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Abstract

The theory of block Toeplitz operators and block Hankel operators is ex-

ploited to analyze numerical algorithms for solving optimization problems of

the form


� = inf
f2AN

sup
ei�

k�(ei�; f(ei�))km�m ;

where �(ei�; z) is a smooth positive semide�nite matrix valued function of

ei�; z = (z1; : : : ; zn) and z = (z1; : : : ; zN ), and AN is a prescribed set of

N -tuples f = (f1; : : : ; fN ) of functions that are analytic in the open unit disk

D of the complex plane C. The algorithms under consideration are based on

writing the equations that an optimum must satisfy (in terms of \primal" and

\dual" variables f; 
;	) as T (	; f; 
) = 0 and then invoking a Newton al-

gorithm (or something similar) to solve these equations. The convergence of

Newton's method depends critically upon whether or not the di�erential T 0 is

invertible. For the class of problems under consideration, this is a very diÆcult

issue to resolve. However, it is relatively easy to determine when T 0 is a Fred-

holm operator with Fredholm index equal to zero. Fortunately, it turns out

that this weaker condition seems to characterize e�ective numerical algorithms

and is reasonably easy to check. Explicit tests for the di�erential T 0 to be a

�Partially supported by the NSF and the ONR
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Fredholm operator of index zero. are presented and compared with numeri-

cal experiments on a few randomly chosen two and three disk problems. The

experimental results lend credence to our contention that whether or not the

di�erential T 0 is a Fredholm operator of index zero determines the numerical

behavior for \almost all" multidisk problems.

Keywords H1 Optimization, H1 Control, Optimization over Analytic Func-

tions, Semide�nite Programming, Primal-Dual Optimization.
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1 Introduction

1.1 The optimization problem MOPT

A number of optimization problems can be formulated as follows:

(MOPT) Given a nonnegative scalar valued function � on @D � CN

(that measures performance and will be termed a performance function),

�nd 
� � 0 and f � in AN which solve


� = inf
f2AN

sup
ei�

�(ei�; f(ei�)) :

Here AN is a prescribed set of N -tuples (f1; : : : ; fN) of functions that are analytic in

the open unit disk D of the complex plane C.

In this paper we consider the case where the performance function is of the form

�(ei�; z) = k�(ei�; z)km�m;

where � is a smooth positive semide�nite (and hence automatically selfadjoint)m�m

matrix valued function and kMkm�m is the largest singular value of the matrix M .

This is a mathematically appealing type of performance function that is continuous

but typically is not di�erentiable, since the matrix norm is not di�erentiable for

most matrix valued functions. (Think of jxj.) Such performance functions � arise

in engineering, cf. [HMer:98]. For example, the well known Nehari problem and the

H1 multidisk problem can be incorporated into this framework, as can many other

problems.

This paper develops the mathematics needed to understand and develop numerical

algorithms. These algorithms are based on writing the equations that an optimum

must satisfy (in terms of \primal" and \dual" variables f; 
;	) as

T (	; f; 
) = 0

and then invoking a Newton algorithm (or something similar) to solve these equa-

tions. Such algorithms are called primal-dual algorithms and play a major role in the

optimization of matrix valued functions. Newton's method involves the di�erential

T 0 and uses its inverse critically. Indeed the \second order convergence" of Newton's

method is completely governed by whether or not this di�erential is invertible.

In this paper we obtain the di�erential T 0 of T and �nd that it is diÆcult to

determine when it is invertible. However, it is relatively easy to determine when T 0

is a Fredholm operator with Fredholm index equal to zero. Fortunately, it turns out

that this weaker condition seems to characterize e�ective numerical algorithms (and

is reasonably easy to check for multidisk problems). This is perhaps not so surprising

if one recalls that Fredholm operators of index zero are compact perturbations of

invertible operators.
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Recall that the H1 multidisk problem is one where we have a special class of

� that are block diagonal with block diagonal entries equal to the matrix valued

performance functions

�p(ei�; f(ei�)) = (Kp(ei�) � f(ei�))T (Kp(ei�) � f(ei�)); (1)

where Kp(ei�); p = 1; : : : ; v; and f(ei�) are m�m matrix valued functions. In other
coordinatesMOPT with such � are often called Integral Quadratic Constraint (IQC)

problems. Here we determine explicit tests for the di�erential T 0 to be a Fredholm

operator of index zero for the multidisk problem and compare the implications of

these tests with numerical experiments on a few randomly chosen two and three disk

problems.

The experimental results lend credence to our contention that whether or not

the di�erential T 0 is a Fredholm operator of index zero determines the numerical

behavior for \almost all" problems in the class under consideration. Moreover, both

our theory and our experiments lead us to assert that the v disk problem in m�m

matrix function space is well behaved for a broad range of Newton type methods

when v = m, in contrast with other values of v.

Earlier work, cf. [HMer:98] parts III and IV, gave a reasonably complete theory of

MOPT problems for performance functions � which are smooth. Also, [HMW:98],

and [HMer:98] part V gave optimality conditions for MOPT and some numerical

algorithms based on it. However, the cited sources did not analyze these algorithms.

That is the task of the present paper.

1.2 Assumptions

We shall assume throughout this paper that �(ei�; z) is a positive semide�nite matrix

valued function that is twice continuously di�erentiable in z = (z1; : : : ; zN) and z =

(z1; : : : ; zN ), and that

�(ei�; z);
@�

@z`
(ei�; z);

@�

@z`
(ei�; z);

@2�

@z`@zj
(ei�; z);

@2�

@z2`
(ei�; z);

@2�

@z`
2
(ei�; z)

are at least continuously di�erentiable in � (for all points ei� on the unit circle T =

@D).

Some sample problems are sketched below.

1.2.1 Everything is independent of �

An important special case of the MOPT problem that has received considerable

attention, cf. the survey [VB:96], is the case where � and f do not depend on �.

Then f is an N - tuple of complex numbers or a 2N -tuple of real numbers and � is a

matrix valued function of f alone. The optimization problem MOPT becomes


� = inf
f2CN

k�(f)km�m :

6



1.2.2 The matrix Nehari problem

To illustrate MOPT we recall the classical Nehari problem: Given K, a bounded

m�m matrix valued function on the unit circle, �nd its distance to the Hardy space

of bounded matrix valued analytic functions H1
m�m. That is, with some poetic

license1, �nd

dist(K;H1

m�m) := inf
f2H1m�m

sup
�

kK(ei�) � f(ei�) km�m; (2)

or, equivalently,

dist(K;H1

m�m)
2 = inf

f2H1m�m

sup
�

kK(ei�) � f(ei�) k2m�m: (3)

Since kBTBkm�m = kBk2m�m for any m �m matrix B and its conjugate transpose

BT , we may rewrite (3) as

dist(K;H1

m�m)
2 = inf

f2H1m�m

sup
�

k (K(ei�) � f(ei�))T (K(ei�) � f(ei�)) km�m: (4)

To put the Nehari Problem in MOPT notation, take

�(ei�; Z) = (K(ei�) � Z)T (K(ei�) � Z) ; (5)

where Z = (zij)
m
i;j=1 denotes a matrix with N = m2 independent entries. It is clear

that �(ei�; Z) is analytic in zij and zij, i; j = 1; : : : ; m, and continuous in � if K is

continuous in �, and that in this case MOPT gives an optimal value 
 such that


 = dist(K;H1

m�m)
2: (6)

Also, in view of the convexity of the L1m�m norm, a local solution is a global solution

too. Hence solutions to MOPT correspond to solutions to the Nehari problem: the

minimizers f 2 H1
m�m are the same, while the optimal values are related by equation

(6).

We now use the Nehari problem to illustrate one important aspect of MOPT

problems, namely, that solutions are often not unique when m > 1. To illustrate this

we consider the function

K(ei�) =

�
e�i� 0

0 0

�
: (7)

One can easily check with the help of Theorem 2 of [HMW:98] (which also appears as

Theorem 17.1.1 of [HMer:98]) that the function zero gives the optimal distance from

K to H1
m�m, which turns out to be 1. If f 2 H1 satis�es jf(ei�)j � 1 for all �, then

sup
�





K(ei�)�

�
0 0

0 f(ei�)

�




2�2

= 1; (8)

so any such f gives rise to a solution to MOPT.

1We are using supremum instead of essential supremum.
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1.2.3 A two disk problem

The two disk problem is a natural generalization of the Nehari problem (which we

look at as a one disk problem) to \two disks". Given a pair K1 and K2 of continuous

m�m matrix valued functions on the unit circle (which we think of as the centers of

matrix function disks) and two performance functions

�p(ei�; Z) = (Kp(ei�) � Z)T (Kp(ei�) � Z) ; p = 1; 2; (9)

the two disk problem is to �nd the smallest number 
 and a function f in the space

of bounded analytic functions H1
m�m, so that

�1(ei�; f(ei�)) � 
Im and �2(ei�; f(ei�)) � 
Im: (10)

In formula (9), Z denotes a matrix Z = (zij)
m
i;j=1 and N = m2. Note that (10) holds

if and only if f simultaneously lies inside both of the matrix function disks. This is

the MOPT problem for the performance function

� :=

�
�1 0

0 �2

�
:

1.2.4 The multidisk problem

The analysis in the preceding subsection is easily extended to v disks,

�p(ei�; f(ei�)) = (Kp(ei�) � f(ei�))T (Kp(ei�) � f(ei�)); p = 1; : : : v: (11)

HereKp and f arem�mmatrix valued functions and we seek the smallest 
 satisfying

�p(ei�; f(ei�)) � 
Im

for p = 1; : : : ; v and all �.

The multidisk problem is the MOPT problem for the performance function

� := diag(�1; : : : ;�v) =

0BBB@
�1 0 : : : 0

0 �2 : : : 0
...

...
. . .

...

0 0 : : : �v

1CCCA ; (12)

where �p, p = 1; : : : ; v, is given by (11).

1.2.5 Notation and usage

� The acronym mvf denotes matrix valued function. If B is a matrix (or a mvf),

then BT stands for the conjugate transpose of B, B� stands for the plain trans-

pose of B and, if B is square, then trB = trace B.
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� �(ei�; z) = �(ei�; z1; : : : ; zN) is a positive semide�nite (and hence automatically

selfadjoint) smooth m�m mvf on T�CN . Thus m and N are positive integers

that are determined by �.

�
@�

@z
(�; f) =

�
@�

@z1
(�; f); : : : ;

@�

@zN
(�; f)

�
is an m�Nm mvf with N blocks of size m�m in a row. Multiplication on the

right by an m�m matrix (or mvf) B, and the application of the trace, should

be understood as performed on each block entry. Thus, for example,

tr

�
@�

@z
(�; f)B

�
=

�
tr

�
@�

@z1
(�; f)B

�
; : : : ; tr

�
@�

@zN
(�; f)B

��
is a 1�N mvf.

� (@�
@z
)T is a block column mvf with N blocks of size m�m :�

@�
@zj

�T
; j = 1; : : : ; N . Since � is selfadjoint,�

@�

@zj

�T

=
@�

@zj
; j = 1; : : : ; N:

� The abbreviations

a :=
@�

@z
(�; f) = [a1; a2; : : : ; aN ] and a' =

NX
j=1

aj'j

will be used when it is clear from the context what f is and when ' 2 H1
N .

� �(e(i�); �) is said to be plurisubharmonic (PLUSH) if the Nm�Nm matrix

�zz(e
i�; �) =

�
@2�

@zi@zj
(ei�; �)

�N
i;j=1

is positive semide�nite on CNm. � is said to be strictly PLUSH if �zz is strictly

positive de�nite on CNm. If m = 1, then it is often the case that � is strictly

PLUSH, while if m > 1 it is more reasonable to expect that only the weaker

condition PLUSH holds.

� H2
r�n stands for the Hardy space of r � n mvf's with entries in the (scalar)

Hardy space H2 for the open unit disc with inner product

hF; Gi =
1

2�

Z 2�

0

tr
�
G(ei�)TF (ei�)

	
d�:

� (H2
k�m)+ = fF 2 H2

k�m: the �rst k�k block of the constant term f(0) is upper

triangular (not strictly) g when k � m.

