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Abstract

In real semialgebraic geometry it is common to represent a polyno-
mial q which is positive on a region R as a weighted sum of squares.
Serious obstructions arise when q is not strictly positive on the re-
gion R. Here we are concerned with noncommutative polynomials and
obtaining a representation for them which is valid even when strict
positivity fails.

Specifically, we treat a ”symmetric” polynomial q(x, h) in noncom-
muting variables {x1, . . . , xgx

} and {h1, . . . , hgh
} for which q(X,H) is

positive semidefinite whenever

X = (X1, . . . , Xgx
) and H = (H1, . . . , Hgh

)

are tuples of selfadjoint matrices with ‖Xj‖ ≤ 1 but Hj unconstrained.
The representation we obtain is a Gram representation in the variables
h

q(x, h) = V (x)[h]T Pq(x)V (x)[h],

where Pq is a symmetric matrix whose entries are noncommutative
polynomials only in x and V is a ”vector” whose entries are polynomials
in both x and h. We show that one can choose Pq such that the matrix
Pq(X) is positive semidefinite for all ‖Xj‖ ≤ 1. The representation
covers sum of square results ([H],[M],[MP]) when gx = 0. Also it allows
for arbitrary degree in h rather than degree two in the main result of
[CHSY] when it is restricted to x-domains of the type ‖Xj‖ ≤ 1.
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1 Introduction

Let N denote the algebra over R of polynomials in the noncommuting vari-
ables x := {x1, . . . , xgx} and h := {h1, . . . , hgh

}. An element of N is thus a
real finite linear combination of words in x and h and is called a noncommu-
tative polynomial (abbreviated NC polynomial). Given integers M and N ,
let NM,N denote the set of noncommutative polynomials in N which have
degree at most M in x and at most N in h. For example,

p(x, h) = x1h2x3 + 5x2x1h2x1

is a polynomial in N3,1.
The natural involution T on N defined by

w = z1 . . . zn 7→ wT = zn · · · z2z1

for w a word in {x, h} and

q =
∑

qww ∈ N 7→ qT =
∑

qwwT

fixes NM,N . Here each zj ∈ {x1, . . . , xgx , h1, . . . , hgh
}. A polynomial q in N

is symmetric provided qT = q. For example,

p(x, h) = x1h2x3 + 5x2x1h1x1 + x3h2x1 + 5x1h1x1x2 (1)

is a symmetric polynomial in N3,1.
Let B(H) denote the collection of bounded linear operators on the real

Hilbert space H. Given tuples X = (X1, . . . , Xgx) and H = (H1, . . . , Hgh
)

of, not necessarily commuting, selfadjoint operators from B(H) and p ∈ N ,
define p(X, H) ∈ B(H) in the natural way by substitution. For instance, for
the polynomial p in (1),

p(X, H) = X1H2X3 + 5X2X1H1X1 + X3H2X1 + 5X1H1X1X2.

The main result of this paper is a representation theorem for symmetric
polynomials q ∈ N such that q(X, H) ≥ 0 for all tuples X and H of self-
adjoint operators on a common Hilbert space, with each Xj a contraction,
‖Xj‖ ≤ 1. Here, and throughout the present article, ‖A‖ refers to the oper-
ator norm of A ∈ B(H) and A positive semidefinite, denoted A ≥ 0, means
A = AT and < Ah, h >≥ 0 for all h ∈ H.

The evaluation map p ∈ N 7→ p(X, H) ∈ B(H) determines a map-
ping from Mn(N ), the n× n matrices with entries from N , into B(⊕n

1H) =
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Mn(B(H)) by evaluating entry-wise. If M = (mj,k) ∈ Mn(N ), then M(X, H) =
(mj,k(X, H)).

All the definitions and the notation make sense in the case gh = 0, that
is, where the polynomials depend on the variable x only. In this case we
write Nx instead of N . The involution T extends to matrix polynomials
M = (mj,k)n

j,k=1 ∈ Mn(Nx) as MT = (mT
k,j)

n
j,k=1 and M is symmetric if

MT = M . In the case M(x) is symmetric, we say M is semipositive
(resp. semipositive on the noncommutative polydisk) if M(X) ≥ 0
for all tuples X of selfadjoint operators (resp. for selfadjoint contractions,
‖Xj‖ ≤ 1).

A symmetric polynomial q ∈ N has a Gram Representation in h

q(x, h) = V (x)[h]T Pq(x)V (x)[h], (2)

where the tautological vector V (x)[h] has the form

V (x)[h] =




e
h1w

1
1

...
h1w

1
`1

...
hkw

k
1

...
hkw

k
`k




. (3)

Here wi
j ∈ N , e = ∅ is the identity for N , and Pq is a symmetric matrix

whose entries are noncommutative polynomials in x.
For example, the polynomial p from (1) has the Gram representation in

h,

p =
(

e x3h2 x1h1

) 
 0 x1 5x2x1

x1 0 0
5x1x2 0 0





 e

h2x3

h1x1




and

p =
(

e x3h2 x1h1 x1h
2
1

)



0 x1 5x2x1 −x1

x1 0 0 0
5x1x2 0 2 0
−x1 0 0 0







e
h2x3

h1x1

h2
1x1


 .

