complex scalars c1, ..., cN .

Theorem 2.5. Let f : D −→ C be an analytic function. The following

statements are equivalent:

a). <f(z) ≥ 0, z ∈ D,

b). (Riesz-Herglotz formula). There exists a positive Borel measure µ on

[−π, π] and a real constant C, such that:

f(z) = iC +
∫ π

−π

eit + z

eit − z
dµ(t), z ∈ D,

c). The kernel Kf : D × D −→ C,

Kf (z, w) =
f(z) + f(w)

1 − zw
, z, w ∈ D,

is positive semi-definite,

d). There exists a unitary operator U ∈ L(H), a vector ξ ∈ H and a

constant a ∈ C, <a ≥ 0, such that:

f(z) = a + z〈(U − z)−1ξ, ξ〉, z ∈ D.

Proof. We merely sketch the main ideas in the proof. The reader can

consult for details the monograph [AM02].
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a) ⇒ b). Let r < 1. As a consequence of Cauchy’s formula:

f(z) = i=f(0) +
1
2π

∫ π

−π

reit + z

reit − z
<f(reit)dt, |z| < r.

Since the positive measures 1
2π<f(reit)dt have constant mass on [−π, π]:

1
2π

∫ π

−π
<f(reit)dt = <f(0), r < 1,

they form a weak−∗ relatively compact family (in the space of finite mea-

sure). Any weak−∗ limit will satisfy the identity in b) (hence all limit points

coincide).

b) ⇒ c). A direct computation yields:

(2.4) Kf (z, w) =
∫ π

−π

2
(eit − z)(e−it − w)

dµ(t), z, w ∈ D.

Since for a fixed value of t, the integrand is positive semi-definite, and we

average over a positive measure, the whole kernel will turn out to be positive

semi-definite.

c) ⇒ a). Follows by evaluating Kf on the diagonal:

2<f(z) = (1 − |z|2)Kf (z, z) ≥ 0.

b) ⇒ d). Let H = L2(µ) and Uf(t) = eitf(t). Then U is a unitary

operator, and the constant function ξ =
√

2 yields the representation d).

d) ⇒ b). In view of the spectral theorem, we can evaluate the spectral

measure EU on the vector ξ and obtain a positive measure µ satisfying:

f(z) = a + z〈(U − z)−1ξ, ξ〉 = a + z

∫ π

−π

dµ(t)
eit − z

=

a +
1
2

∫ π

−π

eit + z

eit − z
dµ(t) − 1

2

∫ π

−π
dµ(t), z ∈ D.

By identifying the constants we obtain, up to the factor 2, conclusion b). ¥

The theorem above has far reaching consequences in quite divergent direc-

tions: function theory, operator theory and control theory of linear systems,

see for instance [AM02, FF90, M03, RR97]. We confine ourselves to describe

only a generic consequence.
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First, we recall that, exactly as in the case of finite matrices, a positive

semi-definite kernel can be written as a sum of squares. Indeed, if K :

X × X −→ C is positive semi-definite, one can define a sesqui-linear form

on the vector space ⊕x∈XC, with basis e(x), x ∈ X, by

‖
∑

i

cie(xi)‖2 =
N∑

i,j=1

K(xi, xj)cicj .

This is a positive semi-definite inner product. The associated separated (i.e.

Hausdorff) Hilbert space completion H carries the classes of the vectors

[e(x)] ∈ H. They factor K into a sum of squares:

K(x, y) = 〈[e(x)], [e(y)]〉 =
∑

k

〈[e(x)], fk〉〈fk, [e(y)]〉,

where (fk) is any orthonormal basis of H. For details, see for instance the

Appendix to [RN90].

The following result represents the quintessential bounded analytic inter-

polation theorem.

Theorem 2.6 (Nevanlinna-Pick). Let {ai ∈ D; i ∈ I} be a set of points in

the unit disk, and let {ci ∈ C; <ci ≥ 0, i ∈ I} be a collection of points in

the right half-plane, indexed over the same set.

There exists an analytic function f in the unit disk, with <f(z) ≥ 0, |z| <

1, and f(ai) = ci, i ∈ I, if and only if the kernel

ci + cj

1 − aiaj
, i, j ∈ I,

is positive semi-definite.

Proof. Point c) in the preceding Theorem shows that the condition is

necessary.

A Moebius transform in the range (f 7→ g = (f − 1)/(f + 1)) will change

the statement into:

g : D −→ D, g(ai) = di,

if and only if the kernel
1 − didj

1 − aiaj
, i, j ∈ I,

is positive semi-definite.
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To prove that the condition in the statement is also sufficient, assume

that the latter kernel is positive semi-definite. As before, factor it (into a

sum of squares):

1 − didj

1 − aiaj
= 〈h(i), h(j)〉, i, j ∈ I,

where h : I −→ H is a function with values in an auxiliary Hilbert space H.

Then

1 + 〈aih(i), ajh(j)〉 = didj + 〈h(i), h(j)〉, i, j ∈ I.

The preceding identity can be interpreted as an equality between scalar

products in C ⊕ H:

〈
(

1

aih(i)

)
,

(
1

ajh(ij)

)
〉 = 〈

(
di

h(i)

)
,

(
dj

h(j)

)
〉, i, j ∈ I.

Let H1 ⊂ C ⊕ H be the linear span of the vectors (1, aih(i))T , i ∈ I. The

map

V

(
1

aih(i)

)
=

(
di

h(i)

)

extends then by linearity to an isometric transformation V : H1 −→ H.

Since the linear isometry V can be extended (for instance by zero on the

orthogonal complement of H1) to a contractive linear operator T : C⊕H −→
C ⊕ H, we obtain a block matrix decomposition of T satisfying:[

A B

C D

] (
1

aih(i)

)
=

(
di

h(i)

)
.

Since ‖D‖ ≤ 1, the operator I − zD is invertible for all z ∈ D. From the

above equations we find, after identifying A with a scalar:

h(i) = (I − aiD)−1C1, di = A + aiBh(i).

We define the analytic function

g(z) = A + zB(I − zD)−1C1, |z| < 1.

It satisfies, as requested: g(ai) = di, i ∈ I.
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By reversing the above reasoning we infer, with h(z) = (I−zD)−1C1 ∈ H:[
A B

C D

] (
1

zh(z)

)
=

(
g(z)

h(z)

)
.

Since T is a contraction,

‖g(z)‖2 + ‖h(z)‖2 ≤ 1 + ‖zh(z)‖2 ≤ 1 + ‖h(z)‖2, |z| < 1,

whence

|g(z)| ≤ 1, |z| < 1.

¥

The above proof contains the germ of what experts in control theory call

“realization theory”. For the present survey it is illustrative as a constructive

link between matrices and analytic functions with bounds; it will also be

useful as a model to follow in more general, non-commutative settings.

A great deal of research was done in the last two decades on analogs

of Riesz-Herglotz type formulas in several complex variables. As expected,

when generalizing to Cn, there are complications and surprises on the road.

See for instance [AM02, BT98, CW99, EP02] and in several non-commuting

variables [BGM05, K05]. We will return to some of these topics from the

perspective of positive polynomials and moment sequences.

2.5. von Neumann’s inequality. We have just seen that the heart of the

spectral theorem for self-adjoint or unitary operators was the positivity of

the polynomial functional calculus. A surprisingly general inequality, of the

same type, applicable to an arbitrary bounded operator, was discovered by

von Neumann [vN2].

Theorem 2.7. Let T ∈ L(H), ‖T‖ ≤ 1, be a contractive operator. If a

polynomial p ∈ C[z] satisfies <p(z) ≥ 0, z ∈ D, then <p(T ) ≥ 0.

Proof. According to Riesz-Herglotz formula we can write

p(z) = iC +
∫ π

−π

eit + z

eit − z
dµ(t), |z| < 1,

where C ∈ R and µ is a positive measure.
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Fix r < 1, close to 1, and evaluate the above representation at z = rT :

p(rT ) = iC +
∫ π

−π
(eit + rT )(eit − rT )−1dµ(t).

Therefore

p(rT ) + p(rT )∗ =∫ π

−π
(eit−rT )−1[(eit+rT )(e−it−rT ∗)+(eit−rT )(e−it+rT ∗)](e−it−rT ∗)−1dµ(t) =

2
∫ π

−π
(eit − rT )−1[I − r2TT ∗](e−it − rT ∗)−1dµ(t) ≥ 0.

Letting r → 1 we find <p(T ) ≥ 0. ¥

A Moebius transform argument, as in the proof of Nevanlinna-Pick The-

orem, yields the equivalent statement (for a contractive linear operator T ):

(|p(z)| ≤ 1, |z| < 1) ⇒ ‖p(T )‖ ≤ 1.

Von Neumann’s original proof relied on the continued fraction structure

of the analytic functions from the disk to the disk. The recursive construc-

tion of the continued fraction goes back to Schur [S18] and can be explained

in a few lines.

Schur’s algorithm. Let f : D −→ D be an analytic function. Then, in

view of Schwarz Lemma, there exists an analytic function f1 : D −→ D with

the property:
f(z) − f(0)
1 − f(0)f(z)

= zf1(z),

or equivalently, writing s0 = f(0):

f(z) =
s0 + zf1(z)
1 + s0zf1(z)

.

In its turn,

f1(z) =
s1 + zf2(z)
1 + s1zf2(z)

,

with an analytic f2 : D −→ D, and so on.
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This algorithm terminates after finitely many iterations for finite Blashcke

products

f(z) =
N∏

k=1

z − λk

1 − λkz
, |λk| < 1.

Its importance lies in the fact that the finite section of Schur parameters

(s0, s1, ..., sn) depends via universal expressions on the first section (same

number) of Taylor coefficients of f at z = 0. Thus, the conditions

|s0(c0)| ≤ 1, |s1(c0, c1)| ≤ 1, . . .

characterize which power series

c0 + c1z + c2z
2 + ...,

are associated to analytic functions from the disk to the disk. For details

and a variety of applications, see [Constantinescu96, FF90, RR97].

One notable application is to solve the classical Carathéodory-Fejér in-

terpolation problem, a close relative of the Nevanlinna-Pick problem we

presented earlier. Here one specifies complex numbers c0, · · · , cm and seeks

f : D → D analytic for which

1
j!

djf

dzj
(0) = cj , j = 0, · · · , m.

The Schur Algorithm constructs such a function and in the same time gives

a simple criterion when the solution exists. Alternatively, a special type of

matrix (cn−m)m
n,m=0, with zero entries under the diagonal (cj = 0, j < 0),

called a Toeplitz matrix, based on c0, · · · , cm is a contraction if and only if

a solution to the Carathéodory-Fejér problem exists. A version of this fact

in the right half plane (rather than the disk) is proved in Theorem 3.3.

As another application, we can derive (also following Schur) an effective

criterion for deciding whether a polynomial has all roots inside the unit disk.

Let

p(z) = cdz
d + cd−1z

d−1 + ... + c0 ∈ C[z],

and define

p[(z) = zdp(1/z) = c0z
d + c1z

d−1 + ... + cd.
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It is clear that

|p(eit)| = |p[(eit)|, t ∈ [−π, π],

and that the roots of p[ are symmetric with respect to the unit circle to the

roots of p. Therefore, p has all roots contained in the open unit disk if and

only if p
p[ is an analytic function from the disk to the disk, that is, if and

only if the kernel

p[(z)p[(w) − p(z)p(w)
1 − zw

, z, w ∈ D,

is positive definite. As a matter of fact p
p[ is a finite Blashcke product, and

Schur’s algorithm terminates in this case after finitely many iterations.

In general, regarded as a Hermitian form, evaluated to the variables Zi =

zi, 0 ≤ i ≤ d, the signature of the above kernel (that is the number of zeros,

negative and positive squares in its canonical decomposition) counts how

many roots the polynomial p has inside the disk, and on its boundary. For

many more details see the beautiful survey [KN81].

3. Moment problems

In this section we return to Hilbert space and the spectral theorem, by

unifying the analysis and algebra concepts we have discussed in the previous

sections. This is done in the context of power moment problems, one of the

oldest and still lively sources of questions and inspiration in mathematical

analysis.

As before, x = (x1, ..., xg) stands for the coordinates in Rg, and, at the

same time, for a tuple of commuting indeterminates. We adopt the multi-

index notation xα = xα1
1 ...x

αg
g , α ∈ Ng. Let µ be a positive, rapidly decreas-

ing measure on Rg. The moments of µ are the real numbers:

aα =
∫

xαdµ(x), α ∈ Ng.

For its theoretical importance and wide range of applications, the correspon-

dence

{µ; positive measure} −→ {(aα); moment sequence}
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can be put on an equal level with the Fourier-Laplace, Radon or wavelet

transforms. It is the positivity of the original measure which makes the

analysis of this category of moment problems interesting and non-trivial,

and appropriate for our discussion. For general aspects and applications

of moment problems (not treated below) the reader can consult the mono-

graphs [Akh65, BCR98, FF90, ST43] and the excellent survey [F83]. The old

article of Marcel Riesz [MR23] remains unsurpassed for the classical aspects

of the one variable theory.

Given a multi-sequence of real numbers (aα)α∈Ng a linear functional rep-

resenting the potential integral of polynomials can be defined as:

L : R[x] −→ R, L(xα) = aα, α ∈ Ng,

and vice-versa. When necessary we will complexify L to a complex linear

functional on C[x].

If (aα)α∈Ng are the moments of a positive measure, then for a polynomial

p ∈ R[x] we have

L(p2) =
∫

Rg

p2dµ ≥ 0.

Moreover, in the above positivity there is more structure: we can define on

C[x] a pre-Hilbert space bracket by:

〈p, q〉 = L(pq), p, q ∈ C[x].

The inner product is positive semi-definite, hence the Cauchy-Schwarz in-

equality holds:

|〈p, q〉|2 ≤ ‖p‖2‖q‖2.

Thus, the set of null-vectors N = {p ∈ C[x]; ‖p‖ = 0} is a linear subspace,

invariant under the multiplication by any polynomial. Let H be the Hilbert

space completion of C[x]/N with respect to the induced Hermitian form.

Let D = C[x]/N be the image of the polynomial algebra in H. It is a dense

linear subspace, carrying the multiplication operators:

Mxi : D −→ D, Mxip = xip.
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Note that these are well defined, symmetric linear operators:

〈Mxip, q〉 = L(xipq) = 〈p, Mxiq〉, p, q ∈ D,

and they commute

MxiMxj = MxjMxi .

Finally the (constant function) vector ξ = 1 is cyclic, in the sense that D is

the linear span of repeated actions of Mx1 , ..., Mxg on ξ:

D =
∨

α∈Ng

Mα1
x1

...M
αg
xg ξ.

We collect these observations into a single statement.

Proposition 3.1. There is a bijective correspondence between all linear

functionals

L ∈ R[x]′, L|Σ2R[x] ≥ 0,

and the pairs (M, ξ) of g-tuples M = (M1, ..., Mg) of commuting, symmetric

linear operators with a cyclic vector ξ (acting on a separable Hilbert space).

The correspondence is given by the relation

L(p) = 〈p(M)ξ, ξ〉, p ∈ R[x].

Above the word commuting has to be taken with caution: implicitly it is

understood that we define the span D as before, and remark that every Mi

leaves D invariant. Then Mi commutes with Mj as endomorphisms of D.

Having a positive measure µ represent the functional L adds in general

new constraints in this dictionary.

Let P+(K) be the set of all polynomials which are non-negative on the

set K ⊂ Rg and note that this is a convex cone.

Proposition 3.2. A linear functional L ∈ R[x]′ is representable by a posi-

tive measure µ:

L(p) =
∫

pdµ, p ∈ R[x]

if and only if L|P+(Rg) ≥ 0.
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Although this observation (in several variables) is attributed to Haviland,

see [Akh65], it is implicitly contained in Marcel Riesz article [MR23]. Again

we see exactly the gap

Σ2R[x] ⊂ P+(Rg),

which we must understand in order to characterize the moments of positive

measures (as already outlined in Minkowski’s and Hilbert’s early works).

Proof. If the functional L is represented by a positive measure, then it is

obviously non-negative on all non-negative polynomials.

To prove the converse, assume that L|P+(Rg) ≥ 0. Let CpBd(Rg) be the

space of continuous functions f having a polynomial bound at infinity:

|f(x)| ≤ C(1 + |x|)N ,

with the constants C, N > 0 depending on f . We will extend L, following

M. Riesz [MR23], to a non-negative functional on CpBd(Rg).

This extension process, parallel and arguably prior to the Hahn-Banach

Theorem, works as follows. Assume that

L̂ : V −→ R

is a positive extension of L to a vector subspace V ⊂ CpBd(Rg). That is:

(h ∈ V, h ≥ 0) ⇒ (L̂(h) ≥ 0).

Remark that L is defined on all polynomial functions. Assume V is not the

whole space and choose a non-zero function f ∈ CpBd(Rg) \ V . Since f has

polynomial growth, there are elements h1, h2 ∈ V satisfying

h1 ≤ f ≤ h2.

By the positivity of L̂, we see L̂h1 ≤ L̂f ≤ L̂h2, that is

sup
h1≤f

L̂(h1) ≤ inf
f≤h2

L̂(h2).

Choose any real number c between these limits and define

L′(h + λf) = L̂(h) + λc, h ∈ V, λ ∈ R.

This will be a positive extension of L to the larger space V ⊕ Rf .
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By a standard application of Zorn’s Lemma, we find a positive extension

of L to the whole space. Finally, F. Riesz Representation Theorem provides

a positive measure µ on Rg, such that L(p) =
∫

pdµ, p ∈ R[x]. ¥
Next we focus on a few particular contexts (either low dimensions, or

special supporting sets for the measure) where the structure of the posi-

tive functionals and tuples of operators appearing in our dictionary can be

further understood.

