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Abstract. In 1976, Onabe discovered that, in contrast to the Neukirch-

Uchida results that were proved around the same time, a number field K
is not completely characterized by its absolute abelian Galois group AK . The

first examples of non-isomorphic K having isomorphic AK were obtained on

the basis of a classification by Kubota of idele class character groups in terms
of their infinite families of Ulm invariants, and did not yield a description of

AK . In this paper, we provide a direct ‘computation’ of the profinite group

AK for imaginary quadratic K, and use it to obtain many different K that all
have the same minimal absolute abelian Galois group.

1. Introduction

The absolute Galois group GK of a number field K is a large profinite group that we
cannot currently describe in very precise terms. This makes it impossible to answer
fundamental questions on GK , such as the inverse Galois problem over K. Still,
Neukirch [6] proved that normal number fields are completely characterized by their
absolute Galois groups: if GK1

and GK2
are isomorphic as topological groups, then

K1 and K2 are isomorphic number fields. The result was refined by Ikeda, Iwasawa,
and Uchida [7; 8, Chapter XII, §2], who disposed of the restriction to normal number

fields, and showed that every topological isomorphism GK1

∼−→ GK2
is actually

induced by an inner automorphism of GQ. The same statements hold if all absolute
Galois groups are replaced by their maximal pro-solvable quotients.

It was discovered by Onabe [9] that the situation changes if one moves a further

step down from GK , to its maximal abelian quotient AK = GK/[Gk, GK ], which is
the Galois group AK = Gal(Kab/K) of the maximal abelian extension Kab of K.
Even though the Hilbert problem of explicitly generating Kab for general number
fields K is still open after more than a century, the group AK can be described by
class field theory, as a quotient of the idele class group of K.

Kubota [4] studied the group XK of continuous characters on AK , and expressed
the structure of the p-primary parts of this countable abelian torsion group in terms
of an infinite number of so-called Ulm invariants. It had been shown by Kaplansky
[2, Theorem 14] that such invariants determine the isomorphism type of a count-
able reduced abelian torsion group. Onabe computed the Ulm invariants of XK

explicitly for a number of small imaginary quadratic fields K, and concluded from
this that there exist non-isomorphic imaginary quadratic fields K and K ′ for which
the absolute abelian Galois groups AK and AK′ are isomorphic as profinite groups.
This may even happen in cases where K and K ′ have different class numbers.
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In this paper, we obtain Onabe’s results by a direct class field theoretic approach
that completely avoids Kubota’s dualization and the machinery of Ulm invariants
We show that the imaginary quadratic fields K that are said to be of “type A” in [9]
share a minimal absolute abelian Galois group that can be described completely
explicitly as

AK = Ẑ2 ×
∏
n≥1

Z/nZ.

The numerical data that we present suggest that these fields are in fact very common
among imaginary quadratic fields: more than 97% of the 2338 fields of odd prime
class number hK = p < 100 are of this nature. We believe (Conjecture 7.1) that
there are actually infinitely many K for which AK is the minimal group above.
Our belief is supported by certain reasonable assumptions on the average splitting
behavior of exact sequences of abelian groups, and these assumptions are tested
numerically in the final section of the paper.

2. Galois groups as Ẑ-modules

The profinite abelian Galois groups that we study in this paper naturally come with
a topology for which the identity has a basis of open neighborhoods that are open
subgroups of finite index. This implies that they are not simply Z-modules, but that
the exponentiation in these groups with ordinary integers extends to exponentiation

with elements of the profinite completion Ẑ = lim←n Z/nZ of Z. By the Chinese

remainder theorem, we have a decomposition of the profinite ring Ẑ =
∏
p Zp into

a product of rings of p-adic integers, with p ranging over all primes. As Ẑ-modules,
our Galois groups decompose correspondingly as a product of pro-p-groups.

It is instructive to look first at the Ẑ-module structure of the absolute abelian
Galois group AQ of Q, which we know very explicitly by the Kronecker-Weber
theorem. This theorem states that Qab is the maximal cyclotomic extension of
Q, and that an element σ ∈ AQ acts on the roots of unity that generate Qab by
exponentiation. More precisely, we have σ(ζ) = ζu for all roots of unity, with u

a uniquely defined element u in the unit group Ẑ∗ of the ring Ẑ. This yields the

well-known isomorphism AQ = Gal(Qab/Q) ∼= Ẑ∗ =
∏
p Z
∗
p.