� H2
+ = (H2

k�m)+

9



1.2.6 Optimality equations for MOPT

The optimality conditions that are the source of our computer algorithms are obtained

by associating a mixture of the primal problem MOPT and a dual problem which

we now state:

(PDMOPT) Find 
 := min
f

max
	

1
2�

R 2�

0
tr
�
�(ei�; f(ei�))	(ei�)

	
d�

subject to: 	 � 0; 	 2 L1
m�m;

R 2�

0
tr	(ei�)d� = 2�; f 2 H1

N :

In this paper we shall always assume that the indicated minimum and maximum

exist.

Solutions f;	 to the primal -dual problem produce f which are solutions to

MOPT, providing that f is continuous. Solving the �rst order optimality condi-

tions for the primal-dual problem gives excellent candidates for local solutions to

MOPT. Earlier results on optimality conditions assume that for each � the columns

of the N �m2 mvf

Uf (e
i�) =

0BBBBB@
@�1;1
@z1

(�; f) � � �
@�`;k
@z1

(�; f) � � �
@�m;m

@z1
(�; f)

...
...

@�1;1
@zN

(�; f) � � �
@�`;k
@zN

(�; f) � � �
@�m;m

@zN
(�; f)

1CCCCCA (13)

are linearly independent; see e.g., Theorem 2 in [HMW:98] and Theorem 17.1.1 in

[HMer:98]. But this is only possible if

N � the number of entries in the mvf � ; (14)

which is not the case for the multidisk problem when v > 1, since then N = m2 and

� is a vm� vm mvf. Fortunately, it turns out that we can get by with less stringent

assumptions that are formulated in terms of the mvf

Vf (e
i�; B) =

2666664
tr
n
@�
@z1

(ei�; f(ei�))B
o

...

tr
n
@�
@zN

(ei�; f(ei�))B
o

tr
��

Im � �(ei�; f(ei�))

�
B
	

3777775 : (15)

Here � is an m�m mvf and B is an m�m matrix. For each �, Vf (e
i�; B) de�nes a

linear map from Cm�m into CN+1. The basic condition that we want is that the null

space of this map be zero, at least when restricted to appropriate classes of matrices

B (or m �m matrix valued measures d�). In order to compare this condition with

10



the condition imposed on Uf that was discussed earlier, it is useful to note that the

�rst N entries of Vf (e
i�; B) can be reexpressed as264 trfa1Bg

...

trfaNBg

375 = Uf (e
i�) vec(B) ; (16)

where vec(B) is the m2�1 vector that is obtained by stacking the successive columns

of B on top of each other. Thus,

null spacefUf(e
i�)g = 0 =) null spacefVf(e

i�; B)g = 0 ; (17)

but not vice versa.

If f is a continuous function on the circle and 
Im � �(ei�; f(ei�)) � 0, then we

shall say that the triple (
; f(ei�);�(ei�; f(ei�)) is measure nondegenerate if for

every m�m matrix valued measure d� on the circle T

Vf(e
i�; d�) = 0 and d� � 0 =) d� = 0 : (18)

Here too, the condition null spacefUf (e
i�)g = 0 automatically implies the validity of

(18), but not vice versa.

Theorem 1.1 Let �(ei�; z) be a positive semide�nite mvf that satis�es the smoothness

conditions speci�ed in Section 1.2, and assume that the PDMOPT problem has a

solution (	; f; 
) 2 L1
m�m �H1

N �R such that:

(1) 	 2 L2
m�m and is positive semide�nite for a.e. point ei� 2 T.

(2) f is continuous and 
Im � �(ei�; f(ei�)) � 0 a.e..

(3) The triple (
; f;�) is measure multidisk nondegenerate (i.e., (18) holds).

Then 	, f and 
 must satisfy the following conditions:

(a) 	(
Im � �(�; f)) = 0 a:e::

(b) PH2
N
[tr[@�

@z

T
(�; f)	]] = 0 :

(c) 1
2�

R
trf	gd� � 1 = 0 :

(19)

The proof of this theorem is given in Section 6.1.

11



1.2.7 Complementarity and strict complementarity

Condition (a) in Theorem 1.1 holds if and only if the function 	 satis�es

range	 � nullf
I � �(�; f)g; (20)

for a.e. �, or equivalently, if and only if

range	 ? rangef
I � �(�; f)g (21)

for a.e. �. Because of this, condition (a) is often called a complementarity con-

dition. A stronger condition on a solution (	; f; 
) to the primal{dual problem

(PDMOPT) is the strict complementarity condition. It states that, in addition

to (21), the two range spaces are orthogonal complements. In other words their sum

spans Cm. This forces equality in (20).

Strict complementarity is an extremely important condition here as well as in

many areas of optimization. It is the main ingredient in the assumption (SCOM)

which is formulated below in Section 2.2 and is invoked in the main theorems of this

paper.

Remark. Assumption (3) of Theorem 1.1 requiring measure non-degeneracy may

not be necessary. We do not know an example which insures that it is needed.

1.2.8 Factoring the dual variable

Throughout the rest of the paper we assume that the dual variable

	 = GTG has an outer spectral factor G 2 (H2
k�m)+ with rank G = k a.e..

We remark that if 	 = GTG, where G 2 H2
k�m, then there is no loss of generality

in assuming that G 2 (H2
k�m)+. Indeed, one may choose a (constant) unitary matrix

U so that G1 = UG is in H2
+; this uses the QR factorization of matrices. Note that

GT
1G1 = GTG.

We now rexpress the optimality condition (a) of Theorem 1.1 in terms of G.

Lemma 1.2 If G 2 H2
+ and if 
I � �(�; f) � 0, then the following statements are

equivalent:

(1) (
I � �(�; f))GTG = 0 a.e..

(2) PH2
+
[G(
I � �(�; f))] = 0.

(3) G(
I � �(�; f)) = 0 a.e..

The proof appears in Section 6.2 .
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1.3 Numerical Algorithms

Many numerical algorithms can be based on solving the optimality equations (a)|(c)

in Theorem 1.1 or a variation of them. We shall list two algorithms in this paper and

analyze the second of them. We hope that the method we use for this analysis can

be readily adapted to most natural algorithms, although this remains to be seen.

The main idea is that solving equations (a)|(c) in Theorem 1.1 for G, f , and 
,

is equivalent to solving an operator equation of the form

T

0@ G

f




1A = 0 (22)

for the same unknowns. It is common to approach such problems using Newton's

method or some variation thereof.

1.3.1 Newton's method

Newton's method is an iterative scheme for solving operator equations of the form

T [x] = 0: (23)

In terms of the di�erential T 0 of T , the Newton step for updating a given x is:

~x = x� (T 0x)
�1T [x] ; (24)

whenever the di�erential is invertible. We refer to (24) as the Newton iteration, and

to the repeated application of (24) as the Newton algorithm.

A standard fact [K:52] about Newton iteration is

Theorem 1.3 Let B1 and B2 be normed linear spaces, and suppose the operator T :

B1 ! B2 is two times continuously Frechet di�erentiable in a neighborhood V of

x� 2 B1. Assume also that T [x�] = 0, and that T 0x� has a bounded inverse (T 0x�)
�1.

Then there exist a neighborhood W of x� in B1 and a constant c > 0 such that for

every x 2 W the linear operator T 0x has a bounded inverse, and ~x := x � (T 0x)
�1T [x]

satis�es

jj ~x� x� jjB1 � c jj x� x� jj2B1:

In the present setting, the di�erential

T 0(G;f;
) :

0@ H2
+

H2
N

R

1A!

0@ H2
+

H2
N

R

1A
is the key term in the linearization

0 = T (G; f; 
) + T 0(G;f;
)[(�; '; �)] (25)
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of (22) that is used to solve for (�; '; �) at each iteration. Variations are to modify

the operator T in some way which has better numerical properties, but which still

allows one to construct a primal{dual solution from the answer. If T 0(G;f;
) is invertible

at the optimum (G; f; 
), then Newton's method has local second order convergence

(which is very good).

Interior point methods often mix following \the central path" with Newton steps.

The theory of interior point methods [Wr:98] [AHO:96] tells us that one can expect

local second order convergence to a solution (G; f; 
) providing that T 0(G;f;
) is in-

vertible at this solution. Indeed invertibility of T 0(G;f;
) is suÆcient but not necessary

for good local behavior (even without following the central path). Our concern in

this article is the theoretical analysis of such invertibility, since it is often extremely

informative.

1.3.2 Algorithms for solving MOPT

The Algorithm GTG

The �rst algorithm we present uses the operator

T :

0@ G

f




1A!

0BBBBBB@
PH2

+
[G(
I � �(�; f))]

PH2
N
[tr[�@�

@z
(�; f)TGTG]]

1
2�

Z
trfGTGgd� � 1

1CCCCCCA : (26)

Algorithm GTG. Given x(r) = (G(r); f (r); 
(r)), to update to x(r+1) carry out steps

I { III below:

I. Subproblem. Solve T (x) + T 0x(Æx) = 0 for Æx = (ÆG; Æf; Æ
) .

II. Line search. Perform a linear search to determine a step parameter t � 0 that

minimizes kT (x+ tÆx)k.

III. Update. Set x(r+1) = (G(r+1); f (r+1); 
(r+1)), where f (k+1) = f (k)+tÆf , 
(k+1) =


(k) + tÆ
, and G(k+1) = G(k) + tÆG. If 
I � �(�; f) � 0 is not satis�ed, 
(k+1)

is chosen as sup� �(e
i�; f (k+1)(ei�)):

The Algorithm G+GT

The second algorithm we present uses the additive decomposition 	 = G + GT .
In this setting G is always square, that is, k = m, and the operator

T :

0
@ G

f




1
A =

0
BBBBBB@

PH2
+
[(G+G

T )(
I � �(�; f)) + (
I � �(�; f))(G+G
T )]

PH2
N

[tr[�@�

@z
(�; f)T (G+G

T )]]

1

2�

Z
trfG+G

T
gd� � 1

1
CCCCCCA

: (27)
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Algorithm G + GT . Given x(r) = (G(r); f (r); 
(r)), to update to x(r+1) carry out

steps I { III below:

I. Subproblem. Solve T (x) + T 0x(Æx) = 0 for Æx = (ÆG; Æf; Æ
).

II. Line search. Perform a linear search to determine a step parameter t � 0 that

minimizes sup� �(e
i�; f (k)(ei�)) + tÆf(ei�)):

III. Update. Set x(r+1) = (G(r+1); f (r+1); 
(r+1)), where f (k+1) = f (k)+tÆf , 
(k+1) =

sup� �(e
i�; f (k+1)(ei�)), and, providing that G + GT � 0 is satis�ed, G(k+1) =

G(k)+ tÆG. If G+GT � 0 does not hold for this choice of t, then a smaller step

is selected for G to ensure positivity.

This gives a function space analog of Haeberly and Overton's XZ + ZX algorithm

[HO:94], [AHO:96] given by those authors for �nite dimensional matrix optimization.

In this paper we describe a theory for analyzing algorithms of the type given

above. We apply the theory to Algorithm GTG since it is the �rst one we looked

at. A theoretical study of Algorithm G +GT is in progress. Numerical experiments

(see Section 1.5) strongly suggest that Algorithm G+GT has a considerably broader

range of e�ectiveness than Algorithm GTG.

1.3.3 The main problem in analyzing algorithms

A wide range of mathematical questions arise in the analysis of numerical algorithms.

However, our philosophy in this paper is di�erent from the traditional one which

is commonplace in mathematics, wherein one wants as many theorems as possible

about the situation. By contrast, when dealing with numerical algorithms, if (as is

usually the case) the goal is to have a theory of a class of algorithms which helps

to develop new algorithms, then (although having many theorems is satisfying) what

is really important is knowing the smallest set of theorems which correlate strongly

with the performance of algorithms. The point is that when presented with a new

candidate for an algorithm we want a few simple calculations that can be carried out

quickly and serve to predict whether the algorithm will be successful or not. A major

objective is to avoid many fruitless computer experiments. This puts a premium

on identifying simple properties which are critical in practice and identifying other

properties which can be ignored. As indicated above, a question that is central to

analyzing the performance of optimization algorithms is:

When is T 0(G;f;
) invertible?