3.1. The trigonometric moment problem. We specialize to dimension

n = 2 and to measures supported on the unit circle (torus) T = {z ∈
C; |z| = 1}. The group structure of T identifies our moment problem to

the Fourier transform. It is convenient in this case to work with complex

coordinates z = x + iy ∈ C = R2, and complex valued polynomials. In

general, we denote by Σ2
hC[x] the sums of moduli squares (i.e. |q|2) of

complex coefficient polynomials.

The ring of regular functions on the torus is

A = C[z, z]/(1 − zz) = C[z] ⊕ zC[z],

where (1− zz) denotes the ideal generated by 1− zz. A non-negative linear

functional L on Σ2
hA necessarily satisfies

L(f) = L(f), f ∈ A.

Hence L is determined by the complex moments L(zn), n ≥ 0. The following

result gives a satisfactory solution to the trigonometric moment problem on

the one dimensional torus.

Theorem 3.3. Let (cn)∞n=−∞ be a sequence of complex numbers subject to

the conditions c0 ≥ 0, c−n = cn, n ≥ 0. The following assertions are

equivalent:

a). There exists a unique positive measure µ on T, such that:

cn =
∫

T
zndµ(z), n ≥ 0;
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b). The Toeplitz matrix (cn−m)∞n,m=0 is positive semi-definite;

c). There exists an analytic function F : D −→ C, <F ≥ 0, such that

F (z) = c0 + 2
∞∑

k=1

c−kz
k, |z| < 1;

d). There exists a unitary operator U ∈ L(H) and a vector ξ ∈ H cyclic

for the pair (U, U∗), such that

〈Unξ, ξ〉 = cn, n ≥ 0.

Proof. Let L : C[z, z]/(1 − zz) −→ C be the linear functional defined by

L(zn) = cn, n ≥ 0.

Condition b) is equivalent to

L(|p|2) ≥ 0, p ∈ C[z, z]/(1 − zz).

Indeed, assume that p(z) =
∑g

j=0 αjz
j . Then, since zz = 1,

|p(z)|2 =
g∑

j,k=0

αjαkz
j−k,

whence

L(|p|2) =
g∑

j,k=0

αjαkcj−k.

Thus a) ⇒ b) trivially. In view of the Riesz-Fejér Lemma, the functional

L is non-negative on all non-negative polynomial functions on the torus.

Hence, in view of Proposition 3.2 it is represented by a positive measure.

The uniqueness is assured by the compactness of T and Stone-Weierstrass

Theorem (trigonometric polynomials are uniformly dense in the space of

continuous functions on T). The rest follows from Theorem 2.5. ¥
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Notable in the above Theorem is the fact that the main objects are in

bijective, and constructive, correspondence established essentially by Riesz-

Herglotz formula. Fine properties of the measure µ can be transferred in this

way into restrictions imposed on the generating function F or the unitary

operator U .

For applications and variations of the above result (for instance a matrix

valued analog of it) the reader can consult [AM02, Akh65, FF90, RR97].

3.2. Hamburger’s moment problem. The passage from the torus to the

real line reveals some unexpected turns, due to the non-compactness of the

line. One may argue that the correct analog on the line would be the con-

tinuous Fourier transform. Indeed, we only recall that Bochner’s Theorem

provides an elegant characterization of the Fourier transforms of positive

measures.

Instead, we remain consistent and study polynomial functions and positive

measures acting on them. Specifically, consider an R-linear functional

L : R[x] −→ R, L|Σ2R[x] ≥ 0.

By denoting

ck = L(xk), k ≥ 0,

the condition L|Σ2R[x] is equivalent to the positive semi-definiteness of the

Hankel matrix

(ck+l)∞k,l=0 ≥ 0,

since

0 ≤
∑
k,l

fkck+lfl =
∑
k,l

L(fkx
kxlfl) = L(

∑
k

fkx
k
∑

l

xlfl) = L(f(x)2).

Next use that every non-negative polynomial on the line is a sum of squares

of polynomials, to invoke Proposition 3.2 for the proof of the following clas-

sical fact.

Theorem 3.4 (Hamburger). Let (ck)∞k=0 be a sequence of real numbers.

There exists a rapidly decaying, positive measure µ on the real line, such
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that

ck =
∫ ∞

−∞
xkdµ(x), k ≥ 0,

if and only if the matrix (ck+l)∞k,l=0 is positive semi-definite.

Now we sketch a second proof of Hamburger Theorem, based on the

Hilbert space construction we have outlined in the previous section. Namely,

start with the positive semi-definite matrix (ck+l)∞k,l=0 and construct a Hilbert

space (Hausdorff) completion H of C[x], satisfying

〈xk, xl〉 = ck+l, k, l ≥ 0.

Let D denote as before the image of the algebra of polynomials in H; the

image is dense. The (single) multiplication operator

(Mp)(x) = xp(x), p ∈ D,

is symmetric and maps D into itself. Moreover, M commutes with the

complex conjugation symmetry of H:

Mp = Mp.

By a classical result of von-Neumann [vN1] there exists a self-adjoint (pos-

sibly unbounded) operator A which extends M to a larger domain. Since

A possesses a spectral measure EA (exactly as in the bounded case), we

obtain:

ck = 〈xk, 1〉 = 〈Mk1, 1〉 =

〈Ak1, 1〉 =
∫ ∞

−∞
xk〈EA(dx)1, 1〉.

The measure 〈EA(dx)1, 1〉 is positive and has prescribed moments (ck). ¥

This second proof offers more insight into the uniqueness part of Ham-

burger’s problem. Every self-adjoint extension A of the symmetric operator

M produces a solution µ(dx) = 〈EA(dx)1, 1〉. The set K of all positive mea-

sures with prescribed moments (ck) is convex and compact in the weak-∗
topology. The subset of Nevanlinna extremal elements of K are identified

with the measures 〈EA(dx)1, 1〉 associated to the self-adjoint extensions A

of M . In particular one proves in this way the following useful uniqueness

criterion.
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Proposition 3.5. Let (ck) be the moment sequence of a positive measure µ

on the line. Then a positive measure with the same moments coincides with

µ if and only if the subspace

(iI + M)D is dense in H,

or equivalently, there exists a sequence of polynomials pn ∈ C[x] satisfying

lim
n→∞

∫ ∞

−∞
|(i + x)pn(x) − 1|2 dµ(x) = 0.

Note that both conditions are intrinsic in terms of the initial data (ck). For

the original function theoretic proof see [MR23]. For the operator theoretic

proof see for instance [Akh65].

There exists a classical analytic function counterpart of the above objects,

exactly as in the previous case (see §2.4, §2.5 ) of the unit circle. Namely,

assuming that

ck = 〈Ak1, 1〉 =
∫ ∞

−∞
xkdµ(x), k ≥ 0,

as before, the analytic function

F (z) =
∫ ∞

−∞
dµ(x)
x − z

= 〈(A − z)−11, 1〉

is well defined in the upper half-plane =z > 0 and has the asymptotic ex-

pansion at infinity (in the sense of Poincaré, uniformly convergent in wedges

0 < δ < arg z < π − δ):

F (z) ≈ −c0

z
− c1

z2
− · · · , =(z) > 0.

One step further, we have a purely algebraic recursion which determines

the continued fraction development

−c0

z
− c1

z2
− · · · = −

c0

z − α0 −
β0

z − α1 −
β1

z − α2 −
β2

. . .

, αk ∈ R, βk ≥ 0.

It was Stieltjes, and then Hamburger, who originally remarked that (ck)

is the moment sequence of a positive measure if and only if the elements βk
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in the continued fraction development of the generating (formal) series are

non-negative. Moreover, in this case they proved that there exists a unique

representing measure if and only if the continued fraction converges in the

upper half-plane. For details and a great collection of classical examples

see Perron’s monograph [Per50]. A well known uniqueness criterion was

obtained via this formalism by Carleman [C26]. It states that uniqueness

holds if
∞∑
1

1

c
1/(2k)
2k

= ∞.

The condition is however not necessary for uniqueness.

The alert reader has seen the great kinship between the continued fraction

recursion just elucidated and the recursion called the Schur Algorithm in

§2.5. These are essentially the same thing, but one is in the disk setting

while the other is in the half plane.

3.2.1. Moments on the semiaxis [0,∞]. The above picture applies with mi-

nor modifications to Stieltjes problem, that is the power moment problem

on the semi-axis [0,∞).

Example 3.6. We reproduce below an example found by Stieltjes, and refined

by Hamburger. See for details [Per50]. Let ρ and δ be positive constants,

and denote

α =
1

2 + δ
, γ = ρ−α.

Then

an = (2 + δ)ρn+1Γ[(2 + δ)(n + 1)] =
∫ ∞

0
xne−γxα

dx, n ≥ 0,

is a moment sequence on the positive semi-axis. A residue integral argument

implies ∫ ∞

0
xn sin

(
γxα tan(πα)

)
e−γxα

dx = 0, n ≥ 0.

Hence

an =
∫ ∞

0
xn

(
1 + t sin(γxα tan(πα))

)
e−γxα

dx,

for all n ≥ 0 and t ∈ (−1, 1). This shows that the moment sequence (an)

does not uniquely determine µ even knowing its support is [0,∞). ¤
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Summing up the above ideas, we have bijective correspondences between

the following sets (C+ stands for the open upper half plane):

A). Rapidly decaying positive measures µ on the real line;

B). Analytic functions F : C+ −→ C+, satisfying supt>1 |tF (it)| < ∞;

C). Self-adjoint operators A with a cyclic vector ξ.

More precisely:

F (z) = 〈(A − z)−1ξ, ξ〉 =
∫ ∞

−∞
dµ(x)
x − z

, z ∈ C+.

The moment sequence ck =
∫ ∞
−∞ xkdµ(x), k ≥ 0, appears in the asymptotic

expansion of F , at infinity, but it does not determine F , (A, ξ) or µ. For fur-

ther details about Hamburger and Stieltjes moment problems see Akhiezer’s

monograph [Akh65].

3.3. Several variables. The moment problem on Rg, g > 1, is consid-

erably more difficult and less understood. Although we have the general

correspondence remarked in Proposition 3.1, the gap between a commuting

tuple of unbounded symmetric operators and a strongly commuting one (i.e.

by definition one possessing a joint spectral measure) is quite wide. A va-

riety of strong commutativity criteria came to rescue; a distinguished one,

due to Nelson [N59], is worth mentioning in more detail.

Assume that L : R[x1, ..., xg] −→ R is a functional satisfying (the non-

negative Hankel form condition) L|Σ2R[x] ≥ 0. We complexify L and asso-

ciate, as usual by now, the Hilbert space H with inner product:

〈p, q〉 = L(pq), C[x].

The symmetric multipliers Mxk
commute on the common dense domain

D = C[x] ⊂ H. Exactly as in the one variable case, there exists a positive

measure µ on Rg representing L if and only if there are (possibly unbounded)

self-adjoint extensions Mxk
⊂ Ak, 1 ≤ k ≤ n, commuting at the level of their
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resolvents:

[(Ak−z)−1, (Aj−z)−1] := (Ak−z)−1(Aj−z)−1 − (Aj−z)−1(Ak−z)−1 = 0,

for =z > 0, 1 ≤ j, k ≤ n.

See for details [F83]. Although individually every Mxk
admits at least one

self-adjoint extension, it is the joint strong commutativity (in the resolvent

sense) of the extensions needed to solve the moment problem.

Nelson’s theorem gives a sufficient condition in this sense: if (1+x2
1 + ...+

x2
g)D is dense in H, then the tuple of multipliers (Mx1 , ..., Mxg) admits an

extension to a strongly commuting tuple of self-adjoint operators. Moreover,

this insures the uniqueness of the representing measure µ. For complete

proofs and more details see [Berg87, F83].

A tantalizing open question in this area can be phrased as follows:

Open problem. Let (cα+β)α,β∈Ng be a positive semi-definite Hankel

form. Find effective conditions insuring that (cα) are the moments of a

positive measure.

Or equivalently, in predual form, find effective criteria (in terms of the

coefficients) for a polynomial to be non-negative on Rg.

We know from Tarski’s principle that the positivity of a polynomial is de-

cidable. The term “effective” above means to find exact rational expressions

in the coefficients which guarantee the non-negativity of the polynomial.

We do not touch in this discussion a variety of other aspects of the

multivariate moment problem such as uniqueness criteria, orthogonal poly-

nomials, cubature formulas and the truncated problem. See for instance

[Berg87, Berg91, CF05, GV61, KM70].

3.4. Positivstellensätze on compact, semi-algebraic sets. Now we

look at a very popular classes of Positivstellensätze. The hypotheses are

more restrictive (by requiring bounded sets) than the general one, but the

conclusion gives a simpler certificate of positivity. The techniques of proof
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are those used in the multivariate moment problem but measures with com-

pact semi-algebraic support allow much more detail.

To state the theorems in this section requires the notions of preorder,

PO(F ) and of quadratic module which we now give, but the treatment of

them in Section 5.3 on the general Positivstellensatz gives more properties

and a different context than done here. Let F = {f1, ..., fp} denote a set of

real polynomials. The preordering generated by F is

PO(F ) = {
∑

σ∈{0,1}r

sσfσ1
1 ...fσr

r ; sσ ∈ Σ2R[x]}.

The quadratic module generated by F is defined to be:

QM(F ) =
∑

f∈F∪{1}
fΣ2R[x].

We start with a fundamental result of Schmüdgen, proved in 1991 ([S91]),

which makes use in an innovative way of Stengle’s general Positivstellensatz.

Theorem 3.7 (Schmüdgen). Let F = {f1, ..., fp} be a set of real polynomials

in g variables, such that the non-negativity set DF is compact in Rg. Then

a). A functional L ∈ R[x]′ is representable by a positive measure supported

on K if and only if

L|PO(F ) ≥ 0.

b). Every positive polynomial on DF belongs to the preorder PO(F ).

Due to the compactness of the support, and Stone-Weierstrass Theorem,

the representing measure is unique. We will discuss later the proof of b) in

a similar context.

We call the quadratic module QM(F ) archimedean if there exists C > 0

such that

C − x2
1 − ... − x2

g ∈ QM(F ).

This implies in particular that the semi-algebraic set DF is contained in

the ball centered at zero, of radius
√

C. Also, from the convexity theory

point of view, this means that the convex cone QM(F ) ⊂ R[x] contains

the constant function 1 in its algebraic interior (see [K69] for the precise

definition). If the set DF is compact, then one can make the associated
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quadratic module archimedean by adding to the defining set one more term,

of the form C − x2
1 − ... − x2

g.

The key to Schmüdgen’s Theorem and to a few forthcoming results in

this survey is the following specialization of Proposition 3.1.

Lemma 3.8. [P93] Let F be a finite set of polynomials in R[x] with as-

sociated quadratic module QM(F ) having the archimedean property. There

exists a bijective correspondence between:

a). Commutative g-tuples A of bounded self-adjoint operators with cyclic

vector ξ and joint spectrum contained in DF ;

b). Positive measures µ supported on DF ;

c). Linear functionals L ∈ R[x]′ satisfying L|QM(F ) ≥ 0.

The correspondence is constructive, given by the relations:

L(p) = 〈p(A)ξ, ξ〉 =
∫
DF

pdµ, p ∈ R[x].

Proof. Only the implication c) ⇒ a) needs an argument. Assume c) holds

and construct the Hilbert space H associated to the functional L. Let M =

(Mx1 , ..., Mxg) denote the tuple of multiplication operators acting on H.

Due to the archimedean property,

〈(C − x2
1 − ... − x2

g)p, p〉 ≥ 0, p ∈ C[x],

whence every Mxk
is a bounded self-adjoint operator. Moreover, the condi-

tion

〈fjp, p〉 ≥ 0, p ∈ C[x],

assures that fj(M) ≥ 0, that is, by the spectral mapping theorem, the joint

spectrum of M lies on DF . Let EM be the joint spectral measure of M .

Then

L(p) =
∫
DF

p(x)〈EM (dx)1, 1〉,

and the proof is complete. ¥



POSITIVE POLYNOMIALS AND THE SPECTRAL THEOREM 33

For terminology and general facts about spectral theory in a commutative

Banach algebra see [D03].

With this dictionary between positive linear functionals and tuples of com-

muting operators with prescribed joint spectrum we can improve Schmüdgen’s

result.

Theorem 3.9 ([P93]). Let F be a finite set of real polynomials in g vari-

ables, such that the associated quadratic module QM(F ) is archimedean.

Then a polynomial strictly positive on DF belongs to QM(F ).

Proof. Assume by contradiction that p is a positive polynomial on DF

which does not belong to QM(F ). By a refinement of Minkowski separation

theorem due to Eidelheit and Kakutani (see [K69]), there exists a linear

functional L ∈ R[x]′ such that L(1) > 0 and:

L(p) ≤ 0 ≤ L(q), q ∈ QM(F ).

(Essential here is the fact that the constant function 1 is in the algebraic

interior of the convex cone QM(F )). Then Lemma 3.8 provides a positive

measure µ supported on DF , with the property:

L(p) =
∫
DF

pdµ ≤ 0.

The measure is non-trivial because

L(1) = µ(DF ) > 0,

and on the other hand p > 0 on DF , a contradiction. ¥
An algebraic proof of the latter theorem is due to Jacobi and Prestel, see

[PD01].

4. Complex variables

The operator theoretic counterpart to positive functionals described in

the previous section becomes more transparent in the case of complex vari-

ables. We present below, closely following [P06], a series of generalizations

of Lemma 3.8 and Theorem 3.9. It is at this point when von Neumann’s

inequality becomes relevant.
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Throughout this section z = (z1, ..., zg) denote the complex coordinates

in Cg. Then real coordinates of the underlying space R2d are denoted by

x = (x1, ..., x2n), where zk = xk + ixn+k. We will work as before in the

polynomial algebra C[x] = C[z, z], and consider there the convex hulls of

non-negative polynomials:

Σ2 = co{p2; p ∈ R[x]},

and

Σ2
h = co{|q|2; q ∈ C[z]}.