For odd p, the group Z∗p consists of a finite torsion subgroup Tp of (p − 1)-st
roots of unity, and we have an isomorphism

Z∗p = Tp × (1 + pZp) ∼= Tp × Zp

because 1 + pZp is a free Zp-module generated by 1 + p. For p = 2 the same is true
with T2 = {±1} and 1 + 4Z2 the free Z2-module generated by 1 + 4 = 5. Taking
the product over all p, we obtain

(1) AQ
∼= TQ × Ẑ,

with TQ =
∏
p Tp the product of the torsion subgroups Tp ⊂ Q∗p of the multiplicative

groups of the completions Qp of Q. More canonically, TQ is the closure of the

torsion subgroup of AQ, and AQ/TQ is a free Ẑ-module of rank 1.
Even though it looks at first sight as if the isomorphism type of TQ depends on

the properties of prime numbers, one should realize that in an infinite product of
finite cyclic groups, the Chinese remainder theorem allows us to rearrange factors
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in many different ways. One can for instance write

(2) TQ =
∏
p

Tp ∼=
∏
n≥1

Z/nZ,

as both of these products, when written as a countable product of cyclic groups
of prime power order, have an infinite number of factors Z/`kZ for each prime
power `k. Note that, for the product

∏
p Tp of cyclic groups of order p − 1 (for

p 6= 2), this statement is not completely trivial: it follows form the existence, by
the well-known theorem of Dirichlet, of infinitely many primes p that are congruent
to 1 mod `k, but not to 1 mod `k+1.

We deduce from (1) that the subfield of Qab left invariant by the subgroup

TQ ⊂ AQ = Gal(Qab/Q) is the unique Ẑ-extension of Q. Note that TQ is the
closure of the torsion subgroup of AQ, but that it is not a torsion group itself.

Now suppose that K is an arbitrary number field, with ring of integers O. By class
field theory, AK is the quotient of the idele class group CK = (

∏′
p≤∞K∗p)/K∗ of K

by the connected component of the identity. In the case of imaginary quadratic
fields K, this connected component is the subgroup K∗∞ = C∗ ⊂ CK coming from
the unique infinite prime of K, and in this case the Artin isomorphism for the
absolute abelian Galois group AK of K reads

(3) AK = K̂∗/K∗ = (
∏′

p

K∗p)/K∗.

Here K̂∗ =
∏′

pK
∗
p is the group of finite ideles of K, i.e., the restricted direct

product of the groups K∗p at the finite primes p of K, taken with respect to the
unit groups O∗p of the local rings of integers. For the purposes of this paper, which
tries to describe AK as a profinite abelian group, it is convenient to treat the
isomorphism for AK in (3) as an identity – as we have written it down.

The expression (3) is somewhat more involved than the corresponding identity

AQ = Ẑ∗ for the rational number field, but we will show in Lemma 3.2 that the
inertial part of AK , i.e., the subgroup UK ⊂ AK generated by all inertia groups
O∗p ⊂ CK , admits a description very similar to (1).

Denote by Ô =
∏

pOp the profinite completion of the ring of integers O of K.
In the case that K is imaginary quadratic, the inertial part of AK takes the form

(4) UK = (
∏
p

O∗p)/O∗ = Ô∗/µK ,

since the unit group O∗ of O is then equal to the group µK of roots of unity in K.
Apart from the quadratic fields of discriminant −3 and −4, which have 6 and 4
roots of unity, respectively, we always have µK = {±1}, and (4) can be viewed as

the analogue for K of the group Ẑ∗ = AQ.

In the next section, we determine the structure of the group Ô∗/µK . As the
approach works for any number field, we will not assume that K is imaginary
quadratic until the very end of that section.
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3. Structure of the inertial part

Let K be any number field, and Ô =
∏

pOp the profinite completion of its ring of
integers. Denote by Tp ⊂ O∗p the subgroup of local roots of unity in K∗p , and put

(5) TK =
∏
p

Tp ⊂
∏
p

O∗p = Ô∗.

The analogue of (1) for K is the following.

Lemma 3.1. The closure of the torsion subgroup of Ô∗ is equal to TK , and Ô∗/TK
is a free Ẑ-module of rank [K : Q]. Less canonically, we have an isomorphism

Ô∗ ∼= TK × Ẑ[K:Q].

Proof. As the finite torsion subgroup Tp ⊂ O∗p is closed in O∗p, the first statement

follows from the definition of the product topology on Ô∗ =
∏

pO∗p.
Reduction modulo p in the local unit group O∗p gives rise to an exact sequence

1→ 1 + p −→ O∗p −→ k∗p → 1

that can be split by mapping the elements of the unit group k∗p of the residue class
field to their Teichmüller representatives inO∗p. These form the cyclic group of order
#k∗p = Np − 1 in Tp consisting of the elements of order coprime to p = char(kp).
The kernel of reduction 1 +p is by [3, one-unit theorem, p. 231] a finitely generated
Zp-module of free rank d = [Kp : Qp] having a finite torsion group consisting of
roots of unity in Tp of p-power order. Combining these facts, we find that O∗p/Tp
is a free Zp-module of rank d or, less canonically, that we have a local isomorphism