This is a very diÆcult question to answer in the settings under consideration. Instead,

we shall focus on the following question:

When is T 0(G;f;
) a Fredholm operator with Fredholm index equal to zero?

An aÆrmitive answer seems to be a good indicator of an e�ective algorithm. Fredholm

index zero is a weaker notion than invertibility, but we found that in our setting it

15



is easy to check, and moreover, we believe that it gives the information we need to

predict and evaluate the performance of a substantial class of algorithms. (See the

conjecture in Section 1.4.3.)

In Section 1.5 we compare the implications of our tests with numerical experiments

on a few randomly chosen two and three disk problems. The experimental results lend

credence to our contention that whether or not T 0 has Fredholm index zero determines

numerical behavior for \almost all" multidisk problems.

De�nition 1.4 Let X, Y be Banach spaces, let A : X ! Y be a bounded linear

operator from X into Y and let B(X; Y ) denote the space of all such operators. Then

A is a Fredholm operator if:

(i) n(A) := dim null A <1.

(ii) range A is closed in Y .

(iii) r(A) := dim (Y n range A) <1.

If A is a Fredholm operator, the number

�(A) := n(A)� r(A)

is called the Fredholm index of A. Let F0 denote the set of Fredholm operators of

index 0.

If A and B are Hilbert spaces, then condition (iii) may be written as dim (rangeA)? <

1. It is well known that compact perturbations of Fredholm operators are Fredholm.

It is clear from the de�nition that when X = Y , the bounded invertible operators

are Fredholm operators with index equal to zero. Also, a self adjoint bounded linear

operator on a Hilbert space that is Fredholm clearly has index zero.

Another issue that is completely suppressed is a detailed analysis of the various

choices of function spaces on which T and consequently T 0 can act. The reason

for ignoring this can be seen in the light of well known theorems to the e�ect that

the non zero spectrum of a Toeplitz operators generated by a �xed smooth symbol is

reasonably independent of the choice of the space on which the operator acts; see e.g.,

[GoF74]. Also empirically we �nd that the behavior in the L2 norm that is analysed

here corresponds to the behavior observed experimentally. Further justi�cation for

not doing analysis on complicated spaces stems from [HMW93], which studied the

(OPT) problem rather then the more complicated (MOPT) problem. That paper

analysed a special case of the algorithm studied here, but took the underlying space

to be C1. The analysis showed that the key Toeplitz operator there is invertible

on L2 if and only if it is invertible on the space C1 equipped with a Frechet norm.

Thus, our advice to anyone interested in the development of algorithms is to focus

their e�ort on how T 0 behaves on L2.

1.4 T and T
0 for the multidisk problem

The main theorem of this paper, Theorem 2.3, is formulated for general PDMOPT

problems. Instead of stating the fully general result in the introduction, we consider
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the special case of the Algorithm GTG, applied to the H1 multidisk problem; see

Theorem 1.8 . The �rst step is to specialize Theorem 1.1 to the multidisk case.

Fortunately, the dual variable 	 in the PDMOPT optimality equations for the

multidisk problem can be taken block diagonal: 	 = diag(	1; : : : ;	v). We shall

assume that each of these diagonal blocks is factorable. The main result is formulated

in the next subsection.

1.4.1 Optimality conditions for the multidisk problem

We �rst observe that the measure non-degenerate condition (18) when specialized to

the multidisk problem becomes the multidisk measure non-degenerate condition that

is de�ned for 
; f;Kp; p = 1; : : : ; v, as follows. If d�p, p = 1; : : : ; v, is a set of positive

semide�nite m�m matrix valued measures on the unit circle such that

vX
p=1

fKp(ei�)� f(ei�)gd�p = 0

and

f
Im � �p(ei�; f(ei�))gd�p = 0 for p = 1; : : : ; v ;

then

d�p = 0 for p = 1; : : : ; v :

Theorem 1.5 Let the functions Kp(ei�), p = 1; : : : ; v, that appear in (11) be contin-

uously di�erentiable, and assume that the PDMOPT problem for the H1 multidisk

problem has a solution (	; f; 
) 2 L1
vm�vm �H1

m2 �R such that:

(1)

	 = diag
�
(G1)TG1; : : : ; (Gv)TGv

�
;

where Gp 2 (H2
kp�m

)+ is outer with rank Gp = kp a.e. for p = 1; : : : ; v.

(2) 	 2 L2
vm�vm.

(3) f is continuous and 
Im � �(ei�; f(ei�)) � 0:

(4) 
; f;Kp; p = 1; : : : ; v; is multidisk measure non-degenerate.

Then Gp, f and 
 must satisfy the following conditions:

(a) PH2
+
[Gp(
I � �p(�; f))] = 0 for p = 1; � � � ; v:

(b) � :=
vP

p=1

GpTGp(Kp � f)T 2 ei�H2
m�m

(c)
Pv

p=1
1
2�

R
trf(Gp)TGpgd� � 1 = 0:

(28)
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This theorem is an easy consequence of Theorem 1.1 and Lemma 1.2. The proof

is given in Section 5.2. Similar conclusions are available in [HMer:98] and [HMW:98]

under the more restrictive condition that the columns of Uf(e
i�) are linearly indepen-

dent. See also [OZ:93] for a related (though more abstract) result for the two disk

problem.

The operator T for the Algorithm GTG in the multidisk setting is

T :

0@ G

f




1A!

0BBBBBBBBB@

diagonal
n
PH2

+
[G1(
I � �1(�; f))]; : : : ; PH2

+
[Gv(
I � �v(�; f))]

o
PH2

m�m
[�

vP
p=1

(Kp � f)GpTGp]

1
2�

Z
trfGTGgd� � 1

1CCCCCCCCCA
:

(29)

1.4.2 The Fredholmness of T 0

Our goal is to determine when T 0 for the H1 multidisk problem is Fredholm of index

0. As we shall see the most valuable indicator of this is the number �pnull(�) that

is given by De�nition 1.6 below. We shall impose the following extra condition in

addition to those that are imposed in the formulation of Theorem 1.5.

The outer factors Gp of 	p are continuous with constant rank kp for p =

1; : : : ; v.

De�nition 1.6 For each �, let �pnull(�) denote the dimension of the following vector

subspace of Cm�m:

fB 2 Cm�m : 	p(ei�)BT = 0 and 	p(ei�)(Kp(ei�)�f(ei�))TB = 0 for p = 1; : : : ; vg:

De�nition 1.7 For each �, let �dnull(�) denote the dimension of the following space

of matrix tuples:

ff B1; : : : ; Bvg 2 Ck1�k1�� � ��Ckv�kv :

vX
p=1

(Kp(ei�)�f(ei�))Gp(ei�)
T
BpGp(ei�) = 0g:

Note that if the functions Kp, f and Gp are given numerically, then the numbers

�pnull(�) and �dnull(�) can be computed numerically at each �. The notation �pnull(�)

and �dnull(�) stems from the connection with the null space of �primal and �dual in the

multidisk case; see Sections 5.2.1 and 5.2.2, respectively.
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1.4.3 Conclusions for multidisk problems

Theorem 1.8 Let the functions Kp(ei�), p = 1; : : : ; v, that appear in (11) be con-

tinuously di�erentiable, and assume that the PDMOPT problem for the multidisk

problem has a solution (	; f; 
) 2 L1
vm�vm �H1

m�m �R such that:

(1) 	 = diag (	1; : : : ;	v) is block diagonal and continuously di�erentiable.

(2) 	p = (Gp)TGp has a continuous outer spectral factor Gp 2 (H2
kp�m

)+ with

rank Gp = kp for p = 1; : : : ; v and all �.

(3) f is continuously di�erentiable and 
Im � �(ei�; f(ei�)) � 0:

(4) 
; f;Kp; p = 1; : : : ; v, is multidisk measure non-degenerate.

(5) Strict complementarity holds at (	; f; 
).

(6) �pnull(�) = 0 for all �.

(7) �dnull(�) = 0 for all �.

Then the operator T 0 is Fredholm with index zero. If �pnull(�) 6= 0 or �dnull(�) 6= 0

for some �, i.e., if (6) or (7) fails, then T 0 is not Fredholm.

Remark. Measure non-degeneracy looks similar to �dnull(�) = 0, enough so that As-

sumption (4) of Theorem 1.8 may eventually be subsumed by Assumption (7). This

has not been fully con�rmed yet; see Section 2.4.3 for some preliminary discussion.

At this point, however, we do know, from the substantial number of computer ex-

periments we have run, that in practice Assumption (4) plays no role. On the other

hand, whether or not �pnull(�) = 0 has a big e�ect.

The proof of Theorem 1.8 is given in Section 5.3. The extra smoothness assump-

tions that are imposed on 	(ei�) and f(ei�) in the formulation of this theorem are

added to insure the existence of continuous factors H(ei�) in item 3 of the de�nition

of (SCOM) in Section 2.2. Much of the theory can be developed without these re-

strictions, but the added generality seems to have little practical importance in the

analysis of numerical algorithms, at least at this time. For a theorem of wider scope,

which is formulated for the general MOPT problem and not just the H1 multidisk

problem, see Theorem 2.3.

At this point we state a conjecture that is based on both numerical experiments

(that are summarized in Section 1.5) and theoretical considerations. If the conjecture

is true, then Theorem 1.8 becomes a very powerful tool for predicting the e�ectiveness

of Newton's method and its variants.

Conjecture. For generic multidisk optimization problems, if T 0 at solutions to

PDMOPT is a Fredholm operator of index zero, then T 0 is invertible.
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One rationale for this conjecture is the general fact that the class F0 of Fredholm

operators of index 0 is an open dense subset of B(X;X), see Section 1.11 in [BS:90].

Naturally, the set of invertible operators is an open dense subset of B(X;X), and so

is an open subset of F0 which is dense in F0. The presumption behind the conjecture

is that in the class of Kp's that produce T 0(G;f;
) in F0, almost all K
p's produce T 0 in

the open dense set of invertible operators. Further, in this paper we see that T 0 has

the form

T 0 = L+ C

where L is a block Toeplitz matrix and C is a compact operator. The conditions in

Theorem 1.8 (primarily �pnull(�) = 0 and �dnull(�) = 0 for all �), imply that L is

Fredholm of index 0. The conjecture thus asserts that for most selections of Kp, the

resulting C has no special relationship to L and so yields an operator L+C which is

invertible.

Also in the paper we do a little more work than is immediately necessary in

analysing the Toeplitz operator L. Possibly this will be useful in further investigation.

For example, in Section 2.4.4 we give the dimension of the null space of L. The proof

is long and is not included.

1.4.4 Rules of thumb

We observe in experiments that in multidisk situations, when the computed values of

	p(ei�) have rank that is independent of �, then the Algorithm GTG produces T 0 with

Fredholm index zero if v = m. This section gives a theoretical justi�cation for this

observation, namely, we prove this to be true in situations where the 	p , p = 1; : : : ; v

all have rank one (that is, kp = 1) and the 	p and f are in \general position," a

notion we now de�ne. In computer experiments we see that when all disk constraints

are active (that is, kp > 0) there is a dichotomy:

either

(1) 	p(ei�) has rank independent of �, in which case the 	p , p = 1; : : : ; v, all have

rank one and general position holds.

or

(2) for some p, 	p(ei�) has rank equal to 0 on some intervals in [0; 2�].

Now we introduce some de�nitions. A set of matrices Lp 2 Cm�kp ; p = 1; : : : ; v,

is said to have linearly independent ranges provided that any selection of nonzero

vectors

xp 2 range Lp; p = 1; : : : ; v;

is linearly independent. Note that the set of matrix v-tuples fL1; : : : ; Lvg 2 Cm�k1 �

� � � �Cm�kv that satisfy the constraint

vX
p=1

rankLp � m (30)
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and have linearly independent ranges is an open dense subset of the set Cm�k1�� � ��

Cm�kv , i.e., this is a generic property.