Note that if there is a Pq for which Pq(X) is semipositive for all X in
the noncommutative polydisk, then q(X, H) ≥ 0 for all tuples X and H
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of selfadjoint operators on a common Hilbert space for which each Xj is a
contraction, ‖Xj‖ ≤ 1. A corollary of our main theorem is the converse.

Theorem 1.1 Suppose q(x, h) is a symmetric NC polynomial in the vari-
ables x and h. If q(X, H) ≥ 0 for all selfadjoint tuples X = (X1, . . . , Xgx)
and H = (H1, . . . , Hgh

) acting on finite dimensional (real) Hilbert space
where each Xj is a contraction, ‖Xj‖ ≤ 1, then q has the Gram representa-
tion (3) with a symmetric Pq which is semipositive on the noncommutative
polydisk.

Our main result, Theorem 2.2 refines Theorem 1.1 above by adding pre-
cise degrees for the factors in the Gram representation in h. Its proof uses
a Hahn-Banach separation argument and a Gelfand Naimark Segal type
construction1 similar to that found in the proof of the (commutative) Posi-
tivstellensatz of [PV].

In the special case where q does not depend on x, Theorem 1.1 says that
every semipositive noncommutative polynomial has the form

q(h) = V [h]T PV [h]

for some positive semidefinite matrix P not depending on x. A positive
semidefinite matrix P can be factored as P = LT L which yields that q can
be written as a sum of squares. Thus Theorem 1.1 yields results much like
those in [H], [M], and [MP].

When q(x, h) = Q(x) ∈ Mn(Nx) is a matrix valued polynomial which
does not depend upon h, the NC Positivstellensatz in [HM] says that if Q
is strictly positive on the polydisk, Q(X) > 0 for all tuples X of selfadjoint
contractions, then Q has a weighted sum of squares (SoS) representation.
Indeed, this NC Positivstellensatz is key in the proof of Theorem 1.1. In
fact, there are many noncommutative domains which work equally as well as
the noncommutative polydisk. For instance, Q(X, H) is strictly positive
on the noncommutative ball if Q(X, H) > 0 whenever X is a tuple of
selfadjoint operators satisfying I −∑

X2
j ≥ 0 and H is a tuple of selfadjoint

operators. If P (X) is strictly positive on the noncommutative ball, then
P has a weighted sum of squares representation and the arguments in this
paper show that if Q(X, H) is strictly positive on the noncommutative ball,
then Q = V T (x)[h]P (x)V (x)[h] for some P which is positive semidefinite on
the noncommutative ball.

1this represents an abstract C∗-algebra as an algebra of bounded operators on a Hilbert
space.
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While we emphasize that strict positivity makes behavior nicer and is
required in general in NC possitivstellensatz, there are situations where it
is not required. A tuple X = (X1, . . . , Xgx) is a spherical isometry if∑

XT
j Xj = I, where the Xj are not necessarily selfadjoint, and the poly-

nomials below are polynomials in both xj and xT
j . The result [HMP] says,

if P (X) ≥ 0 for all X which are spherical isometries, then there is a NC
polynomial S which is a SoS of polynomials such that

P (X) = S(X) for all spherical isometries X.

Thus, results in this paper and [HMP] suggest, if q(X, H) is positive semidef-
inite whenever X is a spherical isometry and H is arbitrary, then q = s + r,
where s is a sum of squares and r residual part r(x, h) which vanishes on
spherical isometries, that is, r(X, H) = 0 when X is a spherical isometry so
that q(X, H) = s(X, H).

Returning to the mixed case, when q(x, h) is semipositive on the non-
commutative polydisk and homogeneous of degree two in h, Corollary 1.1
contains a major piece of the principal result of [CHSY].

2 Notation and Main Result

Before stating the main result, we first formalize the notation used in the
introduction.

2.1 Notation

Since the x and h variables play asymmetric roles, they are treated sepa-
rately, rather than simply considering gx+gh noncommutative variables. Let
F denote the free semigroup on the alphabet {x, h} = {x1, . . . , xgx , h1, . . . , hgh

},
that is, all words in these letters. The empty word, ∅, plays the role of the
multiplicative identity, as ∅w = w∅ = w for w ∈ F . For given nonnegative
integers M and N , let FM,N denote words in these variables of length at
most M in x and N in h.

The noncommutative polynomials N can be thought of as the free semi-
group real algebra on the alphabet {x, h}. Concretely, an element p of N is
an expression of the form,

p =
∑
w∈F

pww, (4)

where the sum is finite, and is called a polynomial, or NC polynomial, in
{x, h}. The empty word is the multiplicative identity and the empty sum, 0,
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is the additive identity for N . Let NM,N denote the real vector space with
basis FM,N . Equivalently, NM,N is the subset of N consisting of those p as
in (4) where the sum is over words w ∈ FM,N .