O∗p ∼= Tp × Z[Kp:Qp]
p

for each prime p. Taking the product over all p, and using the fact that the sum of
the local degrees at p equals the global degree [K : Q], we obtain the desired global
conclusion. �

As TK =
∏

p Tp contains the finite group µK of global roots of unity along the
diagonal, every cyclic group Tp is of order divisible by wK = #µK . In particular, if
we write TK as an infinite product of cyclic groups of prime power order, no groups
of order `k will occur for primes ` satisfying `k+1|wK . All other prime power orders
do occur infinitely often, yielding the following characterization of TK .

Lemma 3.2. Let wK be the number of roots of unity in K. Then we have a
non-canonical isomorphism of profinite groups

TK =
∏
p

Tp ∼=
∏
n≥1

Z/nwKZ.

If wK is squarefree, then TK is isomorphic to the group TQ in (2).

Proof. When the groups
∏

p Tp and
∏
n≥1 Z/nwKZ are written as infinite products

of cyclic groups of prime power order, then no orders `k for which we have `k+1|wK
occur on either side. All other prime power orders `k occur infinitely often for the
second group, so we need to show that the same holds for

∏
p Tp.

Let `k be such a prime power. As Tp contains a subgroup isomorphic to k∗p as a
direct summand, we have to show that there are infinitely many primes p of K for
which the norm Np is congruent to 1 mod `k, but not to `k+1. By assumption, K
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does not contain a primitive `k+1-th root of unity ζ, so K ⊂ K(ζ) is a non-trivial
abelian extension. Now let p - ` be any prime of K that does not split completely
in K ⊂ K(ζ). Then this p does what we want, and by the Chebotarev density
theorem or one of its 19th century predecessors [11], the set of such p has positive
density.

The case where wK is squarefree is the case where all prime power orders occur
infinitely often when TK is written as a product of cyclic groups of prime power
order. Clearly K = Q is among them. �

Corollary 3.3. There are infinitely many primes p - wK of K for which we have

gcd(wK , (Np− 1)/wK) = 1.

Proof. This follows from a slight variation of the proof that we just gave. For every
prime power `k||wK , the extension K ⊂ K(ζ) in the proof of Lemma 3.2 is a cyclic
extension of prime degree `. For different ` we get different extensions, so there are
infinitely many primes p - wK of K that are inert in all of the extensions K ⊂ K(ζ)
of degree ` with `|wK . For such p, we have gcd(wK , (Np− 1)/wK) = 1. �

Lemmas 3.1 and 3.2 tell us what Ô∗ looks like as a Ẑ-module. In particular, it
shows that the dependence on K is limited to the degree [K : Q], which is reflected

in the rank of the free Ẑ-part of Ô∗, and the primes occurring to powers ≥ 2 in the

number wK of roots of unity of K. For the group Ô∗/µK , the same is true, but
the proof requires an extra argument.

Lemma 3.4. We have a non-canonical isomorphism TK/µK ∼=
∏
n≥1 Z/nwKZ.

Proof. In view of Lemma 3.2, this amounts to showing that the isomorphism type
of TK is unchanged if we divide out the finite cyclic group µK of order wK . To
see this, pick a prime p0 of K that satisfies the conditions of Corollary 3.3. Then
µK embeds as a direct summand in Tp0

, and we can write Tp0
∼= µK × Tp0

/µK as
a product of two cyclic groups of coprime order. It follows that the natural exact
sequence

1→
∏
p6=p0

Tp −→ TK/µK −→ Tp0/µK → 1

can be split using the composed map Tp0
/µK → Tp0

→ TK → TK/µK . This makes
TK/µK isomorphic to the product of

∏
p6=p0

Tp and a cyclic group of order coprime

to wK . The first group is also isomorphic to the product
∏
n≥1 Z/nwKZ from

Lemma 3.2, as we have only left out a single finite cyclic group from
∏

p Tp. Taking

the product of
∏
n≥1 Z/nwKZ with a finite cyclic group of order coprime to wK

does not change its isomorphism type. �

For imaginary quadratic K, where Ô∗/µK constitutes the inertial part UK of AK
from (4), we summarize the results of this section in the following way.