De�nition 1.9 The functions 	 = diag(	1; : : : ;	v), f are in general position if for

each point ei�:

1. The matrices 	p for p = 1; : : : ; v have linearly independent ranges.

2. The matrices (K1 � f)	1; : : : ; (Kv � f)	v have linearly independent ranges.

3. The matrices (K1 � f); : : : ; (Kv � f) are all invertible.

De�nition 1.10 For each �, let

�D(�) := m� rankf	1(ei�) + � � �+	v(ei�)g

and

�R(�) := m� rankf[(K1 � f)	1(K1 � f)T + � � �+ (Kv � f)	v(Kv � f)T ](ei�)g:

Proposition 1.11 Under the hypotheses of Theorem 1.8,

�pnull(�) = �D(�) �R(�):

If 	 and f are in general position, then
Pv

p=1 rank	
p � m, and �pnull(�) which is

independent of �, equals

�pnull = (m�

vX
p=1

rank	p)2

and then �dnull(�) = 0. If in addition v = m and all constraints are active, then

�pnull = 0.

The proof of this proposition is given in Section 6.4

When
Pv

p kp < m, Proposition 1.11 says �pnull 6= 0 which says that the di�erential

T 0 will not be invertible (see Theorem 1.8) Since
Pv

p=1 kp < m is what typically occurs

when v < m, Proposition 1.11 suggests that for almost all v-disk problems with v < m,

the di�erential T 0 will not be invertible. Consequently, if v < m, algorithms based

solely on Newton's method will behave badly. In particular, this is so for the Nehari

problem when m > 1.

When v > m, the spectral factors G of 	 do not exist, so the hypotheses of our

theorems break down.

When v = m, we conclude from the lemma and our studies that Newton based

methods are well behaved for almost all situations.

Some functional analysts might be both a bit disappointed and a bit surprised

that the conditions for the invertibility of T 0(f;	; 
) for any given problem can not
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be checked a priori. At best they hold for \generic" problems, which does not say

anything about a particular problem. This, however, is a precise analog of the sit-

uation in linear programming [ZTD:92], where the main result says that if \strict

complementarity" holds at the solution to a given LP problem, then numerous in-

terior point methods are better than �rst order convergent to that solution. Strict

complementarity does not always hold, it is merely generic, and one never knows until

after an algorithm is run whether or not the optimum satis�es strict complementarity.

Nonetheless, the theorem alluded to is extremely valuable in analyzing and assessing

interior point methods in LP.

It is important to bear in mind that even if conditions on (G; f; 
) are found

to insure that T 0(G;f;
) is invertible on an open dense set of (G; f; 
) in some suitable

topology, there is no guarantee that for an open dense set of � the optimizing (G; f; 
)

correspond to invertible di�erentials T 0G;f;
. However, it does suggest that. Proving

such results could easily take many people many years, and would likely have little

e�ect on computational practice. Even when we allow many assumptions, as we shall

see, quite a bit of mathematics must be developed. Thus, we assume things like

smoothness freely.

1.5 Numerical experiments

We implemented Algorithms GTG and G+GT . We always took Gp to be an m�m

matrix valued function rather than the more aggressive choice of k �m. We found

Algorithm G +GT to be the most broadly e�ective and would recommend it

to the interested reader.

One caveat about the experiments is that they were run on a course grid (at

most 128 points.) This is all that was practical since for convenience we represent

functions on the disk ineÆciently as values on grid points, or as power series. Possibly

the coarse grid compromises some of our �ndings.

For the multidisk problem, there are of course various cases. In one case, for

example, not all the performance measures �p matter; in another case they all do

matter. This leads us to call a performance measure �p active at an optimum if 	p

is not identically 0. For example, �2 matters if and only if at an optimum it is active

for at least one �. In what follows we only report on what happens when all the

constraints turn out to be active.

Our numerical experiments for v � m, in generic situations, led to the following

observations:

� For both algorithms we always found that rank(	p) � 1, for all � and indeed

for v � m, that rank(	p) = 1. While higher rank 	p are usually possible these

algorithms have a strong disposition not to produce them.

� For both algorithms we found in a few randomly selected problems that �pnull(�)

is independent of � in many cases (though not all), and that �pnull = 0 predicts that

T 0 is invertible, thus substantiating the conjecture of Section 1.4.3.
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� Also if �pnull(�) is independent of �, we found it to be given by the formula

(m�
X
p

rank 	p)2 = (m� v)2:

� In practice �pnull determines a �ner structure of the null space of T 0. When

T 0 is not Fredholm one would expect that its null space is within �nite dimensions

of being invariant under multiplication by ei�, and thus it makes sense to count its

dimension as a module over H1. This number is easy to compute experimentally via

the formula

moddim :=
dim null space of T 0(G�;f�;
�)

grid size
:

We found in all experiments that if �pnull(�) is constant, then �pnull = moddim.

� The reason Algorithm G + GT works better than expected appears to be that

even when T 0 at optimum is not invertible, e.g., if v < m, at each iteration the current

T 0 has good conditioning until the very end of the computer run (then it explodes).

The Algorithm GTG certainly does not have this property and its behavior is indeed

dominated by the invertibility of T 0 at optimum, just as our theory predicts.
The table below gives our experimental �ndings for both algorithms.

m v (m� v)2 moddim dim null T0
Experim.
rank(Gp)

2 1 1 1 1 1 for 8p

2 2 0 0 0 1 for 8p

3 1 4 4 1 1 for 8p

3 2 1 1 1 1 for 8p

:

In this paper, we shall develop the theory underlying the GTG algorithm but do

not analyze the G + GT algorithm. Nevertheless the experiments reported on here

were run for both algorithms and suggest that �pnull has a strong connection with

the Algorithm G+GT as well as for the Algorithm GTG. The Algorithm G+GT is

currently under study.

Comparisons with the matrix case and [AHO:96] are interesting. [AHO:96] have

primal and dual non degeneracy conditions that are similar to the constraintm = v in

our case. They prefer their XZ+ZX algorithm which is the analog of our Algorithm

G+GT . Experimentally we found that in our setting m = v is stronger than needed

to get good results (but not necessarily second order convergence).
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2 General Theorems

This section begins by computing the di�erential of T and then analyzing its in-

vertibility. We ultimately state a result about Newton type methods for the general

MOPT problem. The subsequent sections show how this result specializes to the

multidisk problem, and gives the proof of the results stated in the introduction.

2.1 Calculation of the di�erential of T

In this section we shall calculate the di�erential of the basic operator T that is de�ned

by formula (26). We shall assume the smoothness conditions speci�ed in Section 1.1,

and we shall make use of (the �rst two terms of) the formula

F (z0 + w) = F (z0) + 2Re

�
@F

@z
(z0)w

�
+
1

2

�
2wT @

2F

@z@z
(z0)w ++2Re wT @

2F

@z2
w

�
+ o(kwk2)

= F (z0) +

NX
j=1

@F

@zj
(z0)wj +

NX
j=1

@F

@zj
(z0)wj

+
1

2

(
2

NX
i;j=1

wi

@2F

@zi@zj
(z0)wj +

NX
i;j=1

wi

@2F

@zi@zj
(z0)wj

+

NX
i;j=1

wi

@2F

@zi@zj
(z0)wj

)
+ o(kwk2);

which is valid for smooth functions F from CN ! R. Here,

@2F

@z@z
and

@2F

@z2

are N �N matrices with ij entries equal to

@2F

@zi@zj
and

@2F

@zi@zj
;

respectively.

(It is perhaps useful to recall that, in terms of the notation zj = xj + iyj and

zj = xj � iyj,

@F

@zj
=

1

2

�
@F

@xj
� i

@F

@yj

�
and

@F

@zj
=

1

2

�
@F

@xj
+ i

@F

@yj

�

24



(for real or complex valued functions F ) and that if F is analytic in the variables

z1; : : : ; zN , then
@F
@zj

= 0.) Therefore,

T 0(G;f;
) :

0@ H2
+

H2
N

R

1A!

0@ H2
+

H2
N

R

1A
is given by

T 0(G;f;
)

24 �

'

�

35 =

0BBBBBBB@

PH2
+
[�(
I � �(�; f))]� PH2

+
[G@�

@z
(�; f)'+G@�

@z
(�; f)'] + �G

�PH2
N
tr
h�
GT�+�TG

	
@�
@z
(�; f)T +GTG

n
@2�
@z@z

(�; f)'+ @2�
@z2

(�; f)'
oi

2Re 1
2�

Z
trfGT�gd�

1CCCCCCCA
:

(31)

Here, the second row of T 0(G;f;
) is the N � 1 mvf with entries

�PH2tr

��
�TG+GT�

� @�
@zi

�
�

NX
j=1

PH2tr

�
G

@2�

@zi@zj
GT'j +G

@2�

@zi@zj
GT'j

�
for i = 1; : : : ; N .

2.2 The assumptions PSCON and SCOM

From now on we shall be working with � and tuples (	; f; 
) which satisfy certain

assumptions. The �rst assumption includes the smoothness of � that is presumed

throughout.

(PSCON) � is a positive semide�nite mvf that meets the smoothness as-

sumptions that are speci�ed in Section 1.2, and is plurisubhar-

monic.

The next assumption guarantees that (	; f; 
) satis�es a function theoretic form of

the strict complementarity condition that was brie
y mentioned in Section 1.2.7.

(SCOM) 1. The triple (	; f; 
) is continuous, with 	 positive semide�nite,

f 2 H1
N and 
Im � �(ei�; f(ei�)) � 0. Moreover, it meets the

strict complementarity condition

Cm = range	(ei�)� range(
Im � �(ei�; f(ei�) ) (32)

at every point ei�.
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2. There exists a G 2 H1
k�m that is outer and continuous with rank

k at every point ei� such that 	 = GTG.

3. There exists an H 2 H1
`�m, ` = m� k, that is outer and contin-

uous with rank ` at every point ei�, such that

H(
Im � �(�; f))HT = I`�`:

The function G is called the outer spectral factor of 	; it is unique up to a constant

k � k unitary left multiplier.

2.3 T
0 = L+ C with L selfadjoint and C compact

Proposition 2.1 If assumptions (SCOM) and (PSCON) are in force, then the

di�erential of T may be written in the form

T 0(G;f;
) = L+ C;

where L and C map H2
+ �H2

N �C into itself, C is compact and L is the selfadjoint

operator given by the formula

L

24 �

'

�

35 =

0BBBBBB@

PH2
+
[�(
I � �(�; f))] � PH2

+
[G@�

@z
(�; f)'] + �G

�PH2
N
[tr
�
(GT�)@�

@z
(�; f)T

	
] � PH2

N
[trfGTG @2�

@z@z
(�; f)'g] + 0

1
2�

Z
trfGT�gd� + 0 + 0

1CCCCCCA
Proof. The issue reduces to analyzing L because of the fact that a Hankel operator

H# : g 2 H
2 ! PH2? #g

with symbol # 2 H1 + C is compact, as is its adjoint. Here C stands for the class of

continuous functions on T. In the present setting the operator

C := T 0 � L

can be expressed in the form

C

24 �

'

�

35 =

24 C12(')

C21(�) + C22(')

C31(�)

35 ;
where

C12(') = �PH2
+

�
G
@�

@z
'

�
= �

NX
j=1

PH2
+

�
G
@�

@zj
'j

�
;

26



C21(�) = �PH2
N
tr

(
G

�
@�

@z

�T

�T

)
is an N � 1 mvf with entries

�PH2tr

�
G
@�

@zi
�T

�
; i = 1; : : : ; N;

C22(') = �PH2
N
tr

�
G
@2�

@z2
GT'

�
is an N � 1 mvf with entries

�

NX
j=1

PH2

�
tr

�
G

@2�

@zi@zj
GT'j

��
; i = 1; : : : ; N;

and

C31(�) =
1

2�

Z 2�

0

tr
�
G�T

	
d�:

Thus, in view of the preceding remarks, C is compact. It is also readily checked that

L is selfadjoint with the help of the formula

h�; L12(')iH2
+
= hL21(�); 'iH2

N
: (33)

We now verify (33).

hL21(�); 'iH2
N

= �
R PN

j=1 tr[G
T�( @�

@zj
(�; f))T ]'j

= �
R PN

j=1 tr[
@�
@zj

(�; f)T'jG
T�]

= �
R PN

j=1 tr[�(G
@�
@zj

(�; f)'j)
T ]

= h�; L12(')iH2
+
:

�

2.4 Fredholmness of T 0

Proposition 2.1 implies that T 0 is Fredholm of index 0 if and only if L is Fredholm of

index 0. We shall give conditions guaranteeing that L is Fredholm, but �rst we need

a few de�nitions.
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2.4.1 Key de�nitions

De�nition 2.2 Let a = @�
@z
(�; f) = (a1; : : : ; aN) : T ! (Cm�m)N (so that a' =PN

j=1 aj'j) and G : T! Ck�m be continuous functions and let A denote the m�m

matrix with ij entry

Aij = trfG
@2�

@zi@zj
(�; f)GTg:

i. Let �primal and �dual denote the multiplication operators

�primal : ' 2 H
2
N �!