Let
ΓM,N = Γ = {∅} ∪ (∪gh

j=1hjFM,N−1),

that is, Γ consists of the empty word and those words in FM,N which start
with some hj . Let |Γ| denote the cardinality of Γ. We will use Γ as an
index set. For example, let N Γ

M,N denote the collection of vectors of length
|Γ| with entries from NM,N , so that an element W ∈ N Γ

M,N is a function
W : Γ 7→ NM,N thought of as a column vector where the w-th entry is Ww,
for w ∈ Γ.

The tautological vector VM,N = V = V (x)[h] of (3) (see [CHSY], where
it is called the border vector ), which plays a key role in our Gram represen-
tation in h, is the element of N Γ

M,N whose w ∈ Γ entry is w. Here we use
V to denote VM,N with the choice of M, N understood from the context. In
what follows, it will be convenient to decompose VM,N as

VM,N = ⊕N
j=0V

j
M,N = ⊕N

j=0V
j ,

where each V j is homogeneous of degree j in h. For instance, V 0 = (∅) and
V 1 consists of vectors of the form (3) with all words wµ

i independent of h
and without the e = ∅ term, that is, wµ

i is in FM,0, and V contains no e
term. Thus, with Γ0 = {∅} and

Γj = {h`v : 1 ≤ ` ≤ gh, v has degree j − 1 in h},

the vector V j can be viewed as either the element of N Γj

M,N with w ∈ Γj

entry equal to w; or as the element of N Γ
M,N with w-entry w if w, has degree

j in h and 0 otherwise.
Let MΓ(NM,N ) denote the collection of |Γ| × |Γ| matrices with entries

from NM,N indexed by Γ. Explicitly, P ∈ MΓ(NM,N ) is a |Γ| × |Γ| matrix
with (h`α, hmβ) entry Ph`α,hmβ for 1 ≤ `, m ≤ gh and α, β ∈ FM,N−1,
(∅, hmβ) entry P∅,hmβ for 1 ≤ m ≤ gh and β ∈ FM,N−1, and P∅,∅ the
(∅, ∅) entry. Let P j,j denote the submatrix (Ph`α,hmβ) over those α, β ∈
FM,N−1 which have degree precisely j − 1 in h; here h` and hm range over
all possibilities. Let P 0,0 = P∅,∅. Thus, if we let nj denote the cardinality of
the set of α ∈ FM,N−1 of degree j − 1 in h, then P j,j is an nj × nj matrix
with entries P j,j

α,β , where α, β are of the form α = hmα′, β = h`β
′ for some

`, m or empty h`, hm and α′, β′ ∈ FM,N−1 of degree exactly j − 1 in h. In
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a similar manner, define P j,k for j 6= k. With these definitions we have, for
any P in MΓ,

V T PV =
∑
j,k

(V j)T P j,kV k

=
∑
`,m

∑
α,β∈FM,N−1

αT h`Ph`α,hmβhmβ +
∑

P∅,hmβhmβ (5)

+
∑

αT h`Ph`α,∅ + P∅,∅,

where V = VM,N .

Definition 2.1 Let PM,N denote those P ∈ MΓ(Nx) such that

1. P (X) ≥ 0 for each tuple X = (X1, . . . , Xgx) of (not necessarily com-
muting) contractions on a (common) Hilbert space H;

2. Ph`α,hmβ has degree at most 2M minus the sum of the degrees of α and
β in x for h`α, hmβ ∈ Γ so that the degree of αT h`Ph`α,hmβhmβ is at
most 2M in x; and

3. Ph`α,∅ and P∅,hmβ have degree at most 2M minus the degree of α in x
and 2M minus the degree of β in x respectively, and P∅,∅ has degree
at most 2M .

Let CM,N denote the set of polynomials with a Gram representation in
h of appropriate dimension, namely,

CM,N = {V T
M,NPVM,N : P ∈ PM,N} (6)

and let C denote the union of all the CM,N . Note that if q ∈ C and X and
H are tuples of selfadjoint operators on a real Hilbert space and each Xj is
a contraction, then q(X, H) ≥ 0.

2.2 Main result

Theorem 2.2 Suppose q(x, h) is a symmetric NC polynomial in the self-
adjoint variables x and h. If q(X, H) ≥ 0 for all selfadjoint tuples X =
(X1, . . . , Xgx) and H = (H1, . . . , Hgh

) acting on a finite dimensional (real)
Hilbert space where each Xj is a contraction, ‖Xj‖ ≤ 1, then q ∈ C. In fact,
if q ∈ NM,2N , then q ∈ CM,N .
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With some additional care, an upper bound on the dimension of the
Hilbert spaces required in Theorem 2.2 can be given.

We note that, in the case that item (1) of Definition 2.1 is replaced by
P (X) > 0 there is a representation for P , found in [MP], much like Stengle’s
Positivstellensatz in the commutative case [St].

3 Components of the proof

3.1 Some first words about words

Given a polynomial r =
∑

v rvv ∈ NM,N , a word u appears in r provided
ru 6= 0.