It is easy to see that the cone of hermitian positive squares Σ2
h is a proper

subset of Σ2. Indeed, remark that

∂

∂zk

∂

∂zk
|q|2 ≥ 0, q ∈ C[z],

while the same Laplace operator has negative values on (yk − x2
k)

2.

Let F = {p1, ..., pm} be a finite subset of R[x] so that the basic semi-

algebraic set

DF = {x ∈ R2d; p1(x) ≥ 0, ..., pm(x) ≥ 0}

is compact. Let p be a real polynomial which is positive on DF . We will

indicate conditions which insure the decompositions:

(4.1) p ∈ Σ2
h + p1Σ2

h + ... + pmΣ2
h,

or

(4.2) p ∈ Σ2 + p1Σ2
h + ... + pmΣ2

h,

or

(4.3) p ∈ QM(F ) = Σ2 + p1Σ2 + ... + pmΣ2.

The last one is covered by Theorem 3.9. The other two require stronger

assumptions on p, as we shall see below.

We start by recalling an early, unrelated observation about strictly posi-

tive hermitian polynomials [Q68].
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Theorem 4.1 (Quillen). If a bi-homogeneous polynomial p ∈ C[z, z] satis-

fies p(z, z) > 0 for z 6= 0, then there exists N ∈ N such that:

|z|2Np(z, z) ∈ Σ2
h.

This result was rediscovered, and obtained by a different method, by

Catlin and d’Angelo [CD96]. Their approach proved to be geometric in

its nature and very flexible, leading to a variety of refinements of Quillen’s

theorem, see for instance [CD99, d’A05, d’AV03]. This line of research,

not developed in the present survey, culminates in completely removing the

strict positivity assumption. Specifically, the following characterization of

bi-homogeneous quotients of polynomials of Σ2
h was recently discovered.

Theorem 4.2 (Varolin, [Var06]). Let the bi-homogeneous polynomial p ∈
C[z, z] satisfy p(z, z) ≥ 0 for z ∈ Cg. Write p(z, z) =

∑
α,β pα,βzαzβ and,

using the positive and negative spectral subspaces of the Hermitian matrix

(pα,β), decompose p = p+ − p−, with p± ∈ Σ2
h.

Then there are non-zero polynomials s, t ∈ Σ2
h with the property

sp = t

if and only if there exists a positive constant C, such that

p+ + p− ≤ C(p+ − p−)

on Cg.

Next we return to the compact semi-algebraic set DF ⊂ Cg and the three

levels of positivity certificates described by the preceding convex cones.

We recall that a commutative g-tuple of linear bounded operators T acting

on a Hilbert space H is called subnormal if there exists a larger Hilbert

space H ⊂ K and a commutative g-tuple of normal operators N acting on

K, so that every Nj leaves H invariant and Nj |H = Tj , 1 ≤ j ≤ g. A

commutative g tuple N of normal operators Nj = Xj + iXg+j consists of 2g

mutually commuting self-adjoint operators X1, ..., X2g. Hence N possesses

a joint spectral measure EN , supported on the joint spectrum σ(N) ⊂ Cg.
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Assume from now on that the cone Σ2
h+p1Σ2

h+ ...+pmΣ2
h is archimedean,

that is, after a normalization:

1 − |z1|2 − ... − |zg|2 ∈ Σ2
h + p1Σ2

h + ... + pmΣ2
h.

Let L ∈ C[x]′ be a linear functional satisfying

L|Σ2
h+p1Σ2

h+...+pmΣ2
h
≥ 0.

Instead of constructing the completion of the whole ring of real polynomials,

we consider the same L-inner product, defined only on complex polynomials

C[z], in the variables z. Let H be the associated Hilbert space. The multi-

plication operators Mzj act and commute on H. They are bounded due to

the above mentioned archimedean property:

‖Mzjq(z)‖2 = L(|zjq(z)|2) ≤ L(|q(z)|2) = ‖q‖2.

The only difference to the framework of the multivariate Hamburger moment

problem is that now Mzj are not necessarily self-adjoint operators and the

commutators [Mzj , M
∗
zk

] may not vanish. The constant function vector 1

remains cyclic, in the sense that the span of the vectors Mα1
z1

...M
αg
zg 1 is the

whole Hilbert space H.

Let M = (Mz1 , ..., Mzg) be the commutative n-tuple of operators we have

just constructed. For a polynomial p(z, z) we define after Colojoara and

Foias, cf. ([AM02]), the hereditary functional calculus p̃(M, M∗) by putting

all adjoints M∗
zk

in the monomials of p to the left of the powers of Mzj ’s.

For example,

˜(|z1|2z2
2z3)(M) = M∗

z1
M∗

z3
Mz1M

2
z2

.

We have thus established the first part of the following dictionary.

Proposition 4.3. Let F = {p1, ..., pm} be a finite set of real polynomials in

2g variables, such that

1 − |z1|2 − ... − |zg|2 ∈ Σ2
h + p1Σ2

h + ... + pmΣ2
h.

a). There exists a bijective correspondence between functionals L ∈ C[x]′

which are non-negative on Σ2
h +p1Σ2

h + ...+pmΣ2
h and commutative g-tuples
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of linear Hilbert space operators T , with a cyclic vector ξ, subject to the

conditions

p̃j(T, T ∗) ≥ 0, 1 ≤ j ≤ m.

b). If, in addition L is non-negative on the larger cone Σ2 + p1Σ2
h + ... +

pmΣ2
h, then, and only then, T is also subnormal.

In both cases, the correspondence is given by

L(p(z, z)) = 〈p̃(T, T ∗)ξ, ξ〉.

Proof. For the proof of part b) remark that the Hilbert space completion

H of the ring of complex polynomials with respect to the inner product

〈p, q〉 = L(pq), p, q ∈ C[z] carries the bounded, commutative g-tuple M of

multiplication operators with the variables z1, ..., zg. The positivity of the

functional L on Σ2 is equivalent to the multivariate analog of the Halmos-

Bram subnormality condition applied to M . See for details [Dem02, P93].

Conversely, if T is a cyclic subnormal tuple of operators with normal

extension N , and p(z, z) is a polynomial, then

〈|p̃|2(T, T ∗)ξ, ξ〉 = 〈|p|2(N, N∗)ξ, ξ〉 = ‖p(N, N∗)ξ‖2 ≥ 0.

This uses the very definition of the hereditary calculus, for example,

〈T ∗4

2 T ∗6

1 T 6
1 T 4

2 ξ, ξ〉 = 〈T 6
1 T 4

2 ξ, T 6
1 T 4

2 ξ〉 = 〈T 6
1 N4

2 ξ, T 6
1 N4

2 ξ〉

〈N6
1 N4

2 ξ, N6
1 N4

2 ξ〉 = ‖N6
1 N4

2 ξ‖.

¥
The following translation of the proposition shows that the class of all

commutative tuples of operators serves as a better “spectrum” for the poly-

nomial algebra in the variables (z, z).

Corollary 4.4. Let F be as in the Proposition and let p(z, z) be a poly-

nomial. If p̃(T, T ∗) > 0 for every commutative g-tuple of linear Hilbert

space operators T , satisfying p̃j(T, T ∗) ≥ 0, 1 ≤ j ≤ m, then p belongs to

Σ2
h + p1Σ2

h + ... + pmΣ2
h.
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The cyclic vector condition is not relevant for this statement.

Proof. The proof follows from now a known pattern. Assume by contra-

diction that p /∈ Σ2
h + p1Σ2

h + ... + pmΣ2
h. By Minkowski-Eidelheit-Kakutani

separation theorem, there exists a linear functional L ∈ C[x]′ satisfying the

conditions of Proposition 4.3 and L(p) ≤ 0 < L(1). Then the commutative

g-tuple M associated to the inner-product space defined by L satisfies

〈p(M, M∗)1, 1〉 = L(p) ≤ 0,

a contradiction. ¥
Even the simple case of the unit ball or unit polydisk in Cg is interest-

ing from this perspective. Assume first that n = 1. According to von-

Neumann’s inequality,

‖p(T )‖ ≤ 1,

whenever T is a contraction and supz∈D |p(z)| ≤ 1. Thus, in view of the above

proposition, for every polynomial p(z) and constant M > supz∈D |p(z)|, we

have

M2 − |p(z)|2 ∈ Σ2
h + (1 − |z|2)Σ2

h.

Needless to say that this statement is equivalent to von-Neumann’s inequal-

ity.

In complex dimension two, a celebrated theorem of Ando (see [AM02,

CW99]) asserts that, for every pair of commuting contractions (T1, T2) and

every polynomial p(z1, z2) one has a von-Neumann type inequality:

‖p(T1, T2)‖ ≤ ‖p‖∞,D2 .

And a not less celebrated example of Varopoulos (see again [AM02]) shows

that it is no more the case in dimension n = 3 and higher. Specifically,

according to our corollary, for every polynomial p(z) and ε > 0, we have

(‖p‖∞,D2 + ε)2 − |p(z)|2 ∈ Σ2
h + (1 − |z1|2)Σ2

h + (1 − |z2|2)Σ2
h,

but the statement is not true (for the unit polydisk) in higher dimensions.
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Open problem. It would be interesting to find an algebraic explanation

of Ando’s Theorem via the above equivalent sums of squares decomposition.

On the other hand, by exploiting part b) of Proposition 4.3 one can prove

a sharper weighted sums of squares decomposition on complex analytic poly-

hedra.

Theorem 4.5. Let S = {z ∈ Cg; |pj(z)| ≤ 1, 1 ≤ j ≤ m} be a compact semi-

algebraic set, where pj are complex polynomials. Assume that the convex

cone

C = Σ2 + (1 − |pj |2)Σ2
h + ... + (1 − |pm|2)Σ2

h

is archimedean. Then every real polynomial p which is strictly positive on S

belongs to C.

For a proof see [P93, P06]. The article [BGM05] contains a similar ap-

proach to bounded analytic multipliers on the Hardy space of the bi-disk.

The recent note [P06] contains a few other sums of squares translations of

some recently proved inequalities in operator theory.

Finally, we reproduce from [HMP06] the following general Nichtnega-

tivstellensatz over the complex affine space. Note that when evaluating

on tuples of commutative matrices, we do not have to impose the strict

positivity of the polynomial to be decomposed.

Theorem 4.6. Let p(z, z) be a real valued polynomial, where z ∈ Cg. Then

there are polynomials qi ∈ C[z], 1 ≤ i ≤ k, with the property

p(z, z) =
k∑

i=1

|qi(z)|2,

if and only if, for all tuples of commuting matrices X = (X1, ..., Xg) ∈
Md(C), d ≥ 1, we have

p(X, X∗) ≥ 0.

The proof follows the general scheme outlined in this section and we omit

it. See [HMP06] for full details.
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5. Real algebra and mathematical logic

Keeping in mind the main theme of our essay (sums of squares decom-

positions), we briefly recall below, without aiming at completeness, some

classical facts of real algebra and mathematical logic. We follow an ap-

proximate chronological order. For a more comprehensive, recent and very

authoritative survey of real algebra and real algebraic geometry aspects of

sums of squares we refer to Scheiderer [S03].

5.1. Minkowski and Hilbert. In the same time to, and even before, the

analysis aspects of sums of squares decompositions we have discussed have

been discovered, similar questions have appeared in number theory and alge-

bra. Lagrange’s famous theorem (that every positive integer can be written

as a sum of squares of four integers) was the origin of many beautiful studies,

see Chapter XX of Hardy and Wright’s monograph [HW93].

According to Hilbert [Hilb1910], after the teenager Minkowski won the

1882 “Grand Prix” of the French Academy of Sciences on a theme related

to Lagrange’s four squares theorem, he has started working in Könisberg on

his thesis devoted to quadratic forms of a higher number of variables. It was

in Minkowski’s inaugural dissertation, with Hilbert as opponent, that he

remarked that “it is not probable that every positive form can be represented

as a sum of squares” [M86].

The opponent (Hilbert) produced the first (non-explicit) example, see

[Hilb1888]. His idea is the following. Consider nine points a1, ..., a9 in R2, as

the base of a pencil of cubics (that is, a family of curves obtained via a linear

combination of their third degree defining equations), so that every cubic

polynomial vanishing at the first eight points a1, ..., a8 will automatically

vanish at a9. By a rather involved geometric argument, one can prove the

existence of a polynomial p(x, y), of degree six, which is non-negative on

R2, vanishes at a1, ..., a8 and satisfies p(a9) > 0. Then clearly p cannot be

written as a sum of squares of polynomials:

p = q2
1 + ... + q2

N ,
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because every qi would have degree at most three and therefore would be

null at a9, too. Hilbert’s argument is reproduced at the end of Chapter II

of Gelfand and Vilenkin’s monograph [GV61].

The first explicit example based on Hilbert idea was constructed by Robin-

son in 1969, see [R92] for details. Robinson’s homogenized polynomial is :

P (x, y, z) = x6 + y6 + z6−

−(x4y2 + x2y4 + x4z2 + x2z4 + y4z2 + y2z4) + 3x2y2z2.

About the same time (some six dozen years after Hilbert’s article) Motzkin

has produced a very simple polynomial (again shown in homogenized form):

Q(x, y, z) = z6 + x2y2(x2 + y2 − z2).

The reader will find easily why Q is non-negative, but not a sum of squares.

More examples of non-negative polynomials which are not sums of squares

were discovered by Choi, Lam and Reznick, and separately Schmüdgen.

We refer to Reznick’s monograph [R92] for more details and for an elegant

geometric duality method (based on the so called Fisher inner product)

adapted to the analysis of the convex cones of such polynomials.

One of Hilbert’s celebrated 1900 problems in mathematics was about the

structure of positive polynomials and the logical implications of the exis-

tence of a constructive way of testing positivity. Here are his words:

Problem 17. Expression of definite forms by squares:

“...the question arises whether every definite form may not be expressed

as a quotient of sums of squares of forms...

... it is desirable, for certain questions as to the possibility of certain

geometrical constructions, to know whether the coefficients of the forms to

be used in the expression may always be taken from the realm of rationality

given by the coefficients of the form represented.” [Hilb1910].
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Hilbert’s intuition proved to be correct on both conjectures raised by his

question. His query was the origin of a series of remarkable results in algebra

and logic, see [BCR98, PD01, S03].

5.2. Real fields. Hilbert’s 17-th problem was solved in the affirmative by

E. Artin [Art26] in 1927, as an application of the theory of real fields he has

developed with Schreier [AS26]. For history and self-contained introductions

to real algebra, and complete proofs of Artin’s Theorem, we refer to either

one of the following monographs [BCR98, J89, PD01]. We merely sketch

below the main ideas of Artin-Schreier theory (as exposed in Jacobson’s

algebra book [J89]), to serve as a comparison basis for the computations we

will develop in later sections in the framework of star algebras.

An ordered field is a characteristic zero field F with an ordering, that is

a prescribed subset P of positive elements, satisfying:

P + P ⊂ P, P · P ⊂ P, F = P ∪ {0} ∪ {−P}.

Since a2 ∈ P for all a 6= 0, if
∑

i a
2
i = 0, then every ai = 0. Or equivalently,

−1 cannot be written as a sum of squares in F . By a theorem of Artin and

Schreier, every field with the latter property can be ordered. An ordered

field R is real closed if every positive element has a square root. In this case,

exactly as in the case of real numbers, the extension R(
√−1) is algebraically

closed.

A central result in Artin-Schreier theory is the existence and uniqueness

of the real closure R of an ordered field F : that is the extension F ⊂ R

is algebraic and x ∈ F is positive in R if and only if is positive in F . In-

terestingly enough, the proof of this fact uses Sturm’s algorithm for the

determination of the number of roots of a polynomial with real coefficients

(or more generally with coefficients in a real closed field).

Sturm’s algorithm. Let R be a real closed field and let

p(x) = a0 + a1x + ... + xd ∈ R[x]
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be a polynomial. Let

C = 1 + |ad−1| + ... + |a1| + |a0|.

Define the sequence of polynomials:

p0 = p, p1 = p′ (the derivative),

pj+1 = pjqj − pj−1, deg pj+1 < deg pj .

Then for a large n, pn = 0. Sturm’s Theorem asserts that the number of

roots of p in R is N(−C)−N(C), where N(a) is the number of sign changes

in the sequence p0(a), p1(a), ..., pn(a).

As an application of the existence of the real closure of an ordered field,

one can prove that an element x ∈ F is a sum of squares if and only if it

is positive in every order on F . Or, equivalently, if y ∈ F is not a sum of

squares, then there exists an order on F with respect to which y < 0.

Theorem 5.1 (Artin). Let F be a subfield of R which has a unique ordering

and let f be a rational function with coefficients in F . If f(a1, ..., ag) ≥ 0

for all (a1, ..., ag) ∈ F g for which f is defined, then f is a sum of squares of

rational functions with coefficients in F .

The idea of the proof is to admit by contradiction that f is not a sum

of squares, hence it does not belong to an ordering of the field of rational

functions K = F (x1, ..., xg) in g variables. By completing K to a real closed

field R, one finds “ideal” points b1, ..., bg ∈ R, so that f(b1, ..., bg) < 0. By

Sturm’s counting theorem one shows then that there are points a1, ..., ag ∈ F

with the property f(a1, ..., ag) < 0. For details see for instance §11.4 in [J89].

Examples of fields with a unique ordering are Q and R. Artin’s Theorem

prompts a series of natural questions, as for instance : how many squares

are necessary, is there a universal denominator in the decomposition of f

as a sum of squares, are there degree bounds? All these problems were

thoroughly studied during the last decades, [BCR98, PD01].