0@ Ga'

A'

1A 2 L2
k�m � L2

N

�dual : �1 2 (H2
k�k)+ �! trfGaTGT�1g 2 L

2
N

ii. The multiplication operator �primal is said to be regular if it is generated by a

function which has a trivial null space at every point ei� 2 T.

iii. The multiplication operator �dual is said to be regular if the span of the k � k

matrices (GaTj G
T )(ei�) is equal to Ck�k at every point ei� 2 T.

2.4.2 A key result

Theorem 2.3 Assume that �, G, f and 
 meet the following constraints:

(1) The assumptions (PSCON) and (SCOM) are satis�ed.

(2) The operators �primal and �dual are regular.

Then T 0(G;f;
) is Fredholm of index 0.

Remark. The reader may wonder why the measure nondegeneracy condition does

not appear explicitly in the preceding theorem (as well as the next one). The reason

is that, although it intervenes in the theorems of Chapter 1 to help insure that

T (G;F; 
) = 0; at solutions of the PDMOPT, we then calculate the di�erential

T 0 of T at an arbitrary \point" (G;F; 
) and study its properties. The properties of

T 0 and L etc as operators do not involve the measure non degeneracy per se. Therefore

it does not appear in the statements of the current theorems. It is \only" when you

try to connect with the original problem that these assumptions come into play.

The last theorem is a consequence of Theorem 3.9. The proof is given in Section 3.4.6.

Note that the most damning assumption we made is that 	 has a nice spectral factor

G. However, the numerical experiments that are discussed in [HMW:98] indicate that

this is often true.
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2.4.3 Measure non-degeneracy vs. �dual regular

If � is a selfadjoint matrix valued measure, then

d� = GTd� G (34)

is also, and, in addition, d� satis�es

(
Im � �)d� = 0: (35)

Strict complementarity of 
Im � � and 	 suggests that (35) implies (34), although

we have not checked this.

A matrix valued measure d� of the form (34) satis�es the measure non-degeneracy

condition Vf(e
i�; d�) = 0 if and only if

tr(ajG
Td�G) = 0 for j = 1; : : : ; N:

This implies that d� = 0 if and only if the span of the matrices (GaTj G
T )(ei�); j =

1 : : : ; N is equal toCk�k, the set of all complex k�k matrices. This is exactly the �dual
regularity condition. Thus we see that measure non-degeneracy and �dual regularity

are closely related. Measure non degeneracy is, however, a less restrictive condition

because it only need hold for matrix valued measures d� which are nonnegative.

2.4.4 The null space of L

We have considerably stronger theorems that tell us the size of the null space of L.

We begin with a key de�nition.

De�nition 2.4 Let a = (a1; : : : ; aN) : T! (Cm�m)N (so that a' =
PN

j=1 aj'j) and

let G : T! Ck�m be continuous functions.

i. Let Lprimal and Ldual denote the operators given by

Lprimal' :=

0@ PH2
+
Ga'

PH2
N
A'

1A and Ldual�1 :=

0B@ PH2
N
trfGaTGT�1g

1
2�

R
tr fGGT�1gd�

1CA ;

where �1 2 H2
k�k and ' 2 H1

N . We call �primal (resp. �dual) the symbol of the

operator Lprimal (resp. Ldual).

ii. The operator Lprimal (resp. Ldual) is said to be regular if �primal (resp. �dual)

is regular.

Additional analysis leads to a re�nement of Theorem 2.3, which is based on the

observation that the null space of L e�ectively splits into two parts. One comes from

the primal problem and one from the dual problem. The next theorem, which is

stated without proof in order to save space, serves as a sample.
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Theorem 2.5 Assume that �, G, f and 
 meet the following constraints:

(1) The assumptions (PSCON) and (SCOM) are satis�ed.

(2) The operators �primal and �dual are regular.

Then the dimension of the space of all triples (�; '; �) 2 H2
+�H

2
N�R in the null space

of L is equal to the dimension of the space of all triples (�1; '; �) 2 (H2
k�k)+�H

2
N�R

such that

Lprimal' =

�
G�

0

�
and Ldual�1 = 0:

We remark that Lprimal' = 0 may not force ' to be 0.
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3 Proofs

3.1 The null space of �dual

Before launching into proofs, we shall show that Uf(e
i�)TUf(e

i�) invertible implies

that �dual is regular. Although we shall not need this result in the rest of this paper,

it does serve to illustrate the connections between a number of the conditions that

are often imposed in optimization problems of this sort.

Proposition 3.1 Let �(ei�; z) satisfy the smoothness conditions speci�ed in Section

1.2, let f 2 H1
N be continuous and recall the notation

a`(�) :=
@�

@z`
(�; f(�)); ` = 1; : : : ; N; and a := (a1; : : : ; aN):

The condition Uf (e
i�)TUf(e

i�) is invertible for all �, implies N � m2 and is equivalent

to each of the following two conditions:

i. The span of the set faT1 ; a
T
2 ; ; : : : ; a

T
Ng is equal to Cm�m for all �.

ii. For each �, the map of B 2 Cm�m 7! aB = (a1B; : : : ; aNB) 2 (Cm�m)N has a

trivial nullspace.

Proof. This is done by careful bookkeeping applied to the de�nition of Uf . Formula

(16) is helpful. �

3.2 Changing the variables of L

We shall analyze the invertibility of L with the help of a change of variables. If

Q 2 H1
m�m, then

� �! e� := � Q

is a map of (H2
k�m)+ into H2

k�m. Moreover, if Q(0) is upper triangular, then this

map sends (H2
k�m)+ into itself. If both Q and its pointwise inverse Q�1 belong to

H1
m�m, then these mappings are onto. The adjoint of this mapping with respect to

the matrix inner product

hA;Bi = tr
�
ABT

	
is

�! � QT : (36)

We consider the map M0 from (H2
k�m)+ � H2

N �R into itself that is de�ned by

the rule

M0(�; '; �) := (� Q;'; �):
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The adjoint of this map in the 1=2�
R 2�

0
trfABTgd� inner product is the Toeplitz like

operator MT
0 de�ned by

MT
0 (�; '; �) := (PH2

+
f� QTg; '; �):

Our goal is to choose Q so that invertibility of the mapeL :=MT
0 LM0 (37)

is easy to analyze. We shall assume Q is in (H1
m�m)+, and hence that the constant

term Q(0) is upper triangular.

The abbreviations

a :=
@�

@z
(�; f) = [a1; a2; : : : ; aN ] and a' =

NX
j=1

aj'j

that were introduced earlier will be useful.

It is clear from formula (37) that eL is selfadjoint. Moreover,

eL
24 �

'

�

35 =

0BBBBBB@
PH2

+
[� Q(
I � �(�; f))QT ] � PH2

+
[Ga'QT ] + �PH2

+
[GQT ]

�PH2
N
[trfGT�QaTg] � PH2

N
[A'] + 0

1
2�

Z
trfGT� Qgd� + 0 + 0

1CCCCCCA :

(38)

The exhibited formula for eL follows easily from the formula for L with the help of

Lemma 3.2 If Q is in (H1
m�m)+ and F 2 L2

k�m, then

PH2
+

n�
PH2

+
F
�
QT
o
= PH2

+

�
FQT

	
:

Proof. If F 2 L2
k�m, then

F = F+ + F�;

where F+ 2 H
2
+ and F� 2 (H2

+)
?. Therefore,

FQT = F+Q
T + F�Q

T :

But now as

hC; F�Q
T i = hCQ; F�i = 0

for every C 2 H2
+, it follows that F�Q

T 2 (H2
+)

?. Thus

PH2
+

�
FQT

	
= PH2

+

�
F+Q

T
	
;

as claimed. �

The next conclusion is immediate from formula (37).

Proposition 3.3 If Q and Q�1 belong to H1
m�m, then L is invertible (resp. Fred-

holm of index k) if and only if eL is invertible (resp. Fredholm of index k).
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3.3 A nice form for eL

3.3.1 The spectral factors G, H and Q

Now we select Q 2 (H1
m�m)+ to meet our ends. There are two closely related ways

to de�ne Q.

1. De�ne � by

� := 	[�1] + (
I � �) ;

where 	[�1] denotes the Moore-Penrose inverse of 	. Then, in view of

the strict complementarity assumption (SCOM), the inequality �(ei�) �

ÆIm�m holds a.e. for some Æ > 0. Take Q to be the outer function in

H1
m�m satisfying

��1 = QTQ:

Then Q is invertible in H1
m�m, and

� = Q�1Q�T and Q � QT = Im�m :

2. Note that Q may be expressed in terms of the outer mvf's G 2

(H1
k�m)+ and H 2 H1

`�m that appear in the formulas 	 = GTG and

H(
I � �)HT = I`�` that were introduced in the assumption (SCOM)

as

Q =

0@ G

H

1A :

Here rank G = k and rank H = `. To see this, recall that at the optimum

choice of (G; f; 
),

Gf
I � �(�; f)g = 0 :

Therefore, upon introducing the singular value decomposition

G = U [D 0]V;

where U is k � k unitary, D is k � k positive diagonal and V is m � m

unitary at each point �, it follows that

	[�1] = V T

�
D�2 0

0 0

�
V ;

G	[�1]GT = Ik�k

and

range	[�1]GT = rangeV T

�
Ik�k
0

�
= rangeGT = range	[�1] = range	 ;

33



whereas,

rangef
Im � �(�; f)g = rangeV T

�
0

I`�`

�
:

Thus,


Im � �(�; f) = V T

�
0 0

0 E2

�
V

for some positive de�nite `� ` matrix E and hence, upon setting

H = [0 E�1]V ;

we see that

H	[�1] = 0

and

H�HT = Hf
Im � �(�; f)gHT = I`�` :

Therefore,

Q =

�
G

H

�
has the property

Qf
Im � �(�; f)gQT =

�
0 0

0 I`�`

�
:

3.3.2 eL in nice coordinates

The next step is to partition � as

� = (�1 �2)

with �1 2 (H2
k�k)+ and �2 2 H

2
k�` (so that �1(0) is upper triangular, while �2(0) is

arbitrary). It then follows that eL acting on0@ �

'

�

1A
can be reexpressed in the form0BBBB@

PH2
+
[(0 �2)] � PH2

+
[(GaGT GaHT )'] + �PH2

+
[(GGT 0)]

�PH2
N
[tr(�1Ga

TGT +�2Ha
TGT )] � PH2

N
[A'] + 0

1
2�

R
trfGGT�1gd� + 0 + 0

1CCCCA:
(39)
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Here we used the fact that the �rst optimality condition implies that

G HT = 0 ;

that is, the range of GT and the range of HT are orthogonal complements. Moreover,

the following conventions are in force:

PH2
+

��
GaGT GaHT

�
'
�
= PH2

+

"
NX
j=1

�
GajG

T GajH
T
�
'j

#

and

PH2
N

�
tr
�
�1Ga

TGT +�2Ha
TGT

��
= PH2

N

2666664
tr(�1Ga

T
1G

T +�2Ha
T
1G

T )

...

tr(�1Ga
T
NG

T +�2Ha
T
NG

T )

3777775 :

3.4 eL and Fredholmness

We shall show in this section that the operator eL given by formula (39) in Section

3.3 is a Toeplitz operator. Also, we establish conditions under which eL is Fredholm

of index zero, and we shall discuss invertibility issues.