Lemma 3.1 If α, β, γ, δ are words of degree j − 1 in h, if v, w are words in
x only, and if

βT h`vhkα = δT hnuhmγ,

then α = γ, β = δ, ` = n, k = m, and u = v. In particular, if (hkα, h`β) 6=
(hmγ, hnδ), and if p, q ∈ Nx, then the words appearing in βT h`phkα are
disjoint from those appearing in δT hnqhmγ.

Proof. Without loss of generality, assume that the degree of α is at least
as large as that of γ, so that there is a word ε such that α = εγ. Thus,

βT h`vhkε = δT hnuhm. (7)

Since the degree in h of the polynomial on the right hand side is j + 1, it
follows that ε is a polynomial in x alone. Hence ε is the identity (empty
word).

Lemma 3.2 If p ∈ NM,N , then pT p ∈ CM,N and pT (1 − x2
k)p ∈ CM+1,N for

each 1 ≤ k ≤ gx.

Proof. Write p = α0 +
∑

α,k,β pαhkβαhkβ, where α0 and each α is a
polynomial in x alone and each β is a polynomial in both x and h. Let
rk,β =

∑
α pαhkβα for 1 ≤ k ≤ gh, let r0 = α0, and let r denote the (row)

vector r = (rk,β), indexed by ΓM,N . Then

rV = α0e +
∑

rk,βhkβ

= α0 +
∑
k,β,α

pαhkβαhkβ

= p,
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where V is the tautological vector of p. Now let R = rT r. As the degree of
rk,βhkβ is at most M in x, the degree of Rh`δ,hkβ = rT

k,βr`,δ is at most 2M
minus the sum of the degrees of β and δ in x. Thus, R ∈ PM,N , provided
that R(X) ≥ 0 for all tuples X, not just tuples of contractions. This is true
since R is a square. Consequently,

pT p = V T rT rV (8)

is in CM,N . Similarly, rT (1 − x2
k)r is in PM+1,N and so

pT (1 − x2
k)p = V T rT (1 − x2

k)rV ∈ CM+1,N .

3.2 Positive functionals, tuples, and the openness condition

In this section we construct, for a given M and N , tuples X and H of selfad-
joint operators with X contractive, such that the evaluation representation
p ∈ NM,N 7→ p(X, H) is faithful; that is, if p(X, H) = 0 then p = 0.

Lemma 3.3 Given M and N , there exists a linear functional λ : N2M,2N −→
R such that λ(pT p) > 0 for all nonzero p ∈ NM,N .

Proof. As in this setting there is no difference between the variables x and
h, we may assume that our polynomials are polynomials in x alone. Let Ud

denote the collection of polynomials in x of degree at most d. Given d, it
suffices to prove that there exists λ2d : U2d −→ R such that λ2d(pT p) > 0
for all nonzero p ∈ Ud.

The strategy is to construct positive definite “Hankel” inner products,
< ·, · >d on Ud, namely ones with the property that < p, q >d is a function
of qT p only, for p and q in Ud. Once this is done, define λ2d : U2d −→ R
by λ2d(p) =< p, ∅ >2d and note, if p ∈ Ud is not zero, then pT p ∈ U2d and
λ2d(pT p) =< pT p, ∅ >2d=< p, p >2d > 0.

The construction of the innerproducts proceeds by induction. We can
define < c1∅, c2∅ >0= c1c2, on U0, where c1, and c2 are real constants. Thus
the induction starts. Now suppose that < ·, · >d has been defined. Define
< ·, · >d+1, depending on a positive constant C, as follows.

< u, v >d+1=




< u, v >d if |vT u| ≤ 2d

0 if |vT u| = 2d + 1
Cδu,v if |vT u| = 2d + 2
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where δ denotes the Kronecker symbol. The induction hypothesis implies
< ·, · >d+1 restricted to Ud is (strictly) positive definite. Hence, there exist
a large enough C so that < ·, · >d+1 (strictly) positive definite on Ud+1.

Now define λ2d : U2d −→ R by λ2d(p) =< p, ∅ >d and note that
λ2d(pT p) =< p, p >d > 0, as required.

Lemma 3.4 Fix M , N and a linear functional λ : N2M,2N −→ R such that
λ(p) = λ(pT ). Let d denote the dimension of NM,N .

(a) If λ(pT p) > 0 for all nonzero p ∈ NM,N , then there exists a (real)
Hilbert space H of dimension d with inner product 〈·, ·〉, a vector γ ∈ H, a
tuple X of selfadjoint operators on H and a tuple H of selfadjoint operators
on H such that < p(X, H)γ, r(X, H)γ >= λ(rT p) for p, r ∈ NM,N .

(b) If, moreover, λ(p) ≥ 0 for p ∈ CM,N , then each Xk can be chosen a
contraction, ‖Xk‖ ≤ 1.