Theorem 3.5. For imaginary quadratic fields K, the subgroup TK/µK is a direct
summand of the inertial part UK of AK , and we have isomorphisms

UK = Ô∗/µK ∼= Ẑ2 × TK/µK ∼=

{
Ẑ2 ×

∏∞
n=1 Z/nZ, K 6= Q(i)

Ẑ2 ×
∏∞
n=1 Z/4nZ, K = Q(i)

of profinite groups.
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4. Extensions of Galois groups

In the previous section, all results could easily be stated and proved for arbitrary
number fields. From now on, K will denote an imaginary quadratic field. In order
to describe the full group AK from (3), we consider the exact sequence

(6) 1→ UK = Ô∗/µK −→ AK = K̂∗/K∗
ψ−→ClK → 1

that describes the class group ClK of K in idelic terms. Here ψ maps the class of the

finite idele (xp)p ∈ K̂∗ to the class of its associated ideal
∏

p p
ep , with ep = ordp xp.

The sequence (6) shows that UK is an open subgroup of AK of index equal to the
class number hK of K. In view of Theorem 3.5, this immediately yields Onabe’s
discovery that different K can have the same absolute abelian Galois group.

Theorem 4.1. An imaginary quadratic number field K 6= Q(i) of class number 1
has absolute abelian Galois group isomorphic to

G = Ẑ2 ×
∏
n≥1

Z/nZ.

In Onabe’s paper [9, §5], the group G, which is not explicitly given but characterized
by its infinitely many Ulm invariants, is referred to as “of type A”. We will refer
to G as the minimal Galois group, as every absolute abelian Galois group of an
imaginary quadratic field K 6= Q(i) contains a subgroup isomorphic to G. We
will show that there are actually many more K having this absolute abelian Galois
group than the eight fields K of class number 1 to which the preceding theorem
applies.

Let us now take for K any imaginary quadratic number field different from Q(i).
Then Theorem 3.5 and the sequence (6) show that AK is an abelian group extension
of ClK by the minimal Galois group G from Theorem 4.1. If the extension (6) were
split, we would find that AK is isomorphic to G×ClK ∼= G. However, it turns out
that splitting at this level never occurs for non-trivial ClK , in the following strong
sense.

Theorem 4.2. For every imaginary quadratic field K, the sequence (6) is totally
non-split, i.e., there is no non-trivial subgroup C ⊂ ClK for which the associated
subextension 1→ UK → ψ−1[C]→ C → 1 is split.

Proof. Let C = 〈[a]〉 ⊂ ClK be a subgroup of prime order p for which the subex-
tension of (6) associated to C is split. Then there exists an element

((xp)p mod K∗) ∈ ψ−1([a]) ⊂ AK = K̂∗/K∗

of order p. In other words, there exists α ∈ K∗ such that we have xpp = α ∈ K∗p for
all p, and such that α generates the ideal ap. But this implies by [1, Chapter IX,
Thm. 1] that α is an p-th power in K∗, and this implies that a is a principal ideal.
Contradiction. �

At first sight, Theorem 4.2 seems to indicate that whenever the class number hK
exceeds 1, the group AK will not be isomorphic to the minimal Galois group G ∼=
UK . However, finite abelian groups requiring no more than k generators do allow

extensions by free Ẑ-modules of finite rank k that are again free of rank k, just like
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they do with free Z-modules in the classical setting of finitely generated abelian
groups. The standard example for k = 1 is the extension

1→ Ẑ
×p−→ Ẑ −→ Z/pZ→ 1

for an integer p 6= 0, prime or not. Applying to this the functor Hom(−,M) for a

multiplicatively written Ẑ-module M , we obtain an isomorphism

(7) M/Mp ∼−→ Ext(Z/pZ,M)

by the Hom-Ext-sequence from homological algebra [5]. We will use it in Section 5.

Lemma 4.3. Let B be a finite abelian group, F a free Ẑ-module of finite rank k,
and

1→ F −→ E −→ B → 1

an exact sequence of Ẑ-modules. Then E is free of rank k if and only if this sequence
is totally non-split.

Proof. One may reduce the statement to the familiar case of modules over principal

ideal domains by writing Ẑ =
∏
p Zp, and consider the individual p-parts of the

sequence. �

In order to apply the preceding lemma, we replace the extension (6) by the push-

out under the quotient map UK = Ô∗/µK → UK/TK = Ô∗/TK from UK to its

maximal Ẑ-free quotient. This yields the exact sequence of Ẑ-modules

(8) 1→ Ô∗/TK −→ K̂∗/(K∗ · TK) −→ ClK → 1

in which ClK is finite and Ô∗/TK is free of rank 2 over Ẑ by Lemma 3.1.

Theorem 4.4. Let K 6= Q(i) be an imaginary quadratic field for which the sequence
(8) is totally non-split. Then the absolute Galois group of K is the minimal group G
occurring in Theorem 4.1.