3.4.1 Assumptions and notation

Throughout this section we suppose that �(ei�; z) satis�es PSCON and that (	; f; 
)

satis�es SCOM. In addition, we assume that G is a continuous outer function in

(H2
k�m)+ and that Q is a continuous invertible outer function in (H2

m�m)+, which

is obtained by stacking the given matrix function G with the (k � m) � m matrix

valued analytic function H that was considered in the preceding subsection. Thus,

a = (a1; : : : ; aN) is a continuous mvf whose entries aj take m�m matrix values and

A is a continuous positive semide�nite mvf from T into CN�N .

3.4.2 eL is Toeplitz

We now introduce a multiplication operator that plays a key role in our discussion ofeL and T 0.

De�nition 3.4 For ` = m� k, let P2 denote the projection operator

P2 : (H
2
k�m)+ = (H2

k�k)+ �H2
k�` �! (H2

k�m)+

� = (�1;�2) 7�! ��2 = (0;�2);

(40)
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where �2 designates the matrix �
0k�k 0k�`
0`�k I`�`

�
;

and let M denote the operator

M : (H2
k�m)+ �H2

N �! L2
k�m � L2

N

�
�

'

�
7�!

24 ��2 �GaQT'

�tr[�QaTGT ]� A'

35 (41)

Note that we are representing the values of M in block column format. The map M

is de�ned pointwise, so for �xed � we may think of M as a map from Ck�m �CN to

itself. Also, a similar comment applies to P2, and one may view the pointwise action

of P2 as multiplication (on the right) of k �m matrices by the block matrix �2.

We now con�rm that the map M is related to eL in an obvious way.

De�nition 3.5 Let P denote the orthogonal projection operator

P : L2
k�m � L2

N �! (H2
k�m)+ �H2

N (42)

and let

L : (H2
k�m)+ �H2

N ! (H2
k�m)+ �H2

N

be the operator given by

L(�) = P(M(�)) (43)

Formula (43) suggests that L is a Toeplitz operator. This is indeed the case.

Proposition 3.6 The operator L is a Toeplitz operator eT with continuous symbol

de�ned on (H2
k�m)+ �H2

N . Moreover,

eL
24 �

'

�

35 =

264 L

�
�

'

�
0

375+

2664
PH2

+
[GQT ]�

0

1
2�

Z
trfGT� Qgd�

3775 : (44)

Proof. To see this, represent H2
k�m � H2

N as H2
km+N and use a shift on some of

the entries of H2
k�m � H2

N to obtain (H2
k�m)+ � H2

N . Clearly, the action of M on

(H2
k�m)+ � H2

N corresponds to the action of a suitable multiplication operator with

continuous matrix symbol fM on elements inH2
km+N . Hence the operator P(M(�)) = L

is a Toeplitz operator with continuous symbol. �
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3.4.3 L is selfadjoint

Proposition 3.7 The operatorsM and L are self adjoint with respect to the indicated

inner products.

Proof. For each �xed �, one can view M as a mapping from Ck�m�CN to itself. We

choose the inner product on this space to be the Euclidean one,D
(4; '); (Æ;  )

E
Ck�m�CN

= tr(ÆT4) + ( T')

We have that for all (4; '); (Æ;  ) 2 Ck�m �CN ,D
(4; ');M [(Æ;  )]

E
Ck�m�CN

= tr
�
(Æ�2 �GaQT )T4

	
+ (�tr

�
ÆQaTGT

�
� A )T'

= tr
�
(�2Æ

T �  TQaTGT )4
	
+ (�tr(GaQT ÆT )�  TAT )'

= tr(�2Æ
T4�GaQT ÆT') + tr(� TQaTGT4)�  TAT'

= tr(ÆT4�2 � ÆTGaQT') +  T (�tr(QaTGT4)� A')

= tr
�
ÆT (4�2 �GaQT')

	
+  T (�tr(4QaTGT )� A')

=
D
M [4; ']; (Æ;  )

E
Ck�m�CN

If now (4; '); (Æ;  ) represent functions in (H2
k�m)+ �H2

N , thenD
(4; ');L(Æ;  )

E
L2
k�m

�L2
N

=
D
(4; ');P(M [Æ;  ])

E
L2
k�m

�L2
N

=
D
(4; ');M [Æ;  ]

E
L2
k�m

�L2
N

=
1

2�

Z 2�

0

D
(4; ');M [Æ;  ]

E
Ck�m�CN

d�

=
1

2�

Z 2�

0

D
M [4; ']; (Æ; ')

E
Ck�m�CN

d�

=
D
M [4; ']; (Æ;  )

E
L2
k�m

�L2
N

=
D
P[M [4; ']]; (Æ;  )

E
L2
k�m

�L2
N

=
D
L(4; '); (Æ;  )

E
L2
k�m

�L2
N

:

The rest of the proof is straightforward. �
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3.4.4 The null space of M

In this subsection we derive a characterization of the null space of M that is useful

for our study of the operator eL.
Proposition 3.8 Let (4; ') 2 Ck�m � CN . Partition � as (�1;�2) 2 Ck�k �

Ck�(m�k). Then M [4; '] = 0 if and only if the following conditions hold:

i: �2 = 0:

ii: �primal(') = 0:

iii: �dual(�1) = 0:

Proof. If M [4; '] = 0, then

[0 42]�G

NX
`=1

a`'`[G
T HT ] = 0 (45)

and

�tr
�
41Ga

TGT
	
� tr

�
42Ha

TGT
	
� A' = 0: (46)

From (45) it follows that

0 = G

NX
`=1

a`'`G
T = Ga'GT (47)

and

42 = G

NX
`=1

a`'`H
T = Ga'HT : (48)

Combine (48) and (46) to obtain

tr
�
41Ga

TGT
	
+ tr

(
G

NX
`=1

a`'`H
THaTGT

)
+ A' = 0: (49)

Next, multiply by 'T on the left to obtain

tr
�
41G(a')

TGT
	
+ tr

�
Ga'HTH(a')TGT

	
+ 'TA' = 0: (50)

The �rst term on the left hand side of (50) is zero by (47) and each of the remaining

two terms is nonnegative. Thus, we see that

Ga'HT = 0 (51)
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and

A' = 0: (52)

From (47), (51), the invertibility of QT = (GT HT ) and (52), we conclude that

�primal(') = 0.

The left hand side of (51) is precisely 42 by formula (48), that is, we have

42 = 0: (53)

Now substitute (52) and (53) into (46) to obtain �dual(�1) = 0.

We now prove the converse. Suppose that equations (i) -(iii) hold. Then, since

��2 = �2 = 0, we see that

M

�
�

'

�
=

�
��2 �GaQT'

�tr[�QaTGT ]� A'

�
=

�
�Ga'QT

�tr[�1Ga
TGT ]� A'

�
= 0:

�

3.4.5 eL as a Fredholm operator of index zero

Theorem 3.9 Suppose that �(ei�; z) satis�es (PSCON) and let (	; f; 
) be such

that (SCOM) is satis�ed. Let G be a continuous outer function of rank k in (H2
k�m)+

such that GTG = 	 (the existence of such an outer function is guaranteed by (SCOM))

and assume that the nullspace of Vf(e
i�) restricted to matrices of the form

fGT (ei�)BG(ei�) : B 2 Ck�kg

is equal to zero for every point ei�. Then �dual is regular.

If, in addition, the operator �primal is regular, then eL and T 0 are Fredholm opera-

tors of index zero.

Proof. Suppose �rst that B 2 Ck�k is orthogonal to the span of

f(GaTj G
T )(ei�) : j = 1; : : : ; Ng

for some choice of ei�. Then

0 = hB; (GaTj G
T )(ei�)i

= trf(GajG
T )(ei�)Bg

= trfaj(e
i�)GT (ei�)BG(ei�)g

for j = 1; : : : ; N . Moreover, by the (SCOM) assumption

f
Im � �(ei�; f(ei�))gG(ei�)T = 0 :
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Consequently, G(ei�)TBG(ei�) belongs to the null space of Vf(e
i�; �). Therefore, by as-

sumption, G(ei�)TBG(ei�) = 0, and hence, as G(ei�) is right invertible by assumption,

B = Ok�k. This completes the proof that �dual is regular.

Now assume in addition that �primal is also regular. We claim that for each �,

the operator M acting on Cm�m �CN has a trivial null space. To see this, suppose

M [�; '] = 0 for an element (�; ') 2 Cm�m�CN . Then, by (i) and (ii) of Proposition

3.8, we must have �2 = 0 and

�primal(') =

0@ Ga'

A'

1A = 0: (54)

Since �primal is regular, it follows that ' = 0.

Next, from item (iii) of Proposition 3.8 we see that

h�1; Ga`G
T i = 0 for ` = 1; : : : ; N: (55)

Therefore, since �dual is regular, �1 = 0. Thus, � = 0 and M has a trivial kernel.

Since M is selfadjoint by Proposition 3.7, we conclude that M is an invertible multi-

plication operator for each point �. Hence, L is a self adjoint Toeplitz operator with

continuous, pointwise invertible symbol. Theorem 2.94 on page 96 of [BS:90] guar-

antees that such operators are Fredholm. Thus, we conclude that L is a Fredholm

operator. Moreover, since L is selfadjoint by Proposition 3.7, the Fredholm index of

L is zero.

By Proposition 3.6, eL ( and therefore T 0) is Fredholm with index 0 if and only

if L is is Fredholm with index 0, since the operator that corresponds to the second

column on the right hand side of formula (44) is compact.

�

3.4.6 Proof of Theorem 2.3

Proof. The desired conclusions are immediate from the last three paragraphs of the

proof of Theorem 3.9.

�

4 The H1 one disk (Nehari) problem

Our main inerest in this paper is the multidisk problem. Nevertheless, the Nehari

problem is a good place to start, since it is a one disk problem and hence the calcu-

lations for this setting serve as a model for the multidisk problem.
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4.1 Derivatives

Recall that for the Nehari problem

�(ei�; Z) = (K(ei�) � Z)T (K(ei�) � Z); (56)

where �; K (and f) are m � m mvf's and Z = (zij)
m
i;j=1 with N = m2 independent

entries. We shall need formulas for the �rst and second derivatives of �. In particular,

it is readily seen that

ak` :=
@

@zk`
�(ei�; Z) = �(K(ei�) � Z)TEk` (57)

and
@2

@zrs@zk`
�(ei�; Z) = ET

rsEk` = EsrEk`; (58)

where Ek` is the m � m constant matrix with a one in the k` position and zeros

elsewhere.

Lemma 4.1 The performance function �(ei�; f) for the Nehari problem is plurisub-

harmonic. It is strictly plurisubharmonic if and only if m = 1.