Proof. Let K denote the Hilbert space obtained by introducing the inner
product

< p, q >= λ(qT p)

on NM,N . The hypothesis on λ guarantees there are no null vectors and thus
the dimension of K is d and we may define the following operators. Let Hx

denote the set NM−1,N as a subspace of K and let Lx denote the orthogonal
complement of Hx. Define Xkp = xkp if p ∈ Hx and Xkp = 0 if p ∈ Lx.
Similarly, define Hh as the set NM,N−1 and Lh its orthogonal complement
in K and define Hkp = hkp if p ∈ Hh and Hkp = 0 if p ∈ Lh. Let Px and Ph

denote the orthogonal projections of K onto Hx and Hh respectively. Let
Xk = PxXkPx and Hk = PhHkPh so that Xk and Hk are operators on Hx

and Hh respectively.
For p, r ∈ Hx,

〈Xkp, r〉 = 〈PxXkPxp, r〉
= 〈xkp, r〉
= λ(rT xkp)
= λ((xkr)T p) (9)
= 〈p, xkr〉
= 〈p, PxXkPxr〉
= 〈p, Xkr〉.

Thus, each Xk is selfadjoint and a similar argument shows that each Hk

is also selfadjoint. Further, if r ∈ NM,N , then r(X, H)∅ = r. Hence, if
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q ∈ NM,N also, then

< q(X, H)∅, r(X, H)∅ >=< q, r >= λ(rT q).

To prove (b), let p ∈ H. Thus there is m ∈ Hx and n ∈ Lx with
p = m + n. Then

‖Xk(p)‖ = ‖Xk(m + n)‖
= ‖Xk(m)‖
= ‖xkm‖

and
‖m‖2 − ‖xkm‖2 = λ(mT (1 − x2

k)m) ≥ 0 (10)

as mT (1−x2
k)m ∈ CM−1+1,N by Lemma 3.2. Hence, as ‖Xk(p)‖ = ‖xkm‖ ≤

‖m‖ ≤ ‖p‖, each Xk is a contraction; and thus each Xk is a contraction.

Lemma 3.5 Fix M and N and let d denote the dimension of NM,N .
(a) There exists a (real) Hilbert space H of dimension d, a tuple X =

(X1, . . . , Xgx) of selfadjoint contractions on H, and a tuple H = (H1, . . . , Hgh
)

of selfadjoint contractions acting on H such that ‖Xk‖2 ≤ 1
2 and ‖Hk‖ ≤ 1

for each 1 ≤ k ≤ gx and 1 ≤ k ≤ gh respectively, and such that if p ∈ NM,N

and p(X, H) = 0, then p = 0.
(b) Given M and N , there exists a linear functional µ : N2M,2N −→ R

such that µ(p) ≥ 0 whenever p ∈ CM,N , µ(pT ) = µ(p),
and µ(pT p) > 0 for all nonzero p ∈ NM,N . Moreover, µ is defined in

terms of the trace so that µ(pq) = µ(qp) for p, q ∈ NN,M .

Proof. Let λ : N2M,2N −→ R denote a functional from Lemma 3.3 such
that λ(pT p) > 0 for all nonzero p ∈ NM,N and let (X, H) denote the tuple
from Lemma 3.4 associated to λ. If p ∈ NM,N and P (X, H)γ = 0, then
< p(X, H)γ, p(X, H)γ >= λ(pT p) = 0 in which case the hypothesis on λ
implies p = 0.

Given t > 0, let pt(x, h) = p(tx, th). In particular, if p ∈ NM,N , then
pt ∈ NM,N also. Further, p = 0 if and only if pt = 0 for all t. Thus, by what
is proved above, if p 6= 0, then pt(X, H)γ = p(tX, tH)γ 6= 0. Choosing t so
that ‖tXk‖ ≤ 1

2 and ‖tHk‖ ≤ 1 for all k proves (a).
To prove (b), let X denote a tuple as in part (a) and define µ : N2M,2N −→

R by µ(p) = trace(p(X, H)). Then µ is linear; if p ∈ CM,N , then p(X, H) ≥ 0
so that µ(p) ≥ 0; for p ∈ N2M,2N , we have

µ(pT ) = trace(pT (X, H)) = trace(p(X, H)T ) = trace(p(X, H)) = µ(p);
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and if p ∈ NM,N and

µ(pT p) = trace(p(X)T p(X)) = 0,

then p(X) = 0 and so, by (a), p = 0.

Given M and N , define norms ‖ · ‖2 and ‖ · ‖Π on NM,N , by

‖
∑

w∈FM,N

pww‖2
2 =

∑
|pw|2 (11)

and
‖p‖Π = sup{‖p(X, H)‖ : (X, H) ∈ Π} (12)

where Π denotes the collection of tuples (X, H) where X = (X1, . . . , Xgx)
and H = (H1, . . . , Hgh

) are selfadjoint tuples acting on the same (real)
Hilbert space and ‖Xk‖2 ≤ 1

2 and ‖Hk‖ ≤ 1. Observe that ‖p‖Π is finite
and is easily seen to be a seminorm. Item (a) of Lemma 3.5 implies ‖p‖Π = 0
if and only if p = 0 so that ‖ · ‖Π is indeed a norm.

Lemma 3.6 Given M and N , the norms ‖ · ‖2 and ‖ · ‖Π are equivalent on
NM,N . That is, for each M and N there exists positive constants K ′

M,N and
KM,N such that for all p ∈ NM,N ,

KM,N‖p‖2 ≤ ‖p‖Π ≤ K ′
M,N‖p‖2.