It was Tarski who in the late 1920-ies put Sturm’s Algorithm into a very

general and surprising statement. His work had however an unusually long



44 J. WILLIAM HELTON AND MIHAI PUTINAR

gestation and has remained unknown to the working mathematician until

mid XX-th Century. His articles are available now from a variety of parallel

sources, see for instance [T86] and the historical notes in [PD01]. His main

thesis is contained in the following principle, cited from his original 1948

RAND publication [T86]:

Tarski’s elimination theory for real closed fields. “To any formula

φ(x1, ..., xg) in the vocabulary {0, 1, +, ·, <} and with variables in a real

closed field, one can effectively associate two objects:

(i) a quantifier free formula φ(x1, ..., xg) in the same vocabulary, and

(ii) a proof of the equivalence φ ≡ φ that uses only the axioms of real

closed fields.”

He aimed this theorem at the completeness of the logical system of ele-

mentary algebra and geometry, very much in the line of Hilbert’s programme

in the foundations of mathematics. As a consequence one obtains the trans-

fer principle alluded above, in the proof of Artin’s Theorem: let R1 ⊂ R2 be

real closed fields. A system of polynomial inequalities and equalities with

coefficients in R1 has a solution in R2 if and only if it has a solution in R1.

Let R be a real closed field. We recall that a semi-algebraic set in Rg is

a finite union of finite intersections of sets of the form

{x ∈ Rg; p(x) = 0}, {x ∈ Rg; p(x) > 0}, or {x ∈ Rg; p(x) ≥ 0}.

A self-contained account of Tarski’s theorem can be found in [S54]. See

also [BCR98, J89, PD01]. In practice, the most useful form of Tarski’s result

is the following theorem.

Theorem 5.2 (Tarski-Seidenberg). If R is a real closed field and S is a

semi-algebraic set in Rg × Rm, then the projection of S onto Rg is also

semi-algebraic.

For a self contained proof of the above theorem see the Appendix in [Horm83].
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Applications of Tarski’s principle came late, but were spectacular. We

only mention for illustration one of them:

Hörmander’s inequality. (1955) : For every polynomial

f(x1, ..., xg) ∈ R[x1, ..., xg] there are positive constants c, r such that

|f(x)| ≥ c dist(x, V (f))r, x ∈ Rg, |x| ≤ 1.

Above V (f) stands for the real zero set of f . The inequality was generalized

to real analytic functions by Lojasiewicz in 1964, and served as the origin

of fundamental discoveries in modern analytic geometry and the theory of

partial differential operators, see for instance [BCR98, Horm83].

5.3. The general Positivstellensatz. A great jewel of real algebraic ge-

ometry, which is now causing excitement in applications, is the Positivstellen-

sätze and the real Nullstellensatz (which it contains). This section states

these theorems and can be read independently of earlier parts of this paper.

The Positivstellen-sätze lives in a polynomial ring with coefficients in a

real closed field (as opposed to the complex numbers) and were discovered

only in the 1960-ies (see [Dub69, K64]) before being rediscovered and refined

by Stengle in 1974 ([S74]). The statement of the Nullstellensatz departs from

Hilbert’s Nullstellensatz over an algebraically closed field, by imposing an

additional sum of squares term in the characterization of a radical ideal, as

we shall see below. It is interesting to remark that Stengle’s article makes

specific references, as origins or motivations of his investigation, to works in

mathematical logic and mathematical programming.

In order to state Stengle’s Positivstellen-sätze we need first a few defini-

tions and conventions. Let R be a real closed field (many readers will be

happy to think of R as the real numbers) and denote x = (x1, ..., xg) ∈ Rg

and also regard x as a g-tuple of commuting indeterminates. Let Σ2A denote

the set of all sums of squares in the algebra A .

Let S ⊂ R[x] be a subset, and write

DS = {x ∈ Rg; p(x) ≥ 0, ∀p ∈ S},
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for the positivity set of of the functions S. If S = {p1, ..., pr} is finite then

DS is a basic closed semi-algebraic set . The preordering generated by S is

PO(S) = {
∑

σ∈{0,1}r

sσpσ1
1 ...pσr

r ; sσ ∈ Σ2R[x]}.

The quadratic module generated by S is

QM(S) = Σ2R[x] + p1Σ2R[x] + . . . + prΣ2R[x].

Note that a preordering satisfies conditions similar to an ordering in a

field:

PO(S) + PO(S) ⊂ PO(S), PO(S) · PO(S) ⊂ PO(S), Σ2R[x] ⊂ PO(S),

while the quadratic module fails to be closed under multiplication, but still

satisfies:

QM(S)+QM(S) ⊂ QM(S), Σ2R[x] ⊂ QM(S), Σ2R[x]·QM(S) ⊂ QM(S),

and clearly,

QM(S) ⊂ PO(S).

Theorem 5.3 (Stengle). Let R be a real closed field and let p1, ..., pr ∈
R[x1, ..., xg]. Let S = D(p1, ..., pr) and let T = PO(p1, ..., pr) be the preorder

generated by pi. Let f ∈ R[x1, ..., xg]. Then

(a). f > 0 on S if and only if there are s, t ∈ T satisfying sf = 1 + t;

(b). f ≥ 0 on S if and only if there are s, t ∈ T and an integer N ≥ 0,

with the property sf = f2N + t;

(c). f = 0 on S if and only if there exists an integer N ≥ 0 with the

property −f2N ∈ T .
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We derive a few particular consequences. For instance, the following real

Nullstellensatz is contained in the preceding result: assume that p, q ∈ R[x]

and

(p(x) = 0) ⇒ (q(x) = 0).

Then point (c) applies to f = q and p1 = −p2. We infer: there exists N ≥ 0

such that

−q2N = s1 − p2s2, s1, s2 ∈ Σ2R[x],

therefore:

q2N + s ∈ (p), s ∈ Σ2R[x],

where (p) denotes the ideal generated by p. Obviously, if the latter condition

holds, then q vanishes on the zero set of p. Thus, we have proved:

[(p(x) = 0) ⇒ (q(x) = 0)] ⇔ [∃(N ≥ 0, s ∈ Σ2R[x]) : q2N + s ∈ (p)].

Variants of this are pleasurable, and we suggest as an exercise the reader

repeat the above but take f = q and p1 = p, p2 = −p.

As another example, assume that p(x) ≥ 0 for all x ∈ Rg. Then the

theorem applies to f = p and p1 = 1 and we obtain: there exists an integer

N ≥ 0 and elements s1, s2 ∈ Σ2R[x], such that

s1p = p2N + s2.

In particular,

s2
1p ∈ Σ2R[x],

which is exactly the conclusion of Artin’s Theorem.

The concepts of (pre)ordering and quadratic module can be defined for

an arbitrary commutative ring with unit; these, together with the important

construct of the real spectrum provide the natural framework for developing

modern real algebra and real algebraic geometry. For the general versions

of the Sätze outlined in this section the reader can consult as a guide [S03],

and for complete details and ramifications, the monographs [BCR98, PD01].



48 J. WILLIAM HELTON AND MIHAI PUTINAR

6. Applications of semi-algebraic geometry

The prospect of applying semi-algebraic geometry to a variety of areas

is the cause of excitement in many communities; and we list a few of them

here.

6.1. Global optimization of polynomials. An exciting turn in the un-

folding of real algebraic geometry are applications to optimization. To be

consistent with the non-commutative setting of the subsequent sections we

denote below by x ∈ Rg a generic point in Euclidean space, and in the same

time the g-tuple of indeterminates in the polynomial algebra.

6.1.1. Minimizing a Polynomial on Rg. A classical question is: given a poly-

nomial q ∈ R[x], find

min
x∈Rg

q(x)

and the minimizer xopt. The goal is to obtain a numerical solution to this

problem and it is daunting even in a modest dimension such as g = 15.

Finding a local optimum is numerically “easy” using the many available

variations of gradient descent and Newton’s method. However, polynomials

are notorious for having many many local minima.

A naive approach is to grid Rg, lets say with 64 grid points per dimension

(a fairly course grid), and compare values of q on this grid. This requires 6415

∼ 109107 function evaluations or something like 10,000 hours to compute.

Such prohibitive requirements occur in many high dimensional spaces and

go under the heading of the “curse of dimensionality”.

The success of sums of squares and Positivstellensätze methods rides on

the heels of semi-definite programming, a subject which effectively goes back

a decade and a half ago, and which effectively allows numerical computation

of a sum of squares decomposition of a given polynomial q. The cost of the

computation is determined by the number of terms of the polynomial q and

is less effected by the number g of variables and the degree of q. To be more

specific, this approach to optimization consists of starting with a number

q∗∗ and numerically solve

q − q∗∗ = s,
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for s ∈ Σ2. If this is possible, lower q∗∗ according to some algorithm and

try again. If not, raise q∗∗ and try again. Hopefully, one obtains q∗o at the

transition (between being possible to write q − q∗∗ as a sums of squares and

not) and obtains

q − q∗o ∈ Σ2

and conclude that this is an optimum. This method was proposed first

by Shor [S87] and subsequently refined by Lasserre [L01] and by Parrilo

[ParThesis].

Parrilo and Sturmfels [PS03] reported experiments with a special class of

10,000 polynomials for which the true global minimum could be computed

explicitly. They found in all cases that q∗o determined by sums of squares

optimization equals the true minimum.

Theoretical evidence supporting this direction is the following observa-

tion, see [BCR98] §9.

Theorem 6.1. Given a polynomial q ∈ R[x], the following are equivalent:

(1) q ≥ 0 on the cube [−1, 1]g.

(2) For all ε > 0, there is s ∈ Σ2 such that

‖q − s‖L1([−1,1]g) < ε.

A refinement of this result was recently obtained by Lasserre and Netzer

[LN06]. Namely, the two authors prove that an additive, small perturba-

tions with a fixed polynomial, produces a sum of squares which is close to

the original polynomial in the L1 norm of the coefficients. We reproduce,

without proofs, their main result.

Theorem 6.2. [LN06] Let p ∈ R[x1, ..., xg] be a polynomial of degree d, and

let

Θr = 1 + x2r
1 + ... + x2r

g ,

where r ≥ d/2 is fixed. Define

ε∗r = min
L

{L(p); L ∈ R2r[x1, ..., xg]′, L(Θr) ≤ 1, L|2Σ ≥ 0}.

Then ε∗r ≤ 0 and the minimum is attained. The polynomial

pε,r = p + εΘr
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is a sum of squares if and only if ε ≥ −ε∗r.

Moreover, if the polynomial p is non-negative on the unit cube [−1, 1]g,

then limr→∞ ε∗r = 0.

Variations of the above theorem, with supports on semi-algebraic sets,

relevant examples and an analysis of the degree bounds are contained in the

same article [LN06].

For quite a few years by now, Lasserre has emphasized the tantamount im-

portance of such perturbation results for optimization using sums of squares

(henceforth abbreviated SOS) methods, see [L01], in that it suggests that

determining if a given p is nonnegative on a bounded region by computing

a sums of squares has a good probability of being effective.

We shall not prove the stated perturbation results, but remark that a free

algebra version of them holds, [KS05].

In the opposite pessimistic direction there are the precise computations

of Choi-Lam-Reznick (see [R92]) and a recent result due to Bleckermann

[Blec04].

As a backup to the above optimization scheme, if a q − q∗o ∈ Σ2 fails to

be a sum of squares, then one can pick a positive integer m and attempt to

solve

(1 + |x|2)m(q − q∗o) ∈ Σ2.

Reznick’s Theorem [R95] tells us that for some m this solves the optimiza-

tion problem exactly. Engineers call using the term with some non zero

m “relaxing the problem”, but these days they call most modifications of

almost anything a “relaxation” .

6.1.2. Constrained optimization. Now we give Jean Lasserre’s interpretation

of Theorem 3.9. Let P denote a collection of polynomials. The standard

constrained optimization problem for polynomials is:

minimize q(x) subject to x ∈ DP := {x ∈ Rg; p(x) ≥ 0, p ∈ P}.

Denote the minimum value of q by qopt. We describe the idea when P
contains but one polynomial p. Assume ∇p(x) does not vanish for x ∈ ∂Dp.
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The standard first order necessary conditions for xopt ∈ ∂DP to be a local

solution to this problem is

∇q(xopt) = λ∇p(xopt)

with λ > 0. We emphasize, this is a local condition and λ is called the

Lagrange multiplier.

Now we turn to analyzing the global optimum. Suppose that q can be

expressed in the form:

q − q∗∗ = s1 + s2p, s1,2 ∈ Σ2,

which implies q(x) ≥ q∗∗ for all x ∈ Dp. So q∗∗ is a lower bound. This

is a stronger form of the Positivstellensatz than is always true. Then this

optimistic statement can be interpreted as a global optimality condition

when q∗∗ = qopt. Also it implies the classical Lagrange multiplier linearized

condition, as we now see. At the global minimum xopt we have

0 = q(xopt) − qopt = s1(xopt) + s2(xopt)p(xopt)

which implies 0 = s1(xopt) and, since s1 is a sum of squares, we get ∇s1(xopt) =

0. Also s2(xopt = 0, ∇s2(xopt) = 0 whenever p(xopt) 6= 0. Calculate

∇q = ∇s1 + p∇s2 + s2∇p.

If p(xopt) = 0, we get

∇q(xopt) = s2(xopt)∇p(xopt)

and if p(xopt) 6= 0 we get ∇q(xopt) = 0, the classic condition for an optimum

in the interior. Set λ = s2(xopt) to get λ∇p(xopt) = ∇q(xopt) the classic

Lagrange multiplier condition as a (weak) consequence of the Positivstellen-

satz.

The reference for this and more general (finitely many pj in terms of the

classical Kuhn-Tucker optimality conditions) is [L01] Proposition 5.1.

Also regarding constrained optimization we mention that, at the technical

level, the method of moments has re-entered into polynomial optimization.
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Quite specifically, Lasserre and followers are relaxing the original problem

min
x∈D

q(x)

as

min
µ

∫
D

qdµ,

where the minimum is taken over all probability measures supported on D.

They prove that it is a great advantage to work in the space of moments (as

free coordinates), see [HL05, L01, L04].

6.2. Primal-dual optimality conditions. In this section we explain in

more detail Lasserre’s point of view [L00, L01] of linearizing polynomial

optimization via sums of squares decompositions and via moment data seen

as independent variables.

Specifically, we start with a polynomial f ∈ R[x] and seek values of the

scalar λ for which f − λ ∈ Σ2. To this aim we consider a variable linear

functional L ∈ R[x]′ and denote the corresponding moments

yα = L(xα), |α| ≤ 2d.

The integer d is fixed throughout the whole section and will not explicitly

appear in all coming formulas. We denote y = (yα)|α|≤2d and consider the

associated Hankel matrix

My = (yα+β)|α|,|β|≤d.

In all these considerations it is important to fix an ordering (such as the

graded lexicographic one) on the multi-indices α. Let

V (x) = (1, x1, · · · , xg, x
2
1, · · · )

be the ”tautological” vector consisting of all monomials of degree less than

or equal to d. Let α0 = (0, 0, · · · , 0), so xα0 = 1.

The matrix valued polynomial

∑
α

Bαxα = V (x) · V (x)T ,
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produces a sequence of matrix coefficients Bα which carry a Hankel type

structure and whose entries are either 0 or 1. Write

f =
∑
α

fαxα.

The next lemma equates ”minimization” of a polynomial via a sum of

squares to a matrix problem.

Lemma 6.3. The degree d polynomial f − λ is a sum of squares with r

squares of polynomials each having degree ≤ n if and only if there exists a

positive semi-definite matrix Ω ∈ Rn×n of rank r such that

(6.1) tr(BαΩ) = fα − λδα0 for all |α| ≤ d.

Proof. Write the symmetric positive semi-definite n×n matrix Ω =
∑r

j qjq
T
j

were r is the rank of Ω and qj ∈ Rn. Then

(6.2) tr(
∑
α

BαxαΩ) =
∑
α

fαxα − λ

which gives

tr( V (x)V (x)T
r∑
j

qjq
T
j ) = f(x) − λ

and ∑
j

qT
j V (x)V (x)T qj = f(x) − λ

so we obtain ∑
j

QT
j (x)Qj(x) = f(x) − λ

where Qj(x) := V (x)T qj . The argument reverses, so f a sum of squares

implies Ω =
∑r

j qjq
T
j which makes Ω positive semi-definite.¥

Clearly, there are many matrices Ω ≥ 0 satisfying (6.1). A canonical

choice, appearing in the next Lemma, was proposed by Nesterov.

Lemma 6.4. Suppose there is a positive definite solution to (6.1), then one

of them Ω̆ has inverse, Ω̆−1 which is a Hankel matrix.

Proof. We show that Ω̆ is the “maximum entropy solution” to (6.1),

namely, Ω̆ is the (unique) solution to

max
Ω

ln det Ω subject to (6.1).
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It is standard that if a positive definite Ω exists maximizing entropy, then

it “keeps its eigenvalues positive”, so Ω̆ is positive definite. We use the

standard formula

d ln det(Ω̆ + t∆)
dt

|t=0 = −tr[Ω̆−1∆]

which is 0 for all ∆ satisfying tr[Bα∆] = 0 for all α. Now tr[Ω̆−1∆] = 0 says

that Ω̆−1 is in the orthogonal complement of the orthogonal complement of

span {Bα}, thus Ω̆−1 ∈ span {Bα}, in other words, it is a Hankel matrix.

¥
Our next step is the minimization problem:

L̂f := min
L

L(f) subject to L(Σ2) ≥ 0 and L(1) = 1.

Clearly,

λ̂f ≤ min
µ

∫
fdµ = min

x
f(x)

as µ ranges over all probability measure. If the minimum is attained, Dirac’s

measure at the optimal x yields λ̂f = minx f(x).

Since L = Ly corresponding to the moment sequence y satisfies Ly(f) =∑
α fαyα our basic ”primal” problem is:

(PRIMAL) min
y

∑
α

fαyα subject to My ≥ 0 yα0 = 1.