Proof. By formula (58),

mX
r;s;k;`=1

uTrs
@2�

@zrs@zk`
uk` =

mX
r;s;k;`=1

uTrsEsrEk`uk` = k

mX
k;`=1

Ek`uk`k
2

for every choice of the N = m2 column vectors u11; : : : ; umm of size m� 1. Therefore,

� is plurisubharmonic. Moreover, if m > 1, then there exist nonzero vectors uk` such

that Ek`uk` = 0. Thus, � is strictly plurisubharmonic if and only if m = 1. �

We remark that, since

EsrEk` =

8<:
0 when r 6= k

Es` when r = k;

(59)

the last sum is also equal to
mX

s;k;`=1

uTksEskEk`uk` =

mX
k=1

k

mX
`=1

Ek`uk`k
2

Moreover, much the same sort of analysis leads to the auxiliary conclusion that the

m2 �m2 matrix with entries

tr

�
@2�

@zrs@zk`

�
= trfEsrEk`g

is positive de�nite, since
mX

s;r;k;`=1

'rstrfEsrEk`g'k` =

mX
k;`=1

j'k`j
2:
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4.2 The optimality condition

In the Nehari case, the MOPT optimality conditions given in Theorem 1.1 can be

stated as follows:

(a) [
I � (K � f)T (K � f)]GT = 0 :

(b) PH2
m�m

f[K � f ]GTGg = 0 :

(c) 1
2�

Z
trfGTGgd� = 1 :

(60)

Proof. (a) is immediate from Lemma 1.2 and (c) is obvious. Therefore, we turn to

(b). For each k; ` we have

0 = PH2tr[aTk`G
TG]

= �PH2tr[ET
k`(K � f)GTG]

= �PH2 [(K � f)GTG]k`:

�

4.3 The null space of �primal

We turn now to the analysis of the null space of �primal in the Nehari case. For this

analysis it is convenient to think of ' as an m � m matrix with entries 'k`; k; ` =

1; : : : ; m, rather than an m2 � 1 column vector. Then

' =

mX
k;`=1

Ek`'k`: (61)

Lemma 4.2 In the setting of the Nehari problem, a matrix B 2 Cm�m is in the null

space of �primal at the point ei� 2 T if and only if

G(ei�)(K(ei�)� f(ei�))TB = 0 and G(ei�)BT = 0: (62)

Proof. If �primal(B) = 0, then the �rst statement in (62) follows directly from the

�rst block row in the de�nition of �primal and formula (57). Next, the second block

row of the formula for �primal implies that

0 = hAB;Bi

=
X
r;s

X
k;`

trfG(ei�)BrsEsrEk`Bk`G(e
i�)Tg

= trfG(ei�)BTBG(ei�)Tg:
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But this clearly implies that B G(ei�)T = 0 also, as claimed. �

We remark that if K(ei�) � f(ei�) is invertible when f is a solution to MOPT,

then an alternate way of writing the �rst condition in (62) at an optimum is

G(K � f)�1B = 0 :

This is because the optimality condition

G(ei�)(
Im � (K(ei�) � f(ei�))T (K(ei�) � f(ei�))) = 0

can be rewritten as


G(ei�) = G(ei�)(K(ei�) � f(ei�))T (K(ei�) � f(ei�)):

But this implies that

G(ei�)(K(ei�) � f(ei�))T = 
G(ei�)(K(ei�) � f(ei�))�1;

which gives the result.

4.4 The null space of �dual

In the setting of the Nehari problem, �dual maps the k � k matrix B into the m�m

matrix with entries

tr

�
G
@�

@zij
(�; f)TGTB

�
= �tr

n
G
�
(K � f)TEij

�T
GTB

o
= �tr

�
GEji(K � f)GTB

	
= �tr

�
Eji(K � f)GTBG

	
= �

�
(K � f)GTBG

�
ij
;

for i; j = 1; : : : ; m. Thus, we have established the following result:

Lemma 4.3 In the setting of the Nehari problem, a matrix B 2 Ck�k is in the null

space of �dual at the point ei� 2 T if and only if

(K(ei�)� f(ei�))G(ei�)TBG(ei�) = 0:

4.5 The U condition

The condition for Uf given by (13) to be invertible specializes as follows.

Lemma 4.4 In the Nehari case, UT
f (e

i�)Uf (e
i�) is invertible if and only if K(ei�)�

f(ei�) is invertible.
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Proof. Direct calculation gives

Uf(e
i�) = ��Tdiag

n
K(ei�)� f(ei�); : : : ; K(ei�)� f(ei�)

o
�;

where the mvf inside the curly brackets on the right is block diagonal withm identical

m�m blocks and � is an m2 �m2 permutation matrix. �

4.6 Conclusions for the Nehari case

The conclusions for the Nehari case are subsumed in the conclusions for the multidisk

problem: just take v = 1: In particular, it should be noted that if m > 1, then the

di�erential T 0 is not a Fredholm operator in this setting.

5 Multidisk MOPT

The Nehari problem prescribes a disk in matrix function space and seeks an analytic

mvf which lies inside it. Now we specify v disks

�p(ei�; f(ei�)) = (Kp(ei�) � f(ei�))T (Kp(ei�) � f(ei�)); p = 1; : : : v: (63)

Here �p and f are m �m matrix valued functions and we seek an analytic function

f and the smallest 
 satisfying

�p(ei�; f(ei�)) � 
Im for p = 1; : : : ; v and all �.

5.1 Multiperformance MOPT

To any problem with multiple performance functions �p; p = 1; : : : ; v, we can asso-

ciate a single block matrix (now of size mv �mv)

� :=

0BBB@
�1 0 : : : 0

0 �2 : : : 0
...

...
. . .

...

0 0 : : : �v

1CCCA
and consider the corresponding MOPT problem. Fortunately, the dual variable 	

in the corresponding PDMOPT problem (which is formulated in subsection 1.2.6)

can be taken block diagonal.

Theorem 5.1 Let �(ei�; z) be a positive semide�nite mvf that meets the smooth-

ness conditions speci�ed in Section 1.2 and assume that the primal dual problem

PDMOPT has a solution (	; f; 
) 2 L1
vm�vm �H1

N �R such that:
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(1) 	 = diag (	1; : : : ;	v) is block diagonal.

(2) 	p = (Gp)TGp has an outer spectral factor Gp 2 (H2
kp�m

)+ with rank Gp = kp
a.e. for p = 1; : : : ; v.

(3) 	p 2 L2
m�m for p = 1; : : : ; v.

(4) f is continuous and 
I � �(ei�; f(ei�)) � 0.

(5) The conditions
Pv

p=1 tr
n
@�p

@zj
d�p

o
= 0, tr

Pv

p=1

�

Im � �p(ei�; f((ei�))

	
d�p = 0

and d�p � 0 for p = 1; : : : v imply that d�p = 0 for p = 1; : : : v.

Then Gp, f and 
 must satisfy the following conditions:

(a) G1(
I � �1) = � � � = Gv(
I � �v) = 0:

(b) PH2
N
tr
n
(G1)TG1 @�1

@z

T
+ � � �+ (Gv)TGv @�v

@z

T
o
= 0:

(c)
vP

p=1

R
tr(GpTGp)d� = 2�:

Proof. This theorem is an easy consequence of Theorem 1.1 and the special structure

of the multidisk problem. �

It is also readily checked by straightforward calculation that the mvf Uf (e
i�)

for the full performance function � is simply related to the mvf's U
p

f (e
i�) for the

performance functions �p; p = 1; : : : ; v: The set of columns of Uf is equal to the

union of the set of columns U
p

f ; p = 1; : : : ; v, supplemented by zero columns. Thus,

UfU
T
f =

vX
p=1

U
p

f (U
p

f )
T : (64)

However, this does not seem to be useful at the moment, since the columns of Uf (e
i�)

are linearly independent if and only if Uf (e
i�)TUf (e

i�) is invertible.

5.2 The H1 multidisk problem

We now take the block diagonal entries in �(ei�; f) to be of the form (56). It is

then convenient to picture both f and ' as m � m matrices with entries fk` and

'k`; k; ` = 1; : : : ; m, instead of a column vectors of height m2 � 1, just as in the

Nehari case. Thus, upon writing

� = �(�; Z) = diag
n
(K1 � Z)T (K1 � Z); : : : ; (Kv � Z)T (Kv � Z)

o
with

Z = [zk`]; k; ` = 1; : : : ; m ;
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it is readily checked that

@�

@zk`
= �diag

n
(K1 � Z)TEk`; : : : ; (K

v � Z)TEk`

o
(65)

and
@2�

@zrs@zk`
= diag

n
EsrEk`; : : : ; EsrEk`

o
= EsrEk`; (66)

where

Ek` = diag
n
Ek`; : : : ; Ek`

o
; (67)

has v identical block diagonal entries. These formulas lead easily to

Lemma 5.2 The performance function � for the H1 multidisk problem is plurisub-

harmonic. In fact
mX

r;s;k;`=1

uTrs
@2�

@zrs@zk`
uk` = k

mX
k;`=1

Ek`uk`k
2

for every choice of vectors uk` 2 Cmv ; k; ` = 1; : : : ; m.

Lemma 5.3 Let d� = diagfd�1; : : : ; d�vg with nonnegative block matrix measures

d�p of size m�m. Then, in the H1 multidisk case,

Vf (e
i�; d�) = 0 if and only if

vX
p=1

fKp(ei�)� f(ei�)gd�p = 0

and

f
Im � �p(ei�; f(ei�))gd�p = 0

for p = 1; : : : ; v.
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Proof In view of formula (15), the �rst N alias m2 entries in the constraint

Vf(e
i�; d�) = 0 yields the sequence of formulas

0 = tr
n
@�
@zrs

d�
o

=

vX
p=1

tr
n
@�p

@zrs
d�p

o
= �

vX
p=1

tr
�
(Kp � f)TErsd�

p
	

= �

vX
p=1

tr
�
Ersd�

p(Kp � f)T
	

= �

vX
p=1

�
d�p(Kp � f)T

	
sr

for s; r = 1; : : : ; m. But this leads easily to the �rst condition in the forward impli-

cation. The second condition is selfevident, as is the converse. �

Proof of Theorem 1.5. Our �rst objective is to verify that Theorem 1.1 is

applicable. The main e�ort is to translate condition (4). But that is done in the

preceding lemma.

Next, invoking Theorem 1.1 and Lemma 1.2, we see that conditions (a) and (c)

are obvious. To prove (b), note that the second optimality condition in Theorem 1.1

or Theorem 5.1 implies that

�tr(GarsG
T ) = tr

(
vX

p=1

GpTGp(Kp � f)TErs

)
2 ei�H2 (68)

for all r = 1; : : : ; m and s = 1; : : : ; m. Thus tr[�Ers] 2 ei�H2 which is equivalent to

� 2 ei�H2
m�m: �

5.2.1 The null space of �primal

Now we turn to an analysis of the null space of T 0 for the H1 multidisk problem.

Recall from Theorem 2.3 that the key to understanding the null space of T 0 is an

understanding of the operators �primal and �dual.

Lemma 5.4 (Primal) In the H1 multidisk case, assume that Kp, Gp for p = 1; : : : ; v,

and f are continuous on T. Then a matrix B 2 Cm�m is in the null space of �primal

at the point ei� if and only if

Gp(ei�)(Kp(ei�)� f(ei�))B = 0 and Gp(ei�)BT = 0 for p = 1; : : : ; v:
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Thus,

�pnull(�) = dim
�
B 2 Cm�m : �primal(B) = 0 at ei�

	
:

Proof. For the multidisk problem,

�primal(B) =

�
�diag

�
G1(K1 � f)TB; : : : ; Gv(Kv � f)TB

	
�v
p=1G

pTGpBT

�
:

Thus, �primal(B) = 0 if and only if Gp(Kp � f)TB = 0 for p = 1; : : : ; v and
vP

p=1

GpTGpBT = 0: The second equation is equivalent to GpBT = 0 for p = 1; : : : ; v.

This completes the proof of the �rst assertion. The second follows immediately from

the de�nition of �pnull(�). �

5.2.2 The null space of �dual

Lemma 5.5 In the H1 multidisk case, let Bp 2 Ckp�kp for p = 1; : : : ; v. Then the

null space of �dual is equal to zero providing that Bp = Okp�kp, p = 1; : : : ; v, is the

only solution of the equation

vX
p=1

fKp(ei�)� f(ei�)gGp(ei�)TBpGp(ei�) = 0; (69)

that is, �dnull(�) = 0 for all �.