Proof. Both are norms on the finite dimensional (real) vector space NM,N .

3.3 Separating q from C
In this section outsiders q /∈ C are separated from C by a linear functional
which is nonnegative on C. The key point is that the cone C is closed. There
is some ambiguity in representing elements in CM,N as V (x, h)T P (x)V (x, h)
as P ∈ PM,N need not be unique. However, it is possible to bound the norm
(any norm) of the entries of the P which represent a given q.

3.3.1 Bounded P ’s

Recall the definitions of P j,j given before Definition 2.1.
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Lemma 3.7 Given M and N , there exists a constant C such that if q ∈
CM,N and if P ∈ PM,N is such that q = V T

M,NPVM,N , then

‖P j,j
α,α‖Π ≤ C(‖q‖Π + ‖V T

M,NVM,N‖Π)

for each 1 ≤ j ≤ N and α ∈ ΓM,N of degree exactly j in h. Also, ‖P 0,0‖Π ≤
C(‖q‖Π + ‖V T

M,NVM,N‖Π).

Proof. As for the P 0,0 term, simply observe that P 0,0 is the homogeneous
of degree 0 in h part of q. In particular, ‖P 0,0‖2 ≤ ‖q‖2. In view of Lemma
3.6 there is a constant K such that ‖P 0,0‖Π ≤ K‖q‖Π.

Since P (X) ≥ 0 for all selfadjoint tuples X = (X1, . . . , Xgx) of con-
tractions, results of [HM] imply there exists polynomials Sk and R (matrix
valued) in x such that

P + I =
∑

k

(Sk)T (1 − x2
k)Sk + RT R, (13)

where I is the identity (matrix) polynomial. Here, and in what follows
1 ≤ k ≤ gx. Note that the degrees of the polynomials S and R and the
number of rows in the matrices can be quite large and it may well be that
in similar representations for P + εI, ε > 0, that one or the other tends to
infinity as ε tends to 0.

Write
Sk =

(
S0

k S1
k . . . SN

k

)
(14)

with respect to the same decomposition as V = ⊕N
0 V j . Express R similarly.

With these notations,

P j,j + I =
∑

k

(Sj
k)

T (1 − x2
k)S

j
k + (Rj)T Rj , (15)

and

(V j)T (P j,j + I)V j = (V j)T

(∑
k

(Sj
k)

T (1 − x2
k)S

j
k + (Rj)T Rj

)
V j . (16)

Evaluating (16) at tuples X and H of selfadjoint operators gives the
inequality,

(V j)T (X,H)(P j,j(X) + I)V j(X, H)

≤(V j)T (X, H)

(∑
k

(Sj
k)

T (X)Sj
k(X) + (Rj)T (X)Rj(X)

)
V j(X, H)

(17)
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Letting V j also denote the vector with V j in the j-th position and zero
elsewhere and observing that SkV

j = Sj
kV

j , the above inequality becomes,

(V j)T (X,H)(P (X) + I)V j(X, H)

≤
∑

k

(SkV
j)T (X, H)(SkV

j)(X, H) + (RjV j)T (X)(RjV j)(X).

(18)

Similarly, evaluating (13) at X and H, tuples of symmetric operators, where
‖Xk‖2 ≤ 1

2 produces the inequality,

V (X, H)T (P (X) + I)V (X, H)

≥V (X, H)T
(

1
2

(∑
k

(Sk)T (X)Sk(X)

)
+ RT (X)R(X)

)
V (X, H).

(19)

Define

Q =




(1
2)

1
2 S1V

(1
2)

1
2 S2V
...

(1
2)

1
2 SgxV
RV




. (20)

To save space, we will abbreviate columns using the
⊕

notation; for exam-
ple, Q =

⊕
k(

1
2)

1
2 (SkV )

⊕
RV . Thus

QT (X, H)Q(X, H) =

V (X, H)T
(

1
2
(
∑

k

(Sk)T (X)Sk(X)) + RT (X)R(X)

)
V (X, H)

which is the right hand side of (19). In particular, if ‖Xk‖2 ≤ 1
2 , then, for

real t,

Q(X, tH)T Q(X, tH) ≤ V (X, tH)T (P (X) + I)V (X, tH)
= q(X, tH) + V (X, tH)T V (X, tH). (21)

Thus,

‖Q(X, tH)‖2 = ‖Q(X, tH)T Q(X, tH)‖
≤ ‖q(X, tH)‖ + ‖V T (X, tH)V (X, tH)‖. (22)
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Hence, for ‖Xk‖2 ≤ 1
2 , ‖Hk‖ ≤ 1 and |t| < 1,

‖Q(X, tH)‖ ≤ (‖q‖Π + ‖V T V ‖Π)
1
2 . (23)

Let Qj =
(
⊕k(1

2)
1
2 Sj

kV
j
)
⊕ RjV j . Then,

2Qj(X, H)T Qj(X, H) ≥∑
k

(Sj
kV

j)T (X, H)Sj
kV

j(X, H) + (RjV j)T (X, H)RjV j(X, H). (24)