The ”dual” problem is

(DUAL) max λ subject to Ω ≥ 0 and tr(BαΩ) = fα − λδα0

for all α which we saw in Lemma 6.3 as solving the sum of squares problem

is the same as

λ̂Σ := maxλ subject to f − λ is in Σ.

To derive that these problems are indeed dual to each other define a ”La-

grangian” by

L(y, Ω, λ) :=
∑
α

fαyα − tr(
∑
α

yαBαΩ) − (yα0 − 1)λ
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on the set My ≥ 0, Ω ≥ 0, λ ∈ R. For convenience write

(6.3) L(y, Ω, λ) :=
∑
α

[(fα − tr(
∑
α

BαΩ) − δα0λ]yα − yα0λ.

Then

min
My≥0

max
Ω≥0,λ

L(y, Ω, λ) = min
My≥0

∑
α

fαyα if yα0 = 1 (is + ∞ if yα0 6= 1).

which is the primal problem. Next

max
Ω≥0,λ

min
My≥0

L(y, Ω, λ) = max λ if fα−tr(BαΩ)−λδα0 = 0 (is −∞ otherwise).

which is the dual problem. We summarize with

Lemma 6.5. For Ω, My in Rn×n, define sets

N := {Ω ≥ 0, λ ∈ R : fα − tr(BαΩ) − λδα0 = 0 all |α| ≤ d}

M := {y : My ≥ 0, yα0 = 1}.
Then N is not empty for some dimension n if and only if f −λ is a sum of

squares and we have

λ̂Σ := max
Ω,λ∈N

λ = max
Ω,λ∈N

min
y∈M

L(y, Ω, λ)

≤ min
y∈M

max
Ω,λ∈N

L(y, Ω, λ) = min
y∈M

∑
α

fαyα =: λ̂f

A saddle point Ω̂, λ̂, ŷ is defined as one which satisfies

λ̂Σ = L(ŷ, Ω̂, λ̂) = λ̂f .

The lemma verifies our claim that the problems PRIMAL and DUAL are

dual with respect to each other. Also if they have a saddle point they have

the same optimal value λ̂ := λ̂Σ = λ̂f . Existence of a saddle point, because of

the bilinearity of L, is in the perview of the von Neumann Minmax Theorem,

but we do not discuss this here. We refer the reader to [L00, L01, HL06] for

further details. Although their approach is a bit different.

Now we make a few remarks. Firstly, the saddle point condition

λ̂ = L(ŷ, Ω̂, λ̂) =
∑
α

fαŷα − tr(
∑
α

ŷαBαΩ̂) − (ŷα0 − 1)λ̂
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reduces to 0 = tr(
∑

α ŷαBαΩ̂) = tr(MŷΩ̂). Since Mŷ, Ω̂ are both posi-

tive semi-definite, this forces the “complementarity” of an optimal moment

matrix and an optimal sum of squares representor Ω̂.

(6.4) MŷΩ̂ = 0.

Secondly, an equation “balanced” between primal and dual is

tr(MyΩ) = Ly(f) − λ.

We will continue this line of thought in a separate article.

6.3. Engineering. For nonlinear systems, sum of squares techniques can be

used to find Lyapunov functions by direct computation. Here the problem

is to check if a differential equation

dx

dt
= a(x)

on Rg is stable. The most common technique is to seek a function V > 0

except V (0) = 0 satisfying the differential inequality

∇V (x) · a(x) ≤ 0 for all x in Rg;

such V are called Lyapunov functions . If a is a vector field with polynomial

entries, it is natural to seek V which is a sum of squares of polynomials,

and this reduces to a semi-definite program. Solution can be attempted

numerically and if successful produces V a Lyapunov function; if not one

can modify the sum of squares from polynomials to some rational sum of

squares and try again, see [ParThesis]. Such techniques lay out numerical

solutions to midsized (dimension 8 or so) nonlinear control problems.

More generally for control problems one seeks to find a feedback law

u = k(x) which stabilizes

dx

dt
= a(x) + b(x)u.

Here there is a function V , beautifully tamed by E. Sontag, called a “control

Lyapunov function” generalizing the classical Lyapunov function. Unfortu-

nately, no Positivstellensätz technique is known for for finding V . However,
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A. Rantzer cleverly introduced a “dual control Lyapunov function” and in

[PPR04] showed that it is quite amenable to sum of squares techniques.

Another direction gives a generalization of the classical S-procedure which

finds performance bounds on broad classes of problems, see [ParThesis].

There are also applications to combinatorial problems described there.

Recently, [HL06] have given a technique for converting system engineering

problems to polynomial minimization. The wide scope of the technique is

very appealing.

7. Linear matrix inequalities and computation of sums of

squares

Numerical computation of a sum of squares and a Positivstellensatz is

based on a revolution which started about 20 years ago in optimization; the

rise of interior point methods. We avoid delving into yet another topic but

mention the special aspects concerning us. Thanks to the work of Nesterov

and Nemirovskii in the early 1990s one can solve Linear Matrix Inequali-

ties (LMIs in short) numerically using interior point optimization methods,

called semi-definite programming . An LMI is an inequality of the form

(7.1) A0 + A1x1 + · · ·Agxg ≥ 0

where the Aj are symmetric matrices and the numerical goal is to compute

x ∈ Rg satisfying this. The sizes of matrix unknowns treatable by year

2006 solvers exceed 100 × 100; with special structure dimensions can go

much higher. This is remarkable because our LMI above has about 5000g

unknowns.

7.1. SOS and LMIs. Sum of squares and Positivstellensätze problems con-

vert readily to LMIs and these provide an effective solution for polynomials

having modest number of terms. These applications make efficiencies in

numerics a high priority. This involves shrewd use of semi-algebraic theory

and computational ideas to produce a semi-definite programming package,

for a recent paper see [1]; also there is recent work of L. Vandenberghe.
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Semi-algebraic geometry packages are: SOS tools [PPSP04] and GloptiPoly

[HL03].

A lament is that all current computational semi-algebraic geometry projects

use a packaged semi-definite solver, none write their own. This limits effi-

ciencies for sum of squares computation.

Special structure leads to great computational improvement as well as

elegant mathematics. For example, polynomials which are invariant under

a group action, the delight of classical invariant theory, succumb to rapid

computation, see [GP04] [CKSprept].

7.2. LMIs and the world. LMIs have a life extending far beyond compu-

tational sum of squares and are being found in many areas of science. Later

in this paper §10 we shall glimpse at their use in systems engineering, a use

preceding sum of squares applications by 10 years. The list of other areas

includes statistics, chemistry, quantum computation together with more; all

to vast for us to attempt description.

A paradigm mathematical question here is:

Which convex sets C in Rg with algebraic boundary can be represented

with some monic LMI?

That is,

C = {x ∈ Rg : I + A1x1 + · · ·Agxg ≥ 0},
where Aj are symmetric matrices. Here we have assumed the normalization

0 ∈ C. This question was raised by Parrilo and Sturmfels [PS03]. The

paper [HVprept] gives an obvious necessary condition 2 on C for an LMI

representation to exist and proves sufficiency when g = 2.

The main issue is that of determinantal representations of a polynomial

p(x) on Rg, namely, given p express it in the form

(7.2) p(x) = det(A0 + A1x1 + · · ·Agxg).

2This is in contrast to the free algebra case where all evidence (like that in this paper)

indicates that convexity is the only condition required.
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That this is possible for some matrices is due to the computer scientist Leslie

Valiant [Val79]. That the matrices can be taken real and symmetric is in

[HMVprept] as is the fact the a representation of det p(X) always holds

for polynomials in non-commuting (free) variables, as later appear in §8. A

symbolic computer algorithm due to N. Slinglend and implemented by J.

Shopple runs under the Mathematica package NCAlgebra.

The open question is which polynomials can we represent monicaly; that

is with A0 = I. Obviously, necessary is the real zero condition , namely,

the polynomial f(t) := p(tx) in one complex variable t

has only real zeroes,

but what about the converse? When g = 2 the real zero condition on p

insures that it has a monic representation; this is the core of [HVprept].

What about higher dimensions? Lewis, Parrilo and Ramana [LPR05]

showed that this g = 2 result (together with a counterexample they con-

cocted) settles a 1958 conjecture of Peter Lax, which leads to the surmise

that sorting out the g > 2 situation may not happen soon. Leonid Gurvitz

pointed out the Valient connection to functional analysts and evangelizes

that monic representations have strong implications for lowering the com-

plexity of certain polynomial computations.

8. Non-commutative algebras

A direction in semi-algebraic geometry, recently blossoming still with

many avenues to explore, concerns variables which do not commute. As

of today versions of the strict Positivstellensätze we saw in §5.3 are proved

for a free ∗- algebra and for the enveloping algebra of a Lie algebra; here

the structure is cleaner or the same as in the classical commutative theory.

The verdict so far on noncommutative Nullstellensätze is mixed. In a free

algebra it goes through so smoothly that no radical ideal is required. This

leaves us short of the remarkable perfection we see in the Stengle -Tarski -

Seidenberg commutative landscape. Readers will be overjoyed to hear that

the proofs needed above are mostly known to them already: just as in earlier

sections, non-negative functionals on the sums of squares cone in a ∗-algebra
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can be put in correspondence with tuples of non-commuting operators, and

this carries most of the day.

This noncommutative semi-algebraic foundation underlies a rigid struc-

ture (at least) for free ∗-algebras which has recently become visible. A

noncommutative polynomial p has second derivative p′′ which is again a

polynomial and if p′′ is positive, then our forthcoming free ∗-algebra Posi-

tivstellensatz tells us that p′′ is a sum of squares. It is a bizarre twist that

this and the derivative structure are incompatible, so together imply that a

“convex polynomial” in a free ∗- algebra has degree 2 or less; see §9. The

authors suspect that this is a harbinger of a very rigid structure in a free

∗-algebra for “irreducible varieties” whose curvature is either nearly positive

or nearly negative; but this is a tale for another (likely distant) day. Some

of the material in this section on higher derivatives and the next is new.

A final topic on semi-algebraic geometry in a free ∗- algebra is appli-

cations to engineering, §10. Arguably the main practical development in

systems and control through the 1990’s was the reduction of linear systems

problems to Linear Matrix Inequalities, LMIs. For theory and numerics to

be highly successful something called “Convex Matrix Inequalities”, hence-

forth denoted in short CMIs, will do nicely. Most experts would guess that

the class of problems treatable with CMIs is much broader than with LMIs.

But no, as we soon see, our draconian free ∗ convexity theorems suggest that

for systems problems fully characterized by performance criteria based on

L2 and signal flow diagrams (as are most textbook classics), convex matrix

inequalities give no greater generality than LMIs.

These systems problems have the key feature that their statement does

not depend on the dimension of the systems involved. Thus we summarize

our main engineering contention:

Dimension free convex problems are equivalent to an LMI

This and the next sections tells the story we just described but there

is a lot it does not do. Our focus in this paper has been on inequalities,

where various noncommutative equalities are of course a special and often

well developed case. For example, algebraic geometry based on the Weyl
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algebra and corresponding computer algebra implementations, for example,

Gröbner basis generators for the Weyl algebra are in the standard computer

algebra packages such as Plural/Singular.

A very different and elegant area is that of rings with a polynomial iden-

tity, in short PI rings , e.g. N × N matrices for fixed N . While most PI

research concerns identities, there is one line of work on polynomial inequal-

ities, indeed sums of squares, by Procesi-Schacher [PS76]. A Nullstellensatz

for PI rings is discussed in [Amit57].

8.1. Sums of squares in a free ∗-algebra. Let R〈x, x∗〉 denote the poly-

nomials with real numbers as coefficients in variables x1, ..., xg, x
∗
1, ..., x

∗
g.

These variables do not commute, indeed they are free of constraints other

than ∗ being an anti-linear involution:

(fq)∗ = q∗f∗, (xj)∗ = x∗
j .

Thus R〈x, x∗〉 is called the real free ∗− algebra on generators x, x∗.

Folklore has it that analysis in a free ∗-algebra gives results like ordinary

commutative analysis in one variable. The SoS phenomenon we describe in

this section is consistent with this picture, but convexity properties in the

next section do not. Convexity in a free algebra is much more rigid.

We invite those who work in a free algebra (or their students) to try

NCAlgebra, the free free-∗ algebra computer package [HSM05]. Calculations

with it had a profound impact on the results in §8 and 9; it is a very powerful

tool.

The cone of sums of squares is the convex hull:

Σ2 = co{f∗f ; f ∈ R〈x, x∗〉}.

A linear functional L ∈ R〈x, x∗〉′ satisfying L|Σ2 ≥ 0 produces a positive

semidefinite bilinear form

〈f, q〉 = L(q∗f)

on R〈x, x∗〉. We use the same construction introduced in section 3, namely,

mod out the null space of 〈f, f〉 and denote the Hilbert space completion by
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H, with D the dense subspace of H generated by R〈x, x∗〉. The separable

Hilbert space H carries the multiplication operators Mj : D −→ D:

Mjf = xjf, f ∈ D, 1 ≤ j ≤ n.

One verifies from the definition that each Mj is well defined and

〈Mjf, q〉 = 〈xjf, q〉 = 〈f, x∗
jq〉, f, q ∈ D.

Thus M∗
j = Mx∗

j
. The vector 1 is still ∗-cyclic, in the sense that the linear

span ∨p∈R〈x,x∗〉p(M, M∗)1 is dense in H. Thus, mutatis mutandis, we have

obtained the following result.

Lemma 8.1. There exists a bijective correspondence between positive linear

functionals, namely

L ∈ R〈x, x∗〉′ and L|Σ2 ≥ 0,

and g-tuples of unbounded linear operators T with a star cyclic vector ξ,

established by the formula

L(f) = 〈f(T, T ∗)ξ, ξ〉, f ∈ R〈x, x∗〉.

We stress that the above operators do not commute, and might be un-

bounded. The calculus f(T, T ∗) is the non-commutative functional calculus:

xj(T ) = Tj , x∗
j (T ) = T ∗

j .

An important feature of the above correspondence is that it can be re-

stricted by the degree filtration. Specifically, let R〈x, x∗〉k = {f ; degf ≤ k},
and similarly, for a quadratic form L as in the lemma, let Dk denote the

finite dimensional subspace of H generated by the elements of R〈x, x∗〉k.
Define also

Σ2
k = Σ2 ∩ R〈x, x∗〉k.

Start with a functional L ∈ R〈x, x∗〉′2k satisfying L|Σ2
2k

≥ 0. One can

still construct a finite dimensional Hilbert space H, as the completion of

R〈x, x∗〉k with respect to the inner product 〈f, q〉 = L(q∗f), f, q ∈ R〈x, x∗〉k.
The multipliers

Mj : Dk−1 −→ H, Mjf = xjf,
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are well defined and can be extended by zero to the whole H. Let

N(k) = dim R〈x, x∗〉k = 1 + (2g) + (2g)2 + ... + (2g)k =
(2g)k+1 − 1

2g − 1
.

In short, we have proved the following specialization of the main Lemma.

Lemma 8.2. Let L ∈ R〈x, x∗〉′2k satisfy L|Σ2
2k

≥ 0. There exists a Hilbert

space of dimension N(k) and an g-tuple of linear operators M on H, with

a distinguished vector ξ ∈ H, such that

(8.1) L(p) = 〈p(M, M∗)ξ, ξ〉, p ∈ R〈x, x∗〉2k−2.

Following the pattern of the preceding section, we will derive now a Nicht-

negativstellensatz.

Theorem 8.3 ([H02]). Let p ∈ R〈x, x∗〉d be a non-commutative polynomial

satisfying p(M, M∗) ≥ 0 for all g-tuples of linear operators M acting on a

Hilbert space of dimension at most N(k), 2k ≥ d + 2. Then p ∈ Σ2.

Proof. The only necessary technical result we need is the closedness of the

cone Σ2
k in the Euclidean topology of the finite dimensional space R〈x, x∗〉k.

This is done as in the commutative case, using Carathédodory’s convex hull

theorem. More exactly, every element of Σ2
k is a convex combination of at

most dim R〈x, x∗〉k + 1 elements, and on the other hand there are finitely

many positive functionals on Σ2
k which separate the points of R〈x, x∗〉k. See

for details [HMP04a].

Assume that p /∈ Σ2 and let k ≥ (d+2)/2, so that p ∈ R〈x, x∗〉2k−2. Once

we know that Σ2
2k is a closed cone, we can invoke Minkowski separation

theorem and find a functional L ∈ R〈x, x∗〉′2k providing the strict separation:

L(p) < 0 ≤ L(f), f ∈ Σ2
2k.

According to Lemma 8.2 there exists a tuple M of operators acting on a

Hilbert space H of dimension N(k) and a vector ξ ∈ H, such that

0 ≤ 〈p(M, M∗)ξ, ξ〉 = L(p) < 0,

a contradiction. ¥
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When compared to the commutative framework, this theorem is stronger

in the sense that it does not assume a strict positivity of p on a well chosen

”spectrum”. Variants with supports (for instance for spherical tuples M :

M∗
1 M1 + ... + M∗

g Mg ≤ I) of the above result are discussed in [HMP04a].

We state below an illustrative and generic result, from [HM04a], for sums

of squares decompositions in a free ∗-algebra.

Theorem 8.4. Let p ∈ R〈x, x∗〉 and let q = {q1, ..., qk} ⊂ R〈x, x∗〉 be a set

of polynomials, so that the non-commutative quadratic module

QM(q) = co{f∗qkf ; f ∈ R〈x, x∗〉, 0 ≤ i ≤ k}, q0 = 1,

contains 1 − x∗
1x1 − ... − x∗

gxg . If for all tuples of linear bounded Hilbert

space operators X = (X1, ..., Xg) subject to the conditions

qi(X, X∗) ≥ 0, 1 ≤ i ≤ k,

we have

p(X, X∗) > 0,

then p ∈ QM(q).