Proof. If the extension (8) is totally non-split, then K̂∗/(K∗ · TK) is free of rank 2

over Ẑ by Lemma 4.3. In this case the exact sequence of Ẑ-modules

1→ TK/µK −→ AK = K̂∗/K∗ −→ K̂∗/(K∗ · TK)→ 1

is split, and AK is isomorphic to UK = G = Ẑ2 × TK/µK . �

It is instructive to see what all the preceding extensions of Galois groups amount
to in terms of field extensions. The diagram of fields below lists all subfields of
the extension K ⊂ Kab corresponding to the various subgroups we considered in
analyzing the structure of AK = Gal(Kab/K).

We denote by H the Hilbert class field of K. This is the maximal totally unram-
ified abelian extension of K, and it is finite over K with group ClK . The inertial
part of AK is the Galois group UK = Gal(Kab/H), which is isomorphic to G for all
imaginary quadratic fields K 6= Q(i). The fundamental sequence (6) corresponds
to the tower of fields

K ⊂ H ⊂ Kab.

By Theorem 3.5, the invariant field L of the closure TK/µK of the torsion subgroup

of UK is an extension of H with group Ẑ2. The tower of field extensions

K ⊂ H ⊂ L
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corresponds to the exact sequence of Galois groups (8).

We define L0 as the ‘maximal Ẑ-extension’ of K, i.e., as the compositum of the
Zp-extensions of K for all primes p. As is well-known, an imaginary quadratic field
admits two independent Zp-extensions for each prime p, so F = Gal(L0/K) is a

free Ẑ-module of rank 2, and L0 is the invariant field under the closure T0 of the
torsion subgroup of AK . The image of the restriction map T0 → ClK is the maximal
subgroup of ClK over which (8) splits. The invariant subfield of H corresponding to
it is the intersection L0∩H. The totally non-split case occurs when H is contained
in L0, leading to L0 ∩H = H and L0 = L. In this case Gal(L/K) = Gal(L0/K) is

itself Ẑ-free of rank 2, and AK is an extension of Ẑ2 by TK/µK that is isomorphic
to G.