Proof. Recall that �dual is regular provided the null space of �dual is 0 at each point

ei� 2 T. This is an elaboration of the calculation for the Nehari case. It is an easy

consequence of the de�nition of �dual and formula (65). �

5.2.3 The U condition for the multidisk problem

In view of formula (64) and the calculations for the Nehari problem, it is readily seen

that

UfU
T
f =

vX
p=1

�Tdiag
n
(Kp � f)(Kp � f)T ; : : : ; (Kp � f)(Kp � f)T

o
�;

where the block diagonal matrix inside the curly brackets on the right has m identical

m � m blocks and � is an m2 � m2 permutation matrix. Thus, Uf (e
i�)Uf (e

i�)T is

invertible if and only if Kp(ei�) � f(ei�) is invertible for p = 1; : : : ; v. However, if

v > 1, then Uf (e
i�)TUf (e

i�) is never invertible.
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5.3 Proof of Theorem 1.8

Proof. The �rst four assumptions of this theorem guarantee that the assumptions

imposed in Theorem 1.5 are met. Therefore, all the conclusions of the latter are in

force. In view of Lemma 5.2 and the presumed smoothness we have (PSCON). Then,

with the aid of assumption (5), we obtain the �rst two items of (SCOM). The third

follows from the construction in Section 3.3.1. In particular, since 	(ei�) is continuous

with constant rank, the Moore-Penrose inverse 	[�1](ei�) is also a continuous function

of � on the unit circle (cf [Ste:77]). Therefore, � is continuous and strictly positive

de�nite on the circle. This guarantees the existence of the factorization ��1 = QTQ

with Q outer. However, in order to obtain a continuous factor Q, we need a little

more:

By a general theorem that has been obtained in the work of J. Plemelj, N. I.

Mushelisvili and N. P. Vekua, a suÆcient condition for the continuity of Q is the

Holder continuity of � on the circle. Therefore, since 
I � �(ei�; f(ei�)) is Holder

continuous by assumption, it remains only to check that the Moore-Penrose inverse

	[�1](ei�) of 	(ei�) is Holder continuous. To this end, let C be a simple closed contour

in the open right half plane that encircles the nonzero spectrum �0(	(ei�)) of the

positive semide�nite matrix 	(ei�) for all � 2 [0; 2�] and is such that

j�� �j � Æ > 0 (70)

for every choice of � 2 C and � 2 �0(ei�). The presumed continuity and constant rank

of 	(ei�) guarantees the existence of such a contour. Then it is readily checked that

	[�1](ei�) =
1

2�i

Z
C

��1(�I �	(ei�))�1d�

and hence that

d

d�
	[�1](ei�) =

1

2�i

Z
C

��1(�I � 	(ei�))�1	0(ei�)(�I � 	(ei�))�1d�:

Therefore, since

k(�I �	(ei�)�1k � Æ�1 (71)

for � 2 C, thanks to (70), the last formula leads easily to the bound



 dd�	[�1](ei�)





 � 1

2�
Æ�2k	0(ei�)k

Z
C

jd�j

j�j
;

which in turn guarantees the Holder continuity of 	[�1]. The fact that H(ei�) has

constant rank follows easily from the construction in Section 3.3.1.

Now we return to the main thread of the proof. Hypotheses (6) and (7) state that

�primal and �dual are regular. Thus, by Theorem 2.3, T 0 is Fredholm of index zero.

On the otherhand, if either (6) or (7) fails, then, by Proposition 3.8, the symbol M

is not invertible for all � and hence the operator T 0 is not Fredholm. �
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6 Supplementary Proofs

We begin this section with a proof of the optimality theorem on which this paper is

based. The proof is a re�nement of the proof of Theorem 2 of [HMW:98] (which also

appears as Theorem 17.1.1 of [HMer:98]). Then we turn to the GTG factorization of

	 and establish Lemma 1.2, which serves to rephrase condition (a) of Theorem 1.1 in

terms of G. Subsequently, we prove a few specializations of Theorem 1.1 to the multi

performance case and then, �nally, justify Proposition 1.11.

6.1 Proof of Theorem 1.1

Equation (20.34) on page 217 of [HMer:98] implies that if 
; f is a local solution of

the MOPT problem with 
Im � �(ei�; f(ei�)) � 0, then

tr

�
@�

@z`
(�; f)(d�)�

�
= ei�'`

d�

2�
; ` = 1; : : : ; N ; (72)

where '` belongs to the Hardy space H1 and d� is an m � m nonnegative matrix

valued measure on the circle such thatZ 2�

0

trfd�g = 1 : (73)

Consider the Radon-Lebesgue-Nikodym decomposition

(d�)� = 	
d�

2�
+ d� ; (74)

where 	 is an m�m mvf that is summable on the circle and d� is an m�m matrix

valued measure whose entries are singular with respect to Lebesgue measure. Note

that since d� is nonnegative, so are (d�)� , 	 and d�. Substituting (74) into (72) and

matching absolutely continuous and singular measures, yields the relations

tr

�
@�

@z`
(�; f)	

�
= ei�'` (75)

and

tr

�
@�

@z`
(�; f)d�

�
= 0 : (76)

Next, by (20.37) of [HMer:98] (corrected{by transposing one of the factors{and)

adapted to the present setting, we haveZ 2�

0

trf[
Im � �(ei�; f(ei�))](d�)�g = 0 (77)
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and hence, upon invoking the decomposition (74) and taking advantage of the fact

that 
Im � �(�; f), 	 and d� are all positive semide�nite, we obtainZ 2�

0

trf[
Im � �(ei�; f(ei�))]	(ei�)gd� = 0 (78)

and Z 2�

0

trf[
Im � �(ei�; f(ei�))]d� = 0: (79)

But (76) and (79) imply that

Vf(e
i�; d�) = 0

and hence, by assumption (4), d� = 0. On the other hand, formula (78) implies that

trf[
Im � �(ei�; f(ei�))]	(ei�)g = 0

a.e. on the circle. Therefore, since both of the factors in the product are positive

semide�nite, the full matrix

[
Im � �(ei�; f(ei�))]	(ei�) = 0

a.e. on the circle. This is conclusion (a) of (19). Condition (c) of (19) drops out

easily from formulas (73) and (74) and the vanishing of d�.

Finally, (75) implies that

tr

�
e�i�

@�

@zj
(�; f)	

�
2 H1 \ L2; j = 1; : : : ; N:

Therefore, by the Smirnov maximum principle,

tr

�
e�i�

@�

@zj
(�; f)	

�
2 H2; j = 1; : : : ; N:

But this is easily seen to be equivalent to condition (b) of (19). �

6.2 Proof of Lemma 1.2

If (
Im��(�; f))GTG = 0, then (
Im��(�; f))GTG(
Im��(�; f)) = 0, which implies

thatG(
Im��(�; f)) = 0. Therefore, (1)) (3)) PH2
+
[G(
��(�; f)] = 0. Conversely,

if this last condition holds, then G(
Im � �(�; f)) = F , with F 2 H2?
+ . Thus,

GTG(
Im � �(�; f)) = GTF

and
1

2�

Z
trfGTG(
I � �(�; f))gd� =

1

2�

Z
trfGTFgd� = hF;Gi = 0;
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since F 2 (H2
+)

? and G 2 H2
+. But the trace of the product of nonnegative matrices

is nonnegative. Since the trace of the product integrates to zero, it must be zero for

almost all �. Now the product of nonnegative matrices has trace zero if and only if

the product itself is zero. Therefore

GTG(
Im � �(�; f)) = 0:

This proves that (2) ) (1) and serves to complete the proof. �

Now we turn to multi-performance MOPT. In the setting of the multi perfor-

mance MOPT that was introduced in Section 5.1, it is readily checked that the

conditions in (19) can be reexpressed in terms of the positive semide�nite diagonal

blocks 	p 2 L1
m�m of 	 and the performance functions �p, p = 1; : : : ; v, as follows:

There exist a set of positive semide�nite mvf's 	p 2 L1
m�m such that

	1(
I � �1) = � � � = 	v(
I � �v) = 0

tr
n
	1 @�1

@zj

o
+ � � �+ tr

n
	v @�v

@zj

o
2 ei�H1

vP
p=1

R
tr(	p)d� = 2�

(80)

6.3 Proof of Theorem 5.1

The proof is an immediate consequence of Lemma 1.2 and Theorem 1.1, specialized

to the H1 multidisk case. Formula (80) translates the conclusions of that theorem

to the present setting. �

6.4 Proof of Proposition 1.11

In order to prove Proposition 1.11 we need a lemma.

Lemma 6.1 Let Lp and RpT be m�kp matrices of rank kp, for p = 1; : : : ; v and sup-

pose that at least one of the sets fL1; : : : ; Lvg; fR1T ; : : : ; RvTg has linearly independent

ranges. Then:

1. The only matrices Bp 2 Ckp�kp; p = 1; : : : ; v, which satisfy the condition

vX
p=1

LpBpRp = 0 (81)

are the matrices Bp = 0 for p = 1; : : : ; v.
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2. If
vX

p=1

kp = m;

then the only matrix C 2 Cm�m that meets the conditions

RpCT = 0 and LpTC = 0 for p = 1; : : : ; v;

is the matrix C = 0.

We remark that the formulation of part (2) of this lemma is a little deceptive. At

�rst glance it appears that the conditions RpCT = 0 and LpTC = 0 are reenforcing

each other. In fact they are invoked independently, according to which of the matrices

R or L (that are de�ned below in the proof) is invertible.

Proof of Lemma 6.1

Proof of (1). Let

L =
h
L1 � � �Lv

i
; RT =

h
R1T � � �RpT

i
and

B = diagfB1; : : : ; Bvg:

Then the condition (81) is the same as to say that

L B R = 0:

Now, if the set Lp; p = 1; : : : ; v, has linearly independent ranges, then L is left

invertible. Therefore

B R = 0;

or, what is the same,

BpRp = 0 for p = 1; : : : ; v:

But this in turn implies that Bp = 0, since the presumed maximal rank condition

implies that the Rp are all right invertible. This completes the proof of (1), when the

Lp; p = 1; : : : ; v have linearly independent ranges.

If the RpT ; p = 1; : : : ; v, have linearly independent ranges, then R is right invertible

and hence the condition LBR = 0 leads to LB = 0, i.e., LpBp = 0 for p = 1; : : : ; v,

which again implies that Bp = 0 for all p.

Proof of (2). If the Lp; p = 1; : : : ; v, have linearly independent ranges, then the

assumption
vP

p=1

rankLp = m implies that L is an invertible matrix and the condition

LpTC = 0; p = 1; : : : ; v;
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implies that

LTC = 0;

which clearly forces C = 0. On the other hand, if the RpT have linearly independent

ranges, then the asumption
vP

p=1

rankRpT = m implies that RT is an invertible matrix

and the condition

RpCT = 0; p = 1; : : : ; v;

implies that

RCT = 0:

Therefore, C = 0 in this case also. �

Proof of Proposition 1.11. Since 	p(ei�) � 0, the constraints on B in

De�nition 1.6 are also valid if 	p is replaced by (	p)
1

2 . They imply that at each point

ei� 2 T; B maps the orthogonal complement of

rangef	1(ei�)g+ � � �+ rangef	v(ei�)g = rangef	1(ei�) + � � �+	v(ei�)g

into the orthogonal complement of

rangef(K1 � f)	1(K1 � f)T + � � �+ (Kv � f)	v(Kv � f)Tg(ei�) :

These spaces have dimension �D(�) and �R(�), respectively, which serves to prove the

�rst formula in the proposition.

The independence of �pnull(�) from � is true because rank 	p(ei�) is independent

of � for almost all �, since 	p has the analytic factor Gp.

Next, general position implies that

�D(�) = m�

vX
p=1

rank	p(ei�)

and

�R(�) = m�

vX
p=1

rank(Kp(ei�)� f(ei�))	p(ei�)(Kp(ei�)� f(ei�))T

= m�

vX
p=1

rank	p(ei�):

Thus general position implies the second formula.

That �pnull(�) = 0 = �dnull(�) follows immediately from part (2) and part (1) of

Lemma 6.1, respectively. �
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