Notice that the above theorem covers relations of the form r(X, X∗) = 0,

the latter being assured by ±r ∈ QM(q). For instance we can assume that

we evaluate only on commuting tuples of operators, in which situation all

commutators [xi, xj ] are included among the (possibly other) generators of

QM(q).

Some interpretation is needed in degenerate cases, such as those where no

bounded operators satisfy the relations qi(X, X∗) ≥ 0, for example, if some

of qi are the defining relations for the Weyl algebra; in this case, we would

say p(X, X∗) > 0, since there are no X. Indeed p ∈ QM(q) as the theorem

says.

Proof Assume that p does not belong to the convex cone QM(q). Since the

latter is archimedean, by the same Minkovski principle there exists a linear

functional L ∈ R〈x, x∗〉′, such that

L(p) ≤ 0 ≤ L(f), f ∈ QM(q).
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Define the Hilbert space H associated to L, and remark that the left mul-

tipliers Mxi on R〈x, x∗〉 give rise to linear bounded operators (denoted by

the same symbols) on H. Then

qi(M, M∗) ≥ 0, 1 ≤ i ≤ k,

by construction, and

〈p(M, M∗)1, 1〉 = L(p) ≤ 0,

a contradiction.

The above statement allows a variety of specialization to quotient alge-

bras. Specifically, if I denotes a bilateral ideal of R〈x, x∗〉, then one can

replace the quadratic module in the statement with QM(q) + I, and sepa-

rate the latter convex cone from the potential positive element on the set of

tuples of matrices X satisfying simultaneously

qi(X, X∗) ≥ 0, 0 ≤ i ≤ k, f(X) = 0, f ∈ I.

For instance, the next simple observation can also be deduced from the

preceding theorem.

Corollary 8.5. Let J be the bilateral ideal of R〈x, x∗〉 generated by the

commutator polynomial [x1 +x∗
1, x2 +x∗

2]−1. Then J +QM(1−x∗
1x1− ...−

x∗
gxg) = R〈x, x∗〉.

Proof Assume by contradiction that J+QM(1−x∗
1x1−...−x∗

gxg) 6= R〈x, x∗〉.
By our basic separation lemma, there exists a linear functional L ∈ R〈x, x∗〉′
with the properties:

LJ+QM(1−x∗
1x1−...−x∗

gxg) ≥ 0, and L(1) > 0.

Then the GNS construction will produce a tuple of linear bounded op-

erators X, acting on the associated non-zero Hilbert space H, satisfying

X∗
1X1 + ... + X∗

gXg ≤ I and

[X∗
1 + X1, X

∗
2 + X2] = I.

The latter equation is however impossible, because the left hand side is

anti-symmetric while the right hand side is symmetric and non-zero.
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¥

Similarly, we can derive following the same scheme the next result.

Corollary 8.6. Assume, in the condition of the above Theorem, that p(X, X∗) >

0 for all commuting tuples X of matrices subject to the positivity con-

straints qi(X, X∗) ≥ 0, 0 ≤ i ≤ k. Then

p ∈ QM(q) + I,

where I is the bilateral ideal generated by all commutators [xi, xj ], [xi, xj ]∗, 1 ≤
i, j ≤ g.

With similar techniques (well chosen, separating, ∗-representations of the

free algebra) one can prove a series of Nullstellensätze. We state for infor-

mation one of them, see for an early version [HMP04b].

Theorem 8.7. Let p1(x), ..., pm(x) ∈ R〈x〉 be polynomials not depending on

the x∗
j variables and let q(x, x∗) ∈ R〈x, x∗〉. Assume that for every g tuple

X of linear operators acting on a finite dimensional Hilbert space H, and

every vector v ∈ H, we have:

(pj(X)v = 0, 1 ≤ j ≤ m) ⇒ (q(X, X∗)v = 0).

Then q belongs to the left ideal R〈x, x∗〉p1 + ... + R〈x, x∗〉pm.

Again, this proposition is stronger than its commutative counterpart. For

instance there is no need of taking higher powers of q, or of adding a sum

of squares to q.

We refer the reader to [HMP06] for the proof of Proposition 8.7. However,

we say a few words about the intuition behind it. We are assuming

pj(X)v = 0, ∀j =⇒ q(X, X∗)v = 0.

On a very large vector space if X is determined on a small number of vectors,

then X∗ is not heavily constrained; it is almost like being able to take X∗

to be a completely independent tuple Y . If it were independent, we would

have

pj(X)v = 0, ∀j =⇒ q(X, Y )v = 0.
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Now, in the free algebra R〈x, y〉, it is much simpler to prove that this

implies q ∈ ∑m
j R〈x, y〉 pj , as required. We isolate this fact in a separate

lemma.

Lemma 8.8. Fix a finite collection p1, ..., pm of polynomials in non-commuting

variables {x1, . . . , xg} and let q be a given polynomial in {x1, . . . , xg}. Let d

denote the maximum of the deg(q) and {deg(pj) : 1 ≤ j ≤ m}.
There exists a real Hilbert space H of dimension

∑d
j=0 gj, such that, if

q(X)v = 0

whenever X = (X1, . . . , Xg) is a tuple of operators on H, v ∈ H, and

pj(X)v = 0 for all j,

then q is in the left ideal generated by p1, ..., pm.

Proof (of Lemma). We sketch a proof based on an idea of G. Bergman, see

[HM04a].

Let I be the left ideal generated by p1, ..., pm in F = R〈x1, ..., xg〉. Define

V to be the vector space F/I and denote by [f ] the equivalence class of

f ∈ F in the quotient F/I.

Define Xj on the vector space F/I by Xj [f ] = [xjf ] for f ∈ F , so that

xj 7→ Xj implements a quotient of the left regular representation of the free

algebra F .

If V := F/I is finite dimensional, then the linear operators X = (X1, . . . , Xg)

acting on it can be viewed as a tuple of matrices and we have, for f ∈ F ,

f(X)[1] = [f ].

In particular, pj(X)[1] = 0 for all j. If we do not worry about the dimension

counts, by assumption, 0 = q(X)[1], so 0 = [q] and therefore q ∈ I. Minus

the precise statement about the dimension of H this establishes the result

when F/I is finite dimensional.

Now we treat the general case where we do not assume finite dimension-

ality of the quotient. Let V and W denote the vector spaces

V := {[f ] : f ∈ F, deg(f) ≤ d},
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W := {[f ] : f ∈ F, deg(f) ≤ d − 1}.

Note that the dimension of V is at most
∑d

j=0 gj . We define Xj on W to

be multiplication by xj . It maps W into V. Any linear extension of Xj to

the whole V will satisfy: if f has degree at most d, then f(X)[1] = [f ]. The

proof now proceeds just as in the part 1 of the proof above. ¥
With this observation we can return and finish the proof of Theorem 8.7

Since X∗ is dependent on X, an operator extension with properties stated in

the lemma below gives just enough structure to make the above free algebra

Nullstellensatz apply; and we prevail.

Lemma 8.9. Let x = {x1, . . . , xm}, y = {y1, . . . , ym} be free, non-commuting

variables. Let H be a finite dimensional Hilbert space, and let X, Y be two

m-tuples of linear operators acting on H. Fix a degree d ≥ 1.

Then there exists a larger Hilbert space K ⊃ H, an m-tuple of linear

transformations X̃ acting on K, such that

X̃j |H = Xj , 1 ≤ j ≤ g,

and for every polynomial q ∈ R〈x, x∗〉 of degree at most d and vector v ∈ H,

q(X̃, X̃∗)v = 0 ⇒ q(X, Y )v = 0.

For the matrical construction in the proof see [HMP06].

We end this subsection with an example, see [HM04a].

Example 8.10. Let p = (x∗x + xx∗)2 and q = x + x∗ where x is a single

variable. Then, for every matrix X and vector v (belonging to the space

where X acts), p(X)v = 0 implies q(X)v = 0; however, there does not exist

a positive integer m and r, rj ∈ R〈x, x∗〉, so that

(8.2) q2m +
∑

r∗j rj = pr + r∗p.

Moreover, we can modify the example to add the condition p(X) is positive

semi-definite implies q(X) is positive semi-definite and still not obtain this

representation. ¤
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Proof Since A := XX∗ + X∗X is self-adjoint, A2v = 0 if and only if

Av = 0. It now follows that if p(X)v = 0, then Xv = 0 = X∗v and

therefore q(X)v = 0.

For λ ∈ R, let

X = X(λ) =




0 λ 0

0 0 1

0 0 0




viewed as an operator on R3 and let v = e1, where {e1, e2, e3} is the standard

basis for R3.

We begin by calculating the first component of even powers of the matrix

q(X). Let Q = q(X)2 and verify,

(8.3) Q =




λ2 0 λ

0 1 + λ2 0

λ 0 1


 .

For each positive integer m there exist a polynomial qm so that

(8.4) Qme1 =




λ2(1 + λqm(λ))

0

λ(1 + λqm(λ))




which we now establish by an induction argument. In the case m = 1, from

equation (8.3), it is evident that q1 = 0. Now suppose equation (8.4) holds

for m. Then, a computation of QQme1 shows that equation (8.4) holds for

m + 1 with qm+1 = λ(qm + λ + λqm). Thus, for any m,

(8.5) lim
λ→0

1
λ2

< Qme1, e1 >= lim
λ→0

(1 + λqm(λ)) = 1.

Now we look at p and get

p(X) =




λ4 0 0

0 (1 + λ2)2 0

0 0 1


 .

Thus

lim
λ→0

1
λ2

(< r(X)∗p(X)e1, e1 > + < p(X)r(X)e1, e1 >) = 0.
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If the representation of equation (8.2) holds, then apply < · e1, e1 > to

both sides and take λ to 0. We just saw that the right side is 0, so the left

side is 0, which because

<
∑

rj(X)∗rj(X)e1, e1 > ≥ 0

forces

lim
λ→0

1
λ2

< Qme1, e1 > ≤ 0

a contradiction to equation ( 8.5 ). Hence the representation of equation

(8.2) does not hold.

The last sentence claimed in the example is true when we use the same

polynomial p and replace q with q2. ¥
There are more Positivstellensätze in a free *-algebra which fill in more

of the picture. The techniques proving them are not vastly beyond what

we illustrated here. For example, Klep-Schweighofer [KS05] do an analog

of Stengle’s Theorem 5.3(a), while Theorem 3.9 is faithfully made free in

[HM04a]. In spite of the above results we are still far from having a full

understanding (à la Stengle’s Theorem) of the Null- and Positiv-stellensätze

phenomena in the free algebra.

8.2. The Weyl algebra. Weyl’s algebra, that is the enveloping algebra

of the Heisenberg group is interesting because, by a deep result of Stone-

von Neumann, it has a single irreducible representation; and that is infinite

dimensional. Thus, to check on the spectrum the positivity of an element,

one has to do it at a single point. The details were revealed by Schmüdgen

in a very recent article [S05]. We reproduce from his work the main result.

Fix a positive integer g and consider the unital ∗-algebra W (g) generated

by 2g self-adjoint elements p1, ..., pg, q1, ..., qg, subject to the commutation

relations:

[pk, qj ] = −δkj(i · 1), [pk, pj ] = [qj , qk] = 0, 1 ≤ j, k ≤ g.
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The unique irreducible representation Φ of this algebra is given by the partial

differential operators

Φ(pk)f = −i
∂f

∂xk
, Φ(qk)f = xkf,

acting on Schwartz space S(Rg). Via this representation, the elements of

W (g) are identified with linear partial differential operators with polynomial

coefficients (in g variables). These operators can be regarded as densely

defined, closed graph operators from S(Rg) to L2(Rg). The set

W (g)+ = {f ∈ W (g); 〈Φ(f)ξ, ξ〉 ≥ 0, ξ ∈ S(Rg)}

consists of all symmetric, non-negative elements, with respect to the repre-

sentation Φ.

Define

ak =
qk + ipk√

2
, a−k =

qk − ipk√
2

,

so that a∗k = a−k. Fix a positive number α which is not an integer, and let

N = a∗1a1 + ... + a∗gag;

denote by N the set of all finite products of elements N + (α + n)1, with

n ∈ Z.

The algebra W (g) carries a natural degree, defined on generators as

deg(ak) = deg(a−k) = 1.

Every element f ∈ W (g) can be decomposed into homogeneous parts fs of

degree s:

f = fm + fm−1 + ... + f0.

We can regard fk as a homogeneous polynomial of degree k, in the variables

a±1, ..., a±g. The principal symbol of f is the polynomial

fm(z1, ..., zg, z1, ..., zg), where aj was substituted by zk and a−k by zk.

Theorem 8.11. [S05] Let f ∈ W (g) be a self-adjoint element of even degree

2m, and let P (z, z) be its principal symbol. If

a). There exists ε > 0 such that f − ε · 1 ∈ W (g)+,
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b). P (z, z) > 0 for z 6= 0,

then, if m is even there exists b ∈ N such that bfb ∈ Σ2W (g); if m is odd,

there exists b ∈ N such that
∑g

j=1 bajfa−jb ∈ Σ2W (g).

For examples and details see [S05].

Already mentioned and annotated was our serious omission of any de-

scription of the Nullstellensatz in a Weyl Algebra.

8.3. Sums of squares modulo cyclic equivalence. A still open, impor-

tant conjecture in the classification theory of von Neumann algebras was

recently reduced by F. Radulescu to an asymptotic Positivstellensatz in the

free algebra. We reproduce from his preprint [Radul04] the main result.

We do not explain below the standard terminology related to von Neumann

algebras, see for instance [Tak02].

The following conjecture was proposed thirty years ago in [Connes76]:

Every type II1 factor can be embedded into an ultraproduct of the hyper-

finite factor.

There are presently quite a few reformulations or reductions of this con-

jecture. The one of interest for this survey can be formulated as follows.

Let F = C〈x1, ..., xg〉 be the free algebra with anti-linear involution x∗
j =

xj , 1 ≤ j ≤ g. We complete F to the algebra of convergent series

F̂ = {
∑
w

aww;
∑
w

|aw|r|w| < ∞, ∀r > 0},

where w runs over all words in F and aw ∈ C. The resulting Fréchet space

F̂ carries a natural weak topology denoted σ(F̂ , F̂ ∗).

A trace τ in a von-Neumann algebra M is a linear functional which has

by definition the cyclic invariant property τ(a1...an) = τ(a2a3...ana1). Two

series f1, f2 ∈ F̂ are called cyclically equivalent if f1 − f2 is the weak limit

of a linear combination of elements w − w′, where w ∈ F is a word and w′

is a cyclic permutation of it.

The following asymptotic Positivstellensatz holds.
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Theorem 8.12. [Radul04] Let f ∈ F̂ be a symmetric series with the prop-

erty that for every separable, type II1 von Neumann algebra (M, τ) and

every g-tuple of self-adjoint elements X of M we have τ(f(X)) ≥ 0. Then

f is cyclically equivalent to a weak limit of sums of squares sn, sn ∈ Σ2F.

It is not known whether one can replace the test II1 algebras by finite

dimensional algebras, but an answer to this querry would solve Connes con-

jecture.

Corollary 8.13. Connes embedding conjecture holds if and only if for every

symmetric element f ∈ F̂ the following assertion holds:

f is cyclically equivalent to a weak limit of sums of squares sn, sn ∈ Σ2F,

if and only if for any positive integer d and g-tuple of self-adjoint d × d

matrices X one has tracef(X) ≥ 0.

The proofs of Radulescu’s theorem and the corollary follow the same

pattern we are by now familiar with: a convex separation argument followed

by a GNS construction. See for details [Radul04], and for a last minute

refinement [KS06].

9. Convexity in a free algebra

Convexity of functions, domains and their close relative, positive curva-

ture of varieties, are very natural notions in a ∗-free algebra. A shocking

thing happens: these convex functions are so rare as to be almost trivial.

This section illustrates a simple case, that of convex polynomials, and we

see how in a free algebra the Nichtnegativtellensätze have extremely strong

consequences for inequalities on derivatives. The phenomenon has direct

qualitative consequences for systems engineering as we see in §10. The re-

sults of this section can be read independently of all but a few definitions in

§8, and the proofs require only a light reading of it.

This time R〈x〉 denotes the free ∗-algebra in indeterminates x = (x1, ..., xg),

over the real field. There is an involution x∗
j = xj which reverses the order of

multiplication (fp)∗ = p∗f∗. In this exposition we take symmetric variables

xj = x∗
j , but in the literature we are summarizing typically xj can be taken
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either free or symmetric with no change in the conclusion, for example, the

results also hold for symmetric polynomials in R〈x, x∗〉.
A symmetric polynomial p, p∗ = p, is matrix convex if for each positive

integer n, each pair of tuples X = (X1, . . . , Xg) and Y = (Y1, . . . , Yg) of

symmetric n × n matrices, and each 0 ≤ t ≤ 1,

(9.1) p(tX + (1 − t)Y ) ≤ tp(X) + (1 − t)p(Y ).

Even in one-variable, convexity in the noncommutative setting differs from

convexity in the commuting case because here Y need not commute with X.

For example, to see that the polynomial p = x4 is not matrix convex, let

X =

(
4 2

2 2

)
and Y =

(
2 0

0 0

)

and compute

1
2
X4 +

1
2
Y 4 − (

1
2
X +

1
2
Y )4 =

(
164 120

120 84

)

which is not positive semi-definite. On the other hand, to verify that x2 is

a matrix convex polynomial, observe that

tX2 + (1 − t)Y 2 − (tX + (1 − t)Y )2

= t(1 − t)(X2 − XY − Y X + Y 2) = t(1 − t)(X − Y )2 ≥ 0.

Theorem 9.1. [HM04b] Every convex symmetric polynomial in the free

algebra R〈x〉 or R〈x, x∗〉 has degree two or less.