Kab

�����������

,,,,,,,,,,,,,,,,,,,,,,

UK=G

AK

TK/µK

T0

L

~~~~~~~~~~~~~

KKKKKKKKKKKKKKKKKK

Ẑ2

L0

MMMMMMMMMMMMMMMMMMM
Ẑ2

F

H

�����������

ClK
L0 ∩H

K

5. Finding minimal Galois groups

In order to use Theorem 4.4 and find imaginary quadratic K for which the absolute
abelian Galois group AK is the minimal group G from Theorem 4.1, we need an
algorithm that can effectively determine, on input K, whether the sequence of

Ẑ-modules

(8) 1→ Ô∗/TK −→ K̂∗/(K∗ · TK) −→ ClK → 1

from Section 4 is totally non-split. This means that for every ideal class [a] ∈ ClK
of prime order, the subextension E[a] of (8) lying over the subgroup 〈[a]〉 ⊂ ClK is
non-split.

Any profinite abelian group M is a module over Ẑ =
∏
p Zp, and can be written

accordingly as a product M =
∏
pMp of p-primary parts, where Mp = M ⊗Ẑ Zp is

a pro-p-group and Zp-module. In the same way, an exact sequence of Ẑ-modules is
a ‘product’ of exact sequences for their p-primary parts, and splitting over a group
of prime order p only involves p-primary parts for that p.
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For the free Ẑ-module M = Ô∗/TK in (8), we write Tp for the torsion subgroup
of O∗p = (O ⊗Z Zp)

∗ =
∏

p|pO∗p. Then the p-primary part of M is the pro-p-group

(9) Mp = O∗p/Tp =
∏
p|p

(O∗p/Tp) ∼= Z2
p.

In order to verify the hypothesis of Theorem 4.4, we need to check that the extension
E[a] has non-trivial class in Ext(〈[a]〉,M) for all [a] ∈ ClK of prime order p. We can
do this by verifying in each case that the element ofM/Mp = Mp/M

p
p corresponding

to it under the isomorphism (7) is non-trivial. This yields the following theorem.

Theorem 5.1. Let K be imaginary quadratic, and define for each prime number
p dividing hK the homomorphism

φp : ClK [p] −→ O∗p/Tp(O∗p)p

that sends the class of a p-torsion ideal a coprime to p to the class of a generator
of the ideal ap. Then (8) is totally non-split if and only if all maps φp are injective.

Proof. Under the isomorphism (7), the class of the extension

1→M −→ E
f−→Z/pZ→ 1

in Ext(Z/pZ,M) corresponds by [5, Chapter III, Prop. 1.1] to the residue class
of the element (f−1(1 mod pZ))p ∈ M/Mp. In the case of E[a], we apply this to

M = Ô∗/TK , and choose the identification Z/pZ = 〈[a]〉 under which 1 mod pZ is

the inverse of [a]. Then f−1(1 mod pZ) is the residue class in K̂∗/(K∗ ·TK) of any

finite idele x ∈ K̂∗ that is mapped to ideal class of a−1 under the map ψ from (6).
We pick a in its ideal class coprime to p, and take for x = (xp)p an idele that

locally generates a−1 at all p. If α ∈ K∗ generates ap, then xpα is an idele in Ô∗
that lies in the same class modulo K∗ as xp, and its image

(f−1(1 mod pZ))p = xp = xpα ∈M/Mp = Mp/M
p
p = O∗p/Tp(O∗p)p

corresponds to the class of E[a] in Ext(〈[a]〉,O∗/TK). As the idele x = (xp)p
has components xp ∈ O∗p at p|p by the choice of a, we see that this image in
Mp/M

p
p = O∗p/Tp(O∗p)p is the element φp([a]) we defined. The map φp is clearly

a homomorphism, and we want it to assume non-trivial values on the elements of
order p in ClK [p], for each prime p dividing hK . The result follows. �

Remark. It is possible to prove Theorem 5.1 without explicit reference to homologi-
cal algebra. What the proof shows is that, in order to lift an ideal class of arbitrary
order n under (8), it is necessary and sufficient that its n-th power is generated by
an element α that is locally everywhere a n-th power up to multiplication by local
roots of unity. This extra leeway in comparison with the situation in Theorem 4.2
makes it into an interesting splitting problem for the group extensions involved, as
this condition on α may or may not be satisfied. Note that at primes outside n,
the divisibility of the valuation of α by n automatically implies the local condition.

In Onabe’s paper, which assumes throughout that ClK itself is a cyclic group of
prime order, the same criterion is obtained from an analysis of the Ulm invariants
occurring in Kubota’s set-up [4].

Our Theorem 5.1 itself does not assume any restriction on ClK , but its use in
finding K with minimal absolute Galois group G does imply certain restrictions on
the structure of ClK . The most obvious implication of the injectivity of the map φp
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in the theorem is the bound on the p-rank of ClK , which is defined as the dimension
of the group ClK /ClpK as an Fp-vector space.

Corollary 5.2. If ClK has p-rank at least 3 for some p, then the sequence (8)
splits over a subgroup of ClK of order p.

Proof. It follows from the isomorphism in (9) that the image of φp lies in a group
that is isomorphic to (Z/pZ)2. If ClK has p-rank at least 3, then φp will not be
injective. Now apply Theorem 5.1. �

As numerical computations in uncountable Ẑ-modules such as K̂∗/(K∗ · TK) can
only be performed with finite precision, it is not immediately obvious that the
splitting type of an idelic extension as (8) can be found by a finite computation.
The maps φp in Theorem 5.1 however are linear maps between finite-dimensional
Fp-vector spaces that lend themselves very well to explicit computations. One just
needs some standard algebraic number theory to compute these spaces explicitly.