Since the right hand side above is the same as the right hand side of (18),

2Qj(X, H)T Qj(X, H) ≥ V j(X, H)T P j,j(X)V j(X, H) (25)

so that
‖Qj(X, H)‖2 ≥ 1

2
‖V j(X, H)T P j,j(X)V j(X, H)‖. (26)

For each 0 ≤ j ≤ N there exists a polynomial γj(t) (an old fashion poly-
nomial in the real variable t) of degree at most N such that

∫ 1
0 tjγj(t)dt = 1

and for each 0 ≤ k 6= j ≤ N ,
∫ 1
0 tkγj(t)dt = 0. Consequently,

∫ 1

0
Q(X, tH)γj(t)dt = ⊕k

∫ 1

0
(
1
2
)

1
2 SkV (X, tH) ⊕ RV (X, tH)γj(t)dt

=
(
⊕k(

1
2
)

1
2 Sj

k(X)V j(X, H)
)
⊕ Rj(X)V j(X, H)(27)

= Qj(X, H).

Thus, for (X, H) ∈ Π (where Π is defined near (12))

‖Qj(X, H)‖ ≤
∫ 1

0
‖Q(X, tH)‖|γj(t)|dt ≤ ‖γj‖∞(‖q‖Π + ‖V T V ‖Π)

1
2 , (28)

where ‖γj‖∞ is the supremum norm of γj in the interval 0 ≤ t ≤ 1 and (23)
was used in the second inequality. Combining (28) and (26) gives,

‖V j(X, H)P j,j(X)V j(X, H)‖ ≤ 2‖γj‖2
∞(‖q‖Π + ‖V T V ‖Π). (29)

Thus, if we let C = 2 max{‖γj‖2∞ : 1 ≤ j ≤ N}, then

‖V j(X, H)P j,j(X)V j(X, H)‖ ≤ C(‖q‖Π + ‖V T V ‖Π) (30)

for all (X, H) ∈ Π and all 1 ≤ j ≤ N .
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To complete the proof, notice that

(V j
M,N )T P j,jV j

M,N =
∑

αT hkP
j,j
hkα,h`β

h`β, (31)

where the sum is over all α, β with degree exactly j−1 in h (and at most M
in x) and 1 ≤ k, ` ≤ gh. By Lemma 3.1, for distinct (hkα, hmβ) the terms
βT h`P

j,j
hkα,h`β

hkα are ‖·‖2 orthogonal. Since also, for each relevant k, `, α, β,

‖αT hkP
j,j
hkα,h`β

h`β‖2 = ‖P j,j
hkα,h`β

‖2, it follows that

‖V j(M, N)T P j,jV j(M, N)‖2
2 =

∑
‖P j,j

hkα,h`β
‖2
2. (32)

Since the norms ‖·‖2 and ‖·‖Π are equivalent on N2M,2N , the lemma follows
by combining (32) and (30).

3.3.2 The cone CM,N is closed

Lemma 3.8 Given M and N and a bounded set S ⊂ CM,N , there exists a
CS such that if q ∈ S and if P ∈ PM,N is such that q = V T

M,NPVM,N , then
‖P j,k

α,β‖Π ≤ CS for each 0 ≤ j, k ≤ N and α, β ∈ ΓM,N of degree exactly j in
h.

Proof. Let C be as in Lemma 3.7 and let K denote a bound for S so
that if q ∈ S, then ‖q‖Π ≤ K. Then, ‖P j,j

α,α‖ ≤ C(K + ‖V T V ‖Π) for all
relevant P and admissible choices of j and α. Since P (X) ≥ 0 for any tuple
X of selfadjoint contractions, it follows that the off diagonal entries of P
also satisfy the inequality ‖P j,k

α,β(X)‖ ≤ C(K + ‖V T V ‖Π) for any tuple X of
selfadjoint contractions. The lemma now follows.

Proposition 3.9 For each M and N , the cone CM,N is a closed subset of
N2M,2N .

Proof. Suppose qn ∈ CM,N converges to q. Then ‖qn‖Π is a bounded
sequence and there is a K such that ‖qn‖Π + ‖V T V ‖Π ≤ K.

For each n there exists P (x; n) ∈ PM,N such that qn = V T P (·; n)V .
Thus, by Lemma 3.8, there is a constant C such that which bounds the
‖ · ‖Π norm of all the entries of all the P (x; n). Since the entries of each
P (x; n) have degree at most 2M , it follows that some subsequence of P (x; n),
still denoted P (x; n), converges to some P and therefore, for any tuple X,
P (X; n) converges to P (X). In particular, P satisfies item (1) of Definition
2.1. Similarly, as each P (x; n) satisfies items (2) and (3) of Definition 2.1,
so does P . Thus P ∈ PM,N . Finally, as P (x; n) converges entry-wise,
V T P (·; n)V converges to V T PV .