As we shall see convexity of p is equivalent to its “second directional de-

rivative” being a positive polynomial. As a matter of fact, the phenomenon

has nothing to do with order two derivatives and the extension of this to

polynomials with kth derivative nonnegative is given later in Theorem 9.4.

Yet stronger about convexity is the next local implies global theorem.

Let P denote a collection of symmetric polynomials in non-commutative

variables x = {x1, · · · , xg}. Define the matrix nonnegativity domain DP
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associated to P to be the set of tuples X = (X1, · · · , Xg) of finite dimen-

sional real matrices of all sizes, except 0 dimensions, making p(X1, · · · , Xg)

a positive semi-definite matrix.

Theorem 9.2. [HM04b] Suppose there is a set P of symmetric polyno-

mials, whose matrix nonnegativity domain DP contains open sets in all

large enough dimensions. Then every symmetric polynomial p in R〈x〉 or in

R〈x, x∗〉 which is matrix convex on DP has degree two or less.

The first convexity theorem follows from Theorem 8.3, and we outline

below the main ideas in its proof. The proof of the more general, order k

derivative, is similar and we will return to it later in this section. The proof

of Theorem 9.2 requires different machinery (like that behind representation

(10.5 )) and is not presented here.

At this point we describe a bit of history. In the beginning was Karl

Löwner who studied a class of real analytic functions in one real variable

called matrix monotone, which we shall not define here. Löwner gave in-

tegral representations and these have developed beautifully over the years.

The impact on our story comes a few years later when Löwner’s student

Klaus [K36] introduced matrix convex functions f in one variable. Such a

function f on [0,∞] ⊂ R can be represented as f(t) = tg(t) with g ma-

trix monotone, so the representations for g produce representations for f .

Modern references are [OSTprept], [U02]. Frank Hansen has extensive deep

work on matrix convex an monotone functions whose definition in several

variables is different than the one we use here, see[HanT06]; for a recent

reference see [Han97].

For a polynomial p ∈ R〈x〉 define the directional derivative:

p′(x)[h] =
d

dt
p(x + th)|t=0

.

It is a linear form in h. Similarly, the kth derivative

p(k)(x)[h] =
dk

dtk
p(x + th)|t=0

is homogeneous of degree k in h.
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More formally, we regard the directional derivative p′(x)[h] ∈ R〈x, h〉
as a polynomial in 2g free symmetric (i.e. invariant under ∗) variables

(x1, . . . , xg, h1, . . . , hg); In the case of a word w = xj1xj2 · · ·xjn the de-

rivative is:

w′[h] = hj1xj2 · · ·xjn + xj1hj2xj3 · · ·xjn + . . . + xj1 · · ·xjn−1hjn

and for a polynomial p = p′(x)[h] =
∑

pww the derivative is

p′(x)[h] =
∑

pww′[h].

If p is symmetric, then so is p′.

For g-tuples of symmetric matrices of a fixed size X, H, observe that the

evaluation formula

p′(X)[H] = lim
t→0

p(X + tH) − p(X)
t

holds. Alternately, with q(t) = p(X + tH), we find.

p′(X)[H] = q′(0).

Likewise for a polynomial p ∈ R〈x〉, the Hessian p′′(x)[h] of p(x) can be

thought of as the formal second directional derivative of p in the “direction”

h. Equivalently, the Hessian of p(x) can also be defined as the part of the

polynomial

r(x)[h] := p(x + h) − p(x)

in the free algebra in the symmetric variables that is homogeneous of degree

two in h.

If p′′ 6= 0, that is, if degree p ≥ 2, then the degree of p′′(x)[h] as a polyno-

mial in the 2g variables x1, . . . , xg, h1 . . . , hg is equal to the degree of p(x)

as a polynomial in x1, . . . , xg.

Likewise for kth derivatives.

Example 9.3. 1. p(x) = x2x1x2

p′(x)[h] =
d

dt
[(x2 + th2)(x1 + th1)(x2 +h2)]|t=0

= h2x1x2 +x2h1x2 +x2x1h2.

2. One variable p(x) = x4. Then

p′(x)[h] = hxxx + xhxx + xxhx + xxxh
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Note each term is linear in h and h replaces each occurrence of x once and

only once:

p′′(x)[h] =

hhxx + hhxx + hxhx + hxxh+

hxhx + xhhx + xhhx + xhxh+

hxxh + xhxh + xxhh + xxhh,

which yields

p′′(x)[h] = 2hhxx + 2hxhx + 2hxxh + 2xhhx + 2xhxh + 2xxhh.

Note each term is degree two in h and h replaces each pair of x’s exactly

once. Likewise

p(3)(x)[h] = 6(hhhx + hhxh + hxhh + xhhh)

and p(4)(x)[h] = 24hhhh and p(5)(x)[h] = 0.

3. p = x2
1x2

p′′(x)[h] = h2
1x2 + h1x1h2 + x1h1h2.

¤
The definition of a convex polynomial can be easily adapted to domains.

Then one remarks without difficulty that, in exact analogy with the commu-

tative case, a polynomial p is convex (in a domain) if and only if the Hessian

evaluated at the respective points is non-negative definite. Because of this

Theorem 9.1 is an immediate consequence of the next theorem restricted to

k = 2.

Theorem 9.4. Every symmetric polynomial p in the free algebra R〈x〉 or

R〈x, x∗〉 whose kth derivative is a matrix positive polynomial has degree k

or less.

Proof (when the variables xj are symmetric).

Assume p(k)(x)[h] is a matrix positive polynomial, so that, in view of

Theorem 8.3 we can write it as a sum of squares:

p(k)(x)[h] =
∑

f∗
j fj ;
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here each fj(x, h) is a polynomial in the free algebra R〈x, h〉.

If p(k)(x)[h] is identically equal to zero, then the statement follows. As-

sume the contrary, so that p(k)(x)[h] is homogeneous of degree k in h, and

there are tuples of matrices X, H and a vector ξ in the underlying finite

dimensional Hilbert space, so that

〈p(k)(X)[H]ξ, ξ〉 > 0.

By multiplying H by a real scalar t we find

tk〈p(k)(X)[H]ξ, ξ〉 = 〈p(k)(X)[tH]ξ, ξ〉 > 0,

whence k = 2µ is an even integer.

Since in a sum of squares the highest degree terms cannot cancel, the

degree of each fj is at most ν in x and µ in h, where 2ν is the degree of p(k)

in x.

Since p(k) is a directional derivative, it must have a highest degree term

of the form hi1 · · ·hikm(x) where the monomial m(x) has degree equal to

degree p(k) − k; also hij is allowed to equal hi` . Thus some product, denote

it f∗
JfJ , must contain such a term. (Note the the order of the h′s vs. the

x′s matters.) This forces fJ to have the form

fJ = c1(hiµ +1 · · ·hik)m(x) + c2(hi1 · · ·hiµ) + ... ,

the cj being scalars.

To finish the proof use that f∗
JfJ contains

c2 m(x)∗(hiµ +1 · · ·hik)∗(hiµ +1 · · ·hik)m(x)

and this can not be cancelled out, so

deg p(k) = k + 2(deg p(k) − k) = 2 deg p(k) − k.

Solve this to find deg p(k) = k. Thus p has degree k. ¥

We use a previous example in order to illustrate this proof when k = 2.
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Example 9.5. Example p = x4 is not matrix convex; here x = x∗.

Calculate that

p′′(x)[h] = 2hhxx + 2hxhx + 2hxxh + 2xhhx + 2xhxh + 2xxhh.

Up to positive constants some polynomial f∗
JfJ contains a term hhxx, so

fJ = hxx + h + . . ..

So f∗
JfJ contains xxhhxx. This is a highest order perfect square so can

be cancelled out. Thus is appears in p′′, which as a consequence has degree

6. This a contradiction. ¤

We call the readers attention to work which goes beyond what we have

done in several directions. One [HMVprept] concerns a noncommutative

rational function r and characterizes those which are convex near 0. It is

an extremely small and rigidly behaved class, for example, r is convex on

the entire component of the ”domain of r” which contains 0. This rigidity

is in analogy to convex polynomials on some ”open set” having degree 2

or less and this implying they are convex everywhere. Another direction is

the classification of noncommutative polynomials whose Hessian p′′(x)[h] at

most k ”negative noncommutative eigenvalues” In [DHMprept] it is shown

that this implies

deg p ≤ 2k + 2.

Of course the special case we studied in this section is exactly that of poly-

nomials with k = 0.

10. Dimension free engineering: LMIs vs. CMIs

This section demonstrates the need for real algebraic geometry (in the

broad sense) aimed at convexity over a free or nearly free ∗- algebra. From

this viewpoint the theory in this survey goes in an essential direction but

much more is called for in order to do general engineering problems. Hope-

fully the brief description in this section will give a little feel for where we

now stand. We are aiming at one of the major issues in linear systems theory:
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Which problems convert to a convex matrix inequality, CMI? How does

one do the conversion?

To be in line with the engineering literature, we use below a slightly dif-

ferent notation than the rest of the article. For instance AT denotes the

transpose of a (real entries) matrix, and AT replaces in this case the invo-

lution A∗ we have encountered in the previous sections. The inner product

of vectors in a real Hilbert space will be denoted u · v.

10.1. Linear systems. A linear system F is given by the linear differential

equations
dx

dt
= Ax + Bu

y = Cx

with the vector

• x(t) at each time t being in the vector space X called the state space,

• u(t) at each time t being in the vector space U called the input space,

• y(t) at each time t being in the vector space Y called the output

space,

and A, B, C being linear maps on the corresponding vector spaces.

10.2. Connecting linear systems. Systems can be connected in incred-

ibly complicated configurations. We describe a simple connection and this

goes along way toward illustrating the general idea. Given two linear sys-

tems F, G, we describe the formulas for connecting them as follows.

-u n+
−

-

v

e
F - y

6 ¾ G¾
y
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Systems F and G are respectively given by the linear differential equations

dx

dt
= Ax + Be,

dξ

dt
= aξ + bw,

y = Cx, v = cξ.

The connection diagram is equivalent to the algebraic statements

w = y and e = u − v.

The closed loop system is a new system whose differential equations are

dx

dt
= Ax − Bcξ + Bu,

dξ

dt
= aξ + by = aξ + bCx,

y = Cx.

In matrix form this is

(10.1)
d

dt

(
x

ξ

)
=

(
A −Bc

bC a

) (
x

ξ

)
+

(
B

0

)
u,

y = (C 0)

(
x

ξ

)
,

where the state space of the closed loop systems is the direct sum ‘X ⊕ Y’

of the state spaces X of F and Y of G. The moral of the story is:

System connections produce a new system whose coefficients are matrices

with entries which are polynomials in the coefficients of the component sys-

tems.

Complicated signal flow diagrams give complicated matrices of polyno-

mials. Note in what was said the dimensions of vector spaces and matrices

never entered explicitly; the algebraic form of (10.1 ) is completely deter-

mined by the flow diagram. We have coined the term dimension free for

such problems.
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10.3. Energy dissipation. We have a system F and want a condition which

checks whether ∫ ∞

0
|u|2dt ≥

∫ ∞

0
|Fu|2dt, x(0) = 0,

holds for all input functions u, where Fu = y in the above notation . If this

holds F is called a dissipative system

L2[0,∞] - L2[0,∞] -F

This is analysis but it converts to algebra because of the following con-

struction. Hope there is a ”potential energy” like function V ≥ 0, V (0) = 0,

on the state space; it should satisfy:

potential energy now + energy in ≥ potential energy then + energy out.

In mathematical notation this is

V (x(t1)) +
∫ t2

t1

|u(t)|2 ≥ V (x(t2)) +
∫ t2

t1

|y(t)|2

and a V ≥ 0, V (0) = 0, which satisfies this for all input functions u and

initial states x(t1) is called a storage function. We can manipulate this inte-

gral condition to obtain first a differential inequality and then an algebraic

inequality, as follows:

0 ≥ V (x(t2)) − V (x(t1))
t2 − t1

+
1

t2 − t1

∫ t2

t1

|y(t)|2 − |u(t)|2,

0 ≥ ∇V (x(t1)) · dx

dt
(t1) + |y(t1)|2 − |u(t1)|2.

Use dx
dt (t1) = Ax(t1) + Bu(t1) to get

0 ≥ ∇V (x(t1)) · (Ax(t1) + Bu(t1)) + |Cx((t1))|2 − |u(t1)|2.

The system is dissipative if and only if this holds for all u(t1), x(t1) which

can occur when it runs (starting at x(0) = 0). All vectors u(t1) in U can
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certainly occur as an input and if all x(t1) can occur we call the system

reachable . Denote x(t1) by x and u(t1) by u

(10.2) 0 ≥ ∇V (x) · (Ax + Bu) + |Cx|2 − |u|2,

and conclude:

Theorem 10.1. The system A, B, C is dissipative if inequality (10.2) holds

for all u ∈ U , x ∈ X . Conversely, if A, B, C is reachable, then dissipativity

implies inequality (10.2) holds for all u ∈ U , x ∈ X .

For a linear system we try V which is quadratic, so V (x) = Px · x with

P ≥ 0 and ∇V (x) = 2Px. At this point there are two commonly pursued

paths which constitute the next two subsections.

10.3.1. Riccati inequalities. Use that ∇V (x) = 2Wx in (10.2) to get

0 ≥ 2Wx · (Ax + Bu) + |Cx|2 − |u|2, for all u, x,

so

(10.3) 0 ≥ max
u

(
[WA + AT W + CT C]x · x + 2BT Wx · u − |u|2).

The maximizer in u is u = BT Wx, hence

0 ≥ 2Wx · Ax + 2|BT Wx|2 + |Cx|2 − |BT Wx|2.

Which in turn is

0 ≥ [WA + AT W + WBBT W + CT C]x · x.

This is the classical Riccati matrix inequality

0 ≥ WA + AT W + WBBT W + CT C

which together with W ≥ 0 insures dissipativity and is also necessary for it

when the system is reachable.
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10.3.2. Linear Matrix Inequalities (LMI). Alternatively we do not need to

compute maxu but can express (10.3) as the inequality:

L(W ) :=

(
WA + AT W + CT C WB

BT W −I

) (
x

u

)
·
(

x

u

)
≤ 0

for all u ∈ U , x ∈ X . That is the following matrix inequality holds:

(
WA + AT W + CT C WB

BT W −I

)
≤ 0.

Here A, B, C describe the system and W is an unknown matrix. If the

system is reachable, then A, B, C is dissipative if and only if L(W ) ≤ 0 and

W ≥ 0.

Recall that the Schur complement of a matrix is defined by

SchurComp

(
α β

βT γ

)
:= α − βγ−1βT .

Suppose γ is invertible. The matrix is positive semi-definite if and only if

γ > 0 and its Schur complement is positive semi-definite. Note that

SchurComp L(W ) = WA + AT W + WBBT W + CT C

featuring the Riccati inequality we saw before. Indeed, L(W ) ≤ 0 if and only

if WA+AT W+WBBT W+CT C ≤ 0, since this implies WA+AT W+CT C ≤
0. Thus the Riccati approach and the LMI approach give equivalent answers.

10.4. Example: An H∞ control problem. Here is a basic engineering

problem:

Make a given system dissipative by designing a feedback law.

To be more specific, we are given a signal flow diagram:
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-

-

Given

A, B1, B2, C1, C2

D12, D21

-

-

w out

u y

¾ ¾Find

a, b, c

where the given system is

ds

dt
= As + B1w + B2u,

out = C1s + D12u + D11w,

y = C2s + D21w,

D21 = I, D12D
′
12 = I, D′

12D12 = I, D11 = 0.

We want to find an unknown system

dξ

dt
= aξ + b, u = cξ,

called the controller, which makes the system dissipative over every finite

horizon. Namely:

∫ T

0
|w(t)|2dt ≥

T∫
0

|out(t)|2dt, s(0) = 0.

So a, b, c are the critical unknowns.

10.4.1. Conversion to algebra. The dynamics of the “closed loop” system

has the form
d

dt

(
s

ξ

)
= A

(
s

ξ

)
+ Bw
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out = C
(

s

ξ

)
+ Dw

where A,B, C,D are ”2 × 2 block matrices” whose entries are polynomials

in the A′s, B′s, · · · , a, b, c etc. The storage function inequality which corre-

sponds to energy dissipation has the form

(10.4) H := AT E + EA + EBBT E + CTC ≤ 0

where E has the form

E =

(
E11 E12

E21 E22

)
, E12 = ET

21.

The algebra problem above in more detail is to solve inequality (10.4)

H =

(
Hss Hsy

Hys Eyy

)
≤ 0, Hsy = HT

ys,

where the entries of H are the polynomials:

Hss = E11 A + AT E11 + CT
1 C1 + ET

12 bC2 + CT
2 bT ET

12 + E11 B1 bT ET
12+

E11 B1 BT
1 E11 + E12 b bT ET

12 + E12 bBT
1 E11,

Hsz = E21 A +
aT (E21 + ET

12)
2

+ cT C1 + E22 b C2 + cT BT
2 ET

11+

E21 B1 bT (E21 + ET
12)

2
+E21 B1 BT

1 ET
11+

E22 b bT (E21 + ET
12)

2
+E22 bBT

1 ET
11,

Hzs = AT ET
21+CT

1 c+
(E12 + ET

21) a

2
+E11 B2 c+CT

2 bT ET
22+E11 B1 bT ET

22+

E11 B1 BT
1 ET

21 +
(E12 + ET

21) b bT ET
22

2
+

(E12 + ET
21) b BT

1 ET
21

2
,

Hzz = E22 a + aT ET
22 + cT c + E21 B2 c + cT BT

2 ET
21 + E21 B1 bT ET

22+

E21 B1 BT
1 ET

21 + E22 b bT ET
22 + E22 bBT

1 ET
21.

Here A, B1, B2, C1, C2 are known and the unknowns are a, b, c and for

E11, E12, E21 and E22.
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We very much wish that these inequalities are convex in the unknowns

(so that numerical solutions will be reliable). But our key inequality above

is not convex in the unknowns.