A high-level description of an algorithm that determines whether the extension (8)
is totally non-split is then easily written down.

Algorithm 5.3.

Input : An imaginary quadratic number field K.
Output : NO if the extension (8) for K is not totally non-split, YES otherwise.
Step 1. Compute the class group ClK of K. If ClK has p-rank at least 3 for some p,

output NO and stop.
Step 2. For each prime p dividing hK , compute n ∈ {1, 2} O-ideals coprime to p

such that their classes in ClK generate ClK [p], and generators x1 up to xn
for their p-th powers.

Check whether x1 is trivial in O∗(p)/TK(O∗(p))
p. If it is, output NO and

stop. If n = 2, check whether x2 is trivial in O∗p/TK · 〈x1〉 · (O∗p)p. If it is,
output NO and stop.

Step 3. If all primes p|hK are dealt with without stopping, output YES and stop.

Step 1 is a standard task in computational algebraic number theory. For imaginary
quadratic fields, it is often implemented in terms of binary quadratic forms, and
particularly easy. From an explicit presentation of the group, it is also standard
to find the global elements x1 and, if needed, x2. The rest of Step 2 takes place
in a finite group, and this means that we only compute in the rings Op up to
small precision. For instance, computations in Z∗p/Tp(Z

∗
p)
p amount to computations

modulo p2 for odd p, and modulo p3 for p = 2.

6. Splitting behavior at 2

The splitting behavior of the sequence (8) depends strongly on the structure of the p-
primary parts of ClK at the primes p|hK . In view of Theorem 5.1 and Corollary 5.2,
fields with cyclic class groups and few small primes dividing hK appear to be more
likely to have minimal Galois group G. In Section 7, we will provide numerical data
to examine the average splitting behavior.

For odd primes p, class groups of p-rank at least 3 arising in Corollary 5.2 are
very rare, at least numerically and according to the Cohen-Lenstra heuristics. At
the prime 2, the situation is a bit different, as the 2-torsion subgroup of ClK admits
a classical explicit description going back to Gauss. Roughly speaking, his theorem
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on ambiguous ideal classes states that ClK [2] is an F2-vector space generated by the
classes of the primes p of K lying over the rational primes that ramify in Q ⊂ K,
subject to a single relation coming from the principal ideal (

√
DK). Thus, the 2-

rank of ClK for a discriminant with t distinct prime divisors equals t− 1. In view
of Corollary 5.2, our method to construct K with absolute abelian Galois group G
does not apply if the discriminant DK of K has more than 3 distinct prime divisors.

If −DK is a prime number, then hK is odd, and there is nothing to check at the
prime 2.

For DK with two distinct prime divisors, the 2-rank of ClK equals 1, and we
can replace the computation at p = 2 in Algorithm 5.3 by something that is much
simpler.

Theorem 6.1. Let K be imaginary quadratic with even class number, and suppose
that its 2-class group is cyclic. Then the sequence (8) is non-split over ClK [2] if
and only if the discriminant DK of K is of one of the following three types:

(1) DK = −pq for primes p ≡ −q ≡ 5 mod 8;
(2) DK = −4p for a prime p ≡ 1 mod 4;
(3) DK = −8p for a prime p ≡ ±3 mod 8.

Proof. If K has a non-trivial cyclic 2-class group, then DK ≡ 0, 1 mod 4 is divisible
by exactly two different primes.

If DK is odd, we have DK = −pq for primes p ≡ 1 mod 4 and q ≡ 3 mod 4, and
the ramified primes p and q of K are in the unique ideal class of order 2 in ClK .
Their squares are ideals generated by the integers p and −q that become squares
in the genus field F = Q(

√
p,
√
−q) of K, which is a quadratic extension of K with

group C2 × C2 over Q that is locally unramified at 2.
If we have DK ≡ 5 mod 8, then 2 is inert in Q ⊂ K, and 2 splits in K ⊂ F .

This means that K and F have isomorphic completions at their primes over 2, and
that p and −q are local squares at 2. In this case φ2 is the trivial map in Theorem
5.1, and not injective.

If we have D ≡ 1 mod 8 then 2 splits in Q ⊂ K. In the case p ≡ −q ≡ 1 mod 8
the integers p and −q are squares in Z∗2, and φ2 is again the trivial map. In the
other case p ≡ −q ≡ 5 mod 8, the generators p and −q are non-squares in Z∗2, also
up to multiplication by elements in T2 = {±1}. In this case φ2 is injective.

If DK is even, we have either have DK = −4p for a prime p ≡ 1 mod 4 or
DK = −8p for an odd prime p. In the case DK = −4p the ramified prime over 2 is
in the ideal class of order 2, and the local field Q2(

√
−p) does not contain a square

root of ±2, so that φ2 is injective in this case. In the case DK = −8p the ramified
primes over both 2 and p are of the ideal class of order 2. For p ≡ ±1 mod 8 the
generator p is a local square at 2. For p ≡ ±3 mod 8 it is not. �

In the case where the 2-rank of ClK exceeds 1, the situation is even simpler.

Theorem 6.2. Let K be imaginary quadratic for which the 2-class group is non-
cyclic. The the map φ2 in Theorem 5.1 is not injective.

Proof. As every 2-torsion element in ClK is the class of a ramified prime p, its
square can be generated by a rational prime number. This implies that the image
of φ2 is contained in the cyclic subgroup

Z∗2/{±1}(Z∗2)2 ⊂ Ô∗/T2(Ô∗)2