16



3.3.3 The separation argument

Proposition 3.10 Fix M and N . If q ∈ N2M,2N , but q /∈ CM,N , then
there exists a linear functional λ : N2M,2N −→ R such that λ(pT ) = λ(p),
λ(CM,N ) ≥ 0, and λ(pT p) > 0 for all nonzero p ∈ NM,N , but λ(q) < 0. In
particular, λ(∅) > 0.

Proof. By Proposition 3.9, CM,N ⊂ N2M,2N is a closed set. Since CM,N

is a closed convex set and q /∈ CM,N , there exists a (real) linear functional
Λ : N2M,2N −→ R and a real number c so that Λ(q) < c < Λ(p) for all
p ∈ CM,N . Since CM,N is a cone containing 0, it follows that c ≤ 0. Define
Λs(p) = 1

2(Λ(p+ pT )). Then Λs is linear; Λs(pT ) = Λs(p); and Λs(p) = Λ(p)
if p is symmetric and thus Λs(p) ≥ 0 for all p ∈ CM,N and Λ(q) < 0.

Let µ denote the linear functional of Lemma 3.5 (b). There is a κ > 0
such that Λs(q)+κµ(q) < 0. Let λ = Λs +κµ. Then λ(q) < 0, λ(CM,N ) ≥ 0,
and λ(pT p) > 0 for all nonzero p ∈ NM,N .

4 Proof of the Theorem 2.2

Let q ∈ NM,N ⊂ N2M,2N be given. If q /∈ CM,N , then there is a linear
functional λ as in Proposition (3.10). Let H, γ, and (X, H) be as in Lemma
3.4. In particular, X and H are selfadjoint tuples, each Xk is a contraction,
and < q(X, H)γ, γ >= λ(q) < 0. This proves the contrapositive; i.e., if
q /∈ C, then there are tuples X and H with the right properties such that
q(X, H) is not positive semidefinite. Indeed, it shows more. If q ∈ NM,N

and q(X, H) ≥ 0 for all relevant (X, H), then q ∈ CM,N .
To prove the stronger conclusion of the theorem, suppose now that q ∈

MM,2N . Then from what is already proved, q ∈ CM,2N . Thus, there exists
a P ∈ PM,2N so that q = V T PV . For a given (X, H) consider

0 = lim
t→∞

1
t2(2N)

q(X, tH) = lim
t→∞V (X, tH)T P (X)V (X, tH)

=V 2N (X, H)T P2N, 2N(X)V 2N (X, H)

from which it follows that V 2N (X, H)T P 2N,2N (X)V 2N (X, H) = 0 for all
(X, H). From a version of Lemma 3.5(a), it follows that

V 2N (x, h)T P 2N,2N (x)V 2N (x, h) = 0.

By Lemma 3.1, P 2N,2N = 0. Since P (X) ≥ 0 for all tuples of contractions
and P 2N,2N (X) = 0, it must be the case that P 2N,j(X) = P j,2N (X) = 0
for each 0 ≤ j ≤ 2N . Thus P 2N,j = P j,2N = 0 for each j and hence
q ∈ CM,2N−1. Continuing by induction completes the proof.
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Springer, New York, 1987.

[CHSY] J.F. Camino, J.W. Helton, R.E. Skelton, J. Ye, Matrix Inequalities:
A Symbolic Procedure to
Determine Convexity Automatically To appear IEOT July 2003

[DP] K.R. Davidson and D.R. Pitts, The algebraic structure of noncommu-
tative analytic Toeplitz algebras, Math. Ann. 311 (1998), no. 2, 275–303.

[H] J.W. Helton, Positive non commutative polynomials are sums of squares
Ann. Math (to appear).

[HM] J.W. Helton and S. McCullough, A Positivstellensatz for Noncommu-
tative Polynomials TAMS (to appear).

[HM2] J.W. Helton and S. McCullough, Convex noncommutative polynomi-
als have degree two or less, preprint.

[HMP] J.W. Helton, M. Putinar, S. McCullough, A noncommutative Posi-
tivstellensatz on isometries, preprint.

[M] S. McCullough, Factorization of operator valued polynomials in several
noncommuting variables, Linear Algebra Appl. 326 (2001) no. 1-3, 193–
203.

[MP] S. McCullough and M. Putinar, Noncommutative Sums of Squares,
preprint.

[PD] A.Prestel and C.N.Delzell, Positive Polynomials, Springer, Berlin,
2001.

18



[PS] C. Procesi and M. Schacher, A noncommutative real Nullstellensatz
and Hilbert’s 17th problem, Ann. of Math. (2) 104 (1976), no. 3, 395–406.

[PV] M. Putinar and F.-H. Vasilescu, Solving moment problems by dimen-
sional extension, Ann. Math. 149 (1999), 1087-1107.

[RS] M. Reed and B. Simon, Methods of Modern Mathematical Physics Vol.
1: Functional Analysis, Academic Press, San Diego, 1980.

[R] B. Reznick, Sums of even powers of real linear forms, Mem. Amer. Math.
Soc. 96 (1992) No. 463, mer. Math. Soc., Providence, R.I.

[St] G. Stengle, A Nullstellensatz and a Positivstellensatz in semialgebraic
geometry, Math. Ann. 289(1991), 203-206.
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