10.4.2. The key question. Is there is a set of noncommutative convex in-

equalities with an equivalent set of solutions?

This is a question in algebra not in numerics and the answer after a lot

of work is yes. The path to success is:

(1) Firstly, one must eliminate unknowns, change variables and get a

new set of inequalities K.

(2) Secondly, one must check that K is “convex” in the unknowns.

This outline transcends our example and applies to very many situations.

The second issue of this is becoming reasonably understood, for as we saw

earlier, a convex polynomial with real coefficients has degree two or less, so

these are trivial to identify. While the level of generality of the theory we

have presented in this paper is less than we now require, to wit, polynomials

with indeterminates as coefficients and matrices with polynomial entries;

this does not add radically different structure, see discussion in §10.5. The

first issue, changing variables, is still a collection of isolated tricks, with

which mathematical theory has not caught up. For the particular problem

in our example we shall not derive the solution since it is long. However, we

do state the classical answer in the next subsection.

10.4.3. Solution to the Problem. The textbook solution is as follows, due to

Doyle-Glover- Kargonekar-Francis. It appeared in [DGKF89] which won the

1991 annual prize for the best paper to appear in an IEEE journal. Roughly

speaking it was deemed the best paper in electrical engineering in that year.

We denote

DGKFX := (A − B2C1)′X + X(A − B2C1) + X(γ−2B1B
′
1 − B−1

2 B′
2)X

DGKFY := A×Y + Y A×′ + Y (γ−2C ′
1C1 − C ′

2C2)Y,

where A× := A − B1C2.
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Theorem 10.2. [DGKF89] There is a system solving the control problem

if there exist solutions

X ≥ 0 and Y > 0

to inequalities the

DGKFY ≤ 0 and DGKFX ≤ 0

which satisfy the coupling condition

X − Y −1 < 0.

This is if and only if provided Y > 0 is replaced by Y ≥ 0 and Y −1 is

interpreted correctly.

This set of inequalities while not usually convex in X, Y are convex in the

new variables W = X−1 and Z = Y −1, since DGKFX and DGKFY are lin-

ear in them and X−Y −1 = W−1−Z has second derivative 2W−1HW−1HW−1

which is non negative in H for each W−1 = X > 0. These inequalities are

also equivalent to LMIs which we do not write down.

10.4.4. Numerics and symbolics. A single Riccati inequality is much more

special than an LMI and numerical solvers for Riccatis are faster and handle

bigger matrices. This survey obviously has not aimed at numerics, but at

algebraic precursors to using numerics.

The mathematics here aims toward helping an engineer who writes a

toolbox which other engineers will use for designing systems, like control

systems. What goes in such toolboxes is algebraic formulas like the DGKF

inequalities above with matrices A, B, C unspecified and reliable numerics

for solving them when a user does specify A, B, C as matrices. A user who

designs a controller for a helicopter puts in the mathematical systems model

for his helicopter and puts in matrices, for example, A is a particular R8×8

matrix etc. Another user who designs a satellite controller might have a

50 dimensional state space and of course would pick completely different

A, B, C. Essentially any matrices of any compatible dimensions can occur
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and our claim that our algebraic formulas are convex in the ranges we specify

must be true.

The toolbox designer faces two completely different tasks. One is manip-

ulation of algebraic inequalities; the other is numerical solutions. Often the

first is far more daunting since the numerics is handled by some standard

package. Thus there is a great need for algebraic theory.

10.5. Engineers need generality. To make exposition palatable in this

paper we have refrained from generality which does not have much effect on

mathematical structure. However, to embrace linear systems problems we

need more general theorems. A level of generality which most linear systems

problems require is to work with polynomials p in two classes of variables

p(a, x) where we shall be interested in matrix convexity in x over ranges of

the variable a. Describing this setup fully takes a while, as one can see in

[CHSY03] where it is worked out. An engineer might look at [CHSprept],

especially the first part which describe a computational noncommutative

algebra attack on convexity, it seems to be the most intuitive read on the

subject at hand. Here we try to indicate the idea. In private notes of Helton

and Adrian Lim one shows that second derivatives of p(a, x) in x determine

convexity in x and that convexity in the x variable on some “open set” of

a, x implies that p has degree 2 or less in x. From this we get

If P (a, x) is a symmetric d × d matrix with polynomial entries pij(a, x),

then convexity in x for all X and all A satisfying some strict algebraic in-

equality of the form g(A) > 0, implies each pij has degree 2 or less.

We obtain this from the following argument. We shall test P (a, x) by

plugging in tuples A and X of n × n matrices for a and x. First note

that matrix convexity of P in X through a range of A, X implies that the

diagonals pii must have this property. Thus they have degree 2 or less in

x. Consider how the Hessian F (t) := Pxx(A, tX)[H] in x scales with a

scalar parameter t. The matrix function being convex implies its diagonals

are convex. Thus as we saw above, Fkk(t) is independent of t for all k.
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Apply F (t) to the vectors v = column (±v1, · · · ,±vd) in Rn×n and use that

vT F (t)v ≥ 0 for all t, to get that for each i, j the entries Fij satisfy

vT
i Fii(t)vi + vT

j Fjj(t)vj ≥ ±(vT
i Fij(t)vj)2.

This implies by letting t → ∞ that the degree of vT
i Fij(t)vj in t is 0, which

implies the same for Fij(t). To this point we have that all polynomials in

Pxx(a, x)[h] are independent of X whenever matrix tuples A from an open

set {A : g(A) > 0} are plugged in. This is independent of the size n of the

matrices we plug in, so all polynomials in Pxx(a, x)[h] are 0, algebraically

speaking. Thus all polynomials in P (a, x)[h] have degree 2 in x or less. The

engineering conclusion from all of this is formulated below.

10.6. Conclusion.

(1) Many linear systems problems which are “dimension free” readily

reduce to noncommuting inequalities on d×d matrices of polynomials

of the form P (a, x) ≤ 0. These do so as in the §10.4 example, or

even after simplifying solving and substituting they yield a matrix

of polynomials.

(2) If such P (A, X) is X-convex on the set of n × n matrix tuples A

satisfying a strict polynomial inequality g(A) > 0 and on all X

(regardless of dimension n), then P (a, x) has degree 2 in x, as we

saw in §10.5. Alas, P is surprisingly simple.

(3) Assume a d × d matrix of polynomials P (a, x) has degree 2 in x.

There are tests (not perfect) to see where in the a variable P (X, A)

is negative semi-definite for all X. Equivalently, to see where P is

convex in x.

(4) Convexity and the degree 2 property imply P (a, x) ≤ 0 can be ex-

pressed as an LMI. Often the LMI can be constructed with coeffi-

cients which are noncommutative polynomials (dimension free for-

mula). See proof below.
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This very strong conclusion is bad news for engineers and we empha-

size that it does not preclude transformation to convexity or convexity for

dimension dependent problems.

10.6.1. Tests for convexity and the making of an LMI. Here we shall sketch

of the proof of Conclusions (3) and (4). We use methods not described

earlier in this paper, but despite that restrict our presentation to be only a

brief outline. For proofs in detail see [CHSY03] or more generally [HMPpos].

Suppose q(a)[h] is a symmetric polynomial in a, h which is homogeneous

of degree 2 in h, then q being quadratic in h, can be represented as

(10.5) q(a)[h] = V (a)[h]T M(a)V (a)[h]

where M is matrix of noncommutative polynomials in a, and V is a vector

each entry of which is a monomial of the form hjm(a) where m(a) is a

monomial in a. We can choose the representation so that no monomial

repeats. A key is Theorem 10.10 and Lemma 9.4 in [CHSY03] which imply

Lemma 10.3. Let q(a, h), g(a) be polynomials in the free algebra with q

purely quadratic in h. Then q(A)[H] ≥ 0 for g(A) > 0 and all H is equivalent

to M(A) ≥ 0 for g(A) > 0.

We shall apply this by representing Pxx(a, x)[h] = V (a)[h]T M(a)V (a)[h].

The x- Hessian being quadratic in x satisfies Pxx(a, x)[h] is independent of

x. From the lemma we have Pxx(A, X)[H] ≥ 0 for g(A) > 0 and all X is

equivalent to M(A) ≥ 0 for g(A) > 0.

Two tests for positivity as mentioned in Conclusion (3) follow.

(1) The test in [CHSY03] is: take the symbolic noncommutative M(a) =

L(a)T D(a)L(a) decomposition of M(a). This gives D(a) a matrix

with diagonal or 2 × 2 block diagonal entries which are nc rational

functions in a. M(A) ≥ 0 if and only if D(A) ≥ 0, so checking posi-

tivity of the functions on diagonal D(a) is a test for where p(a, x) is

convex.
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(2) Here is another test. If the Positivstellensatz holds (despite a failure

of the strict positivity hypothesis), then

(10.6) M(a, x) ∈ Σ2 +
∑

rT
j grj +

∑
tTij(C

2 − xT
j xj)tij .

Computing the terms rj , tij and the sums of squares component gives

an algebraic test.

Conversion to LMIs, namely, Conclusion (4). Denote by P I(a, x) the

terms in P (a, x) with x degree exactly one, respectively P II(a, x)with x

degree exactly two.

(1) We now give quite a practical numerical algorithm for producing an

LMI, under no offensive assumptions. However, we do not get for-

mulas which are polynomials in the symbol a. Once n×n matrices A

are given with M(A) positive semi-definite we can compute numeri-

cally its Cholesky decomposition M(A) = L(A)T D(A)
1
2 D(A)

1
2 L(A)

(actually any square root of M(A) will do). Then we have

P II(A, X) = V (A)[X]T L(A)T D(A)
1
2 D(A)

1
2 L(A)V (A)[X]

and taking

L(A)[X] :=

(
p0(A, X) + pI(A, X) D(A)

1
2 L(A)V (A)[X]

V (A)[X]T L(A)T D(A)
1
2 −I

)

which produces L(A)[X] whose Schur complement equals P (A, X)

and which produces a matrix inequality

(10.7) {X : P (A, X) ≤ 0} = {X : L(A)[X] ≤ 0}.

The entries of L(A)[X] are linear in scalar unknowns Xlm and have

n×n matrix coefficients. This is standard input to the LMI numerical

solvers prevalent today.

(2) Another recipe which produces algebraic formulas for solution the

following. Continue with item (2) above. The terms P II(a, x) in

P (a, x) with x degree exactly two can be represented by M(a) as in

(10.5). From the Positivstellensätz (10.6) for M(a) and the fact that

linear terms are trivial to handle, we can easily build an algebraic
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expression for a matrix L(a)[x] with polynomial entries which are

linear in x whose Schur complement equals P (a, x). Moreover, for

any fixed A satisfying g(A) > 0, the solution sets to our favorite

matrix inequality P > 0 and the LMI based on L are the same, as in

(10.7). This completes the proof that, if the Positivstellensätz (10.6)

for P II(a, x) exists, then a LMI which is polynomial in a exists.

As a side remark, for the degree 2 and other properties of matrix valued

polynomials we could use weaker hypotheses allowing coupling of a and x

(as in done in private Helton- Lim notes for polynomials), these probably

work by the same argument, basically the argument in [HM04b]).

10.7. Keep going. This subject of noncommutative real algebraic geome-

try and its geometric offshoots on convexity is a child of the 21st century.

Understanding the relationship between Convex MIs and LMIs was a core

motivation for its developments. When we look at the two basic techniques

in §(10.4.2) what we have done in this paper bears successfully on issue 2.

But nothing has been said about issue 1. Nick Slinglend’s UCSD thesis in

progress makes a start in that direction.

This physical section has focused on “dimension free” problems. What

about dimension dependent ones? In these problems the variables commute.

There the behavior is quite different; as we saw in §7 there is an extra

constraint beyond convexity to have equivalence to an LMI.

11. A guide to literature

While classical semi-algebraic geometry has developed over the last cen-

tury through an outpouring of seemingly countless papers, the thrust toward

a noncommutative semi-algebraic geometry is sufficiently new that we have

attempted to reference the majority of papers directly on the subject here

in this survey. This non-discriminating approach is not entirely good news

for the student, so in this section we provide some guidance to the more

readable references.

The Functional Analysis book by Riesz and Nagy [RN90] is a class in

itself. For a historical perspective on the evolution of the spectral theorem
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the reader can go directly to Hilbert’s book [Hilb1953] or the German En-

cyclopedia article by Hellinger and Toeplitz [HT53]. Reading von Neumann

in original [vN1] is still very rewarding.

The many facets of matrix positivity, as applied to function theory and

systems theory, are well exposed in the books by Agler-McCarthy [AM02],

Foias-Frazho [FF90] and Rosenblum-Rovnyak [RR97]. The monograph of

Constantinescu [Constantinescu96] is entirely devoted to the Schur algo-

rithm.

For the classical moment problem Akhiezer’s text [Akh65] remains the

basic reference, although having a look at Marcel Riesz original articles

[MR23], Carleman’s quasi-analytic functions [C26], or at the continued frac-

tions monograph of Perron [Per50] might bring new insights. Good surveys

of the multivariate moment problems are Berg [Berg87] and Fuglede [F83].

Reznick’s memoir [R92] exploits in a novel and optimal way the duality

between moments and positive polynomials.

For real algebraic geometry, including the logical aspects of the theory, we

refer to the well circulated texts [BCR98, J89, M00] and the recent mono-

graph by Prestel and Delzell [PD01]; the latter offers an elegant and full

access to a wide selection of aspects of positive polynomials. For new re-

sults in algorithmic real (commutative) algebra see [BPR03]; all recent arti-

cles of Lasserre contain generous recapitulations and reviews of past articles

devoted to applications of sums of squares and moments to optimization.

Scheiderer’s very informative survey [S03] is centered on sums of squares de-

compositions. Parrilo’s thesis [ParThesis] is a wonderful exposition of many

new areas of application which he discovered.

An account of one of the most systematic and elegant ways for produc-

ing LMIs for engineering problems is the subject of the book [SIG97]. The

condensed version we heartily recommend is their 15 page paper [SI95].

Software:

Common semi-definite programming packages are [Sturm99]SeDuMi and

LMI Toolbox [GNLC95].
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Semi-algebraic geometry packages are SOS tools [PPSP04] and GloptiPoly

[HL03].

For symbolic computation in a free ∗- algebra see NCAlgebra and NCGB

(which requires Mathematica) [HSM05].
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[Art26] E. ARTIN, Über die Zerlegung definiter Funktionen in Quadrate, Abh. math. Sem.

Hamburg 5(1926), 100-115.

[AS26] E. ARTIN, O. SCHREIER, Algebraische Konstruktion reeler Körper, Abh. math.

Sem. Hamburg 5(1926), 85-99.

[BGM05] J. A. BALL, T. MALAKORN, G. GROENEWALD, Structured noncommuta-

tive multidimensional linear systems, SIAM J. Control and Optimization 44 (2005),

no. 4, 1474–1528.

[BT98] J.A. BALL, T.T. TRENT, Unitary colligations, reproducing kernel Hilbert spaces,

and Nevanlinna-Pick interpolation in several variables, J. Funct. Anal. 157(1998),

1-61.

[BPR03] S. BASU, R. POLLACK, M.-F. ROY, Algorithms in real algebraic geometry,

Algorithms and Computation in Mathematics, 10, Springer-Verlag, Berlin, 2003.

[B01] C. L. BECK, On formal power series representations of uncertain systems IEEE

TAC, 46, no. 2, 2001, 314-319.

[Berg87] C. BERG, The multidimensional moment problem and semigroups. Moments in

mathematics (San Antonio, Tex., 1987), Proc. Sympos. Appl. Math.,37, Amer. Math.

Soc., Providence, RI, 1987. pp. 110-124.

[Berg91] C. BERG, M. THILL, Rotation invariant moment problems, Acta Math. 167

(1991), no. 3-4, 207–227.

[Berg96] C. BERG, Moment problems and polynomial approximation. 100 ans après Th.-

J. Stieltjes. Ann. Fac. Sci. Toulouse Math. (6) 1996, Special issue, 9–32.



96 J. WILLIAM HELTON AND MIHAI PUTINAR

[Bert05] D. BERTSIMAS, I. POPESCU, Optimal inequalities in probability theory: a

convex optimization approach, SIAM J. Optim. 15 (2005), no. 3, 780–804.

[Blec04] G. BLEKHERMAN, There are significantly more nonnegative polynomials than

sums of squares, preprint 2004. arXive number - math.AG/0309130

[BCR98] J. BOCHNACK, M. COSTE, M-F. ROY, Real algebraic geometry, Translated

from the 1987 French original. Revised by the authors, Ergebnisse der Mathematik

und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 36.

Springer-Verlag, Berlin, 1998.

[CHSY03] J. F CAMINO, J. W. HELTON, R. E. SKELTON, J. YE, Matrix inequalities:

A Symbolic Procedure to Determine Convexity Automatically, Integral Equations and

Operator Theory46(2003), 399-454.

[CHSprept] J. F. CAMINO, J. W. HELTON and R.E. SKELTON, Solving Matrix In-

equalities whose Unknowns are Matrices to appear SIAM Journal of Optimization

[C26] T. CARLEMAN, Les Fonctions Quasi-Analytiques, Gauthier Villars, Paris, 1926.
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[K69] G. KÖTHE, Topological Vector Spaces. I, Springer, Berlin, 1969.

[KN81] M.G. KREIN, M.A. NAIMARK, The method of symmetric and Hermitian forms

in the theory of separation of the roots of algebraic equations, (Translated from the

Russian by O. Boshko and J. L. Howland), Linear Multilinear Algebra 10(1981),

265-308.

[K36] F. KRAUS, “Uber Konvexe Matrixfunctionen,” Math. Zeit. 41 (1936) 18 - 42.
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