of order 2. Thus φ2 is not injective if ClK has non-cyclic 2-part. �
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7. Computational results

In Onabe’s paper [9], only cyclic class groups ClK of prime order p ≤ 7 are consid-
ered. In this case there are just 2 types of splitting behavior for the extension (8),
and Onabe provides a list of the first few K with hK = p ≤ 7, together with the
type of splitting they represent. For hK = 2 the list is in accordance with Theorem
6.1. In the cases hk = 3 and hK = 5 there are only 2 split examples against 10
and 7 non-split examples, and for hK = 7 no non-split examples are found. This
suggests that φp is rather likely to be injective for increasing values of hK = p.

This belief is confirmed if we extend Onabe’s list by including all imaginary
quadratic K of odd prime class number hK = p < 100. By the work of Watkins
[12], we now know, much more precisely than Onabe did, what the exact list of
fields with given small class number looks like. The extended list, with the 55 out
of 2338 cases in which the extension (8) splits mentioned explicitly, looks as follows.

Table 1. Splitting types for hK = p < 100

p #K : hK = p non-split split

3 16 13 Q(
√
−643),Q(

√
−331),Q(

√
−107)

5 25 19 Q(
√
−1723),Q(

√
−1123),Q(

√
−1051),

Q(
√
−739),Q(

√
−443),Q(

√
−347)

7 31 27 Q(
√
−5107),Q(

√
−2707),Q(

√
−1163),

Q(
√
−859)

11 41 36 Q(
√
−9403),Q(

√
−5179),Q(

√
−2027),

Q(
√
−10987),Q(

√
−13267)

13 37 34 Q(
√
−11923),Q(

√
−2963),Q(

√
−1667)

17 45 41 Q(
√
−25243),Q(

√
−16699),Q(

√
−8539),

Q(
√
−383)

19 47 43 Q(
√
−17683),Q(

√
−17539),Q(

√
−17299),

Q(
√
−4327)

23 68 65 Q(
√
−21163),Q(

√
−9587),Q(

√
−2411)

29 83 80 Q(
√
−110947),Q(

√
−74827),Q(

√
−47563)

31 73 70 Q(
√
−46867),Q(

√
−12923),Q(

√
−9203)

37 85 83 Q(
√
−28283),Q(

√
−20011),

41 109 106 Q(
√
−96763),Q(

√
−21487),Q(

√
−14887)

43 106 105 Q(
√
−42683)

47 107 107 —
53 114 114 —
59 128 126 Q(

√
−166363),Q(

√
−125731)

61 132 131 Q(
√
−101483)

67 120 119 Q(
√
−652723)

71 150 150 —
73 119 117 Q(

√
−597403),Q(

√
−358747)

79 175 174 Q(
√
−64303)

83 150 150 —
89 192 189 Q(

√
−348883),Q(

√
−165587),Q(

√
−48779)

97 185 184 Q(
√
−130051)
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As the non-split types give rise to fields K having the minimal group G as its
absolute Galois group, one is inevitably led to the following conjecture.

Conjecture 7.1. There are infinitely many imaginary quadratic fields K for which
the absolute abelian Galois group is isomorphic to

G = Ẑ2 ×
∏
n≥1

Z/nZ.

The numerical evidence may be strong, but we do not even have a theorem that
there are infinitely many prime numbers that occur as the class number of an
imaginary quadratic field. And even if we had, we have no theorem telling us what
the distribution between split and non-split will be.

From Table 1, one easily gets the impression that among all K with hK = p,
the fraction for which the sequence (8) splits is about 1/p. In particular, assuming
infinitely many imaginary quadratic fields to have prime class number, we would
expect 100% of these fields to have the minimal absolute abelian Galois group G.

If we fix the class number hK = p, the list of K will be finite, making it impossible
to study the average distribution of the splitting behavior over ClK [p]. For this
reason, we computed the average splitting behavior over ClK [p] for the set Sp of
imaginary quadratic fields K for which the class number has a single factor p.

Table 2. Splitting fractions at p for hK divisible by p < 100

p Np p · fp Bp

3 300 0.960 107

5 500 0.930 107

7 700 0.960 107

11 1100 0.990 107

13 1300 1.070 107

17 1700 0.920 107

19 1900 1.000 107

23 2300 1.030 107

29 2900 1.000 106

31 3100 0.970 106

37 3700 0.930 106

41 4100 1.060 106

43 2150 1.080 106

47 470 0.900 107

53 530 1.000 105

59 590 0.900 106

61 1830 0.933 105

67 670 0.900 106

71 1000 1.136 105

73 3650 0.900 105

79 1399 1.130 107

83 1660 1.000 105

89 890 1.100 105

97 970 1.100 108
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More precisely, Table 2 above lists, for the first Np imaginary quadratic fields
K ∈ Sp of absolute discriminant |DK | > Bp, the fraction fp of K for which the
sequence (8) is split over ClK [p]. We started counting for absolute discriminants
exceeding Bp to avoid the influence that using many very small discriminants may
have on observing the asymptotic behavior. Numerically, the values for f · fp in
the table show that the fraction fp is indeed close to 1/p.

For the first three odd primes, we also looked at the distribution of the splitting
over the three kinds of local behavior in K of the prime p (split, inert or ramified)
and concluded that, at least numerically, there is no clearly visible influence.

Table 3. Splitting fractions at p according to local behavior at p

p Np Bp p · fp split inert ramified

3 300 107 0.960 0.925 0.947 1.025
5 500 107 0.930 0.833 0.990 1.022
7 700 107 0.960 0.972 0.963 0.897

We further did a few computations that confirmed the natural hypothesis that
the splitting behaviors at different primes p and q that both divide the class number
once are independent of each other.
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