Rational Approximations and Transcendence

D. B. Fucss AND M. B. FucHS

Let’s begin this article with a couple of definitions.

A real number that is a root of a polynomial with integer coefficients is called
algebraic. Real numbers that are not algebraic are called transcendental.

While there are infinitely many algebraic numbers and infinitely many transcen-
dental numbers, “most” numbers are transcendental. This fact is usually proved
in the following way. The set of algebraic numbers is countable, because the set of
polynomials with integer coefficients is countable and each such polynomial has a
finii;e1 number of roots. On the other hand, the set of all real numbers is uncount-
able.

This proof is interesting because it not only establishes the existence of tran-
scendental numbers, but also shows that in a certain sense there are more of them
than of algebraic numbers. However, this proof also has a significant shortcoming:
It isn't constructive. That is, it doesn’t actually produce any particular nonal-
gebraic number. To be sure, everyone knows some examples of transcendental
numbers: 7 and e, for instance. But proving the transcendence of these numbers
is not easy at all. And in general, proving the transcendence of a specific number
often turns out to be very complicated. For instance, in one of his famous prob-
lems, David Hilbert asked for a proof of the transcendence of the number 22, It
was a long time before this problem finally succumbed to the efforts of the Soviet
mathematician A. O. Gel’fond.

In this article we will indicate one of the methods for constructing transcen-
dental numbers (with the proof of their transcendence). Our basic instrument will
be the theory of rational approximations. In our articles about rational approxi-
mations? (we should mention that it isn’t necessary to know the content of those
articles in order to understand this one), we showed that the worst numbers to
approximate using rational numbers are quite nice algebraic numbers such as V2,
(V5 +1)/2, and so on. We will give a precise definition of a “well-approximable”
irrational number, and we will prove that all irrational numbers that can be well
approximated using rational numbers are transcendental. This will allow us to
construct as many examples of transcendental numbers as we wish.

The Russian original is published in Kvant 1973, no. 12, pp. 9-11.

1 An explanation of which sets are called countable and which sets are called uncountable can
be found in the article by Yu.P. Lysov, “Which Numbers Are There More Of?” in Kvant 1973,
no. 12, pp. 26-28. The proof of the uncountability of the set of real numbers is provided on p. 8
of the same issue of Kvant.

2 Kvant 1971, nos. 6 and 11. (See pp. 27-47 in this book.)
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DEFINITION. An irrational number « is called well-approximable if for all pos-
itive integers N, n, there is a rational number § such that
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It is easy to construct as many well-approximable numbers as we wish. For
example, let
a=010...010...010...010...,
m;—1 ma—1 ma—1
where m;,mp, mg, ... is an increasing sequence of integers greater than 1. Let us

set
ar=0.10...010...01...10...01.
mi—1 ma-1 mp—1
It is evident that oy is a rational number with denominator
Q= 1™+ tmetl

and that

la—ox]=a—ap=0.0 ... 010...<2-107™ TR < 10Tk,

my+-dmetmesr

Let us now assume that the sequence m;,mp,m3,... increases so rapidly that
Mig1 = k(ma+- - +my+2) for all k. (An example is the sequence 1,22,33%,44,... .
Prove it!) Then for all %,

1 10— k(ma+--+mi+1)

R R
s 10~F 10~ F(mate-tme+1)
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> 10741 > o — oy,

and therefore if n, N are any positive integers and k > n and k > N, then

la-—ak[<i<%.
kgt ~ Ngt

Thus « is a well-approximable number.
Let us now prove the following theorem.

THEOREM (Joseph Liouville (1809-1882)). A well-approzimable number cannot
be algebraic.

PROOF. Let us take an irrational algebraic number « and show that it is not
well-approximable. Since « is algebraic, there exists a polynomial

P(z) =apz" + 12" 1 4+ +ap

with integer coefficients such that P(a) = 0.

We will assume that P(x) has no rational roots. Indeed, if P(z) did have a
rational root, say a, then P(x) could be divided by z — a with no remainder. The
quotient polynomial would obviously have rational coefficients, so that multiplying
it by an appropriate integer, we would get a polynomial with integer coefficients
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for which @ would remain a root and whose degree would be one less than that of
the initial polynomial. Repeating this procedure as many times as necessary, we
would eventually obtain a polynomial with integer coefficients and with the root o
but with no rational roots.

Let us call A the greatest of the numbers |agl, |@1],- -, |an| and set B = |a] +
1, N =n2AB"",

Let us now show that whatever the fraction E may be, the following inequality
holds:

1
|a“§|ZNq"’ ()

and it is this inequality from which it follows that the number o is not well-

approximable.
Let E be any fraction. If

q

then inequality (*) is obviously satisfied, so we can limit ourselves to cases where

In particular (and this is very important),

|;—’l5|al+1=B.

From what was said above it follows that P (%) # 0.

Since
p n P n—1
i -] +ea (—-) +---+a
q [aﬁ (q) 1 g n]

is an integer not equal to zero, it follows that

P n p n—1
& =] +a -) +-rtanf| 21,
g [ao(q) 1(q ]
and consequently,
n n—1
P P : 1
=} +a | = +erday| 2 —.
oo (2)" 41 (2) =

On the other hand, taking into account that

apd™ + 016" + -+ + a, =0,
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we obtain
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Alg—a
q

n-nB""l=n2AB“‘ll§—a|=N|§—a|.

(We have made use of the fact that both & and |§| are less than B.)
Therefore,

NI2 ——al > -}—-;
q q
that is,
P 1
-E>
Ia ql ~ Ng»’
and the theorem is proved. O

Thus all well-approximable numbers (including the number o mentioned ear-
lier) are transcendental.

In conclusion, let us note that the theorem we have proved by no means exhaus-
tively reflects the connection between the algebraicity of numbers and the nature
of their rational approximations. Further development of these methods will allow
us to prove the transcendence of a variety of different numbers (by the way, the
transcendence of the number e is usually proved along the same lines). It should be
noted that research in this area continues even to this day. One of the most striking
results in this field in recent years has been the work of the mathematician Klaus
Friedrich Roth, who was awarded the prestigious Fields Medal at the International
Congress of Mathematicians in Edinburgh in 1958.
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The theorem proved by Roth states that if « is an algebraic number, then there
exist only finitely many fractions 5 such that for any given € > 0,

P 1
|G—El< q2+‘.

Therefore, our theorem about well-approximable numbers would have remained true
if in our definition of a well-approximable number we had demanded the existence
of the fraction E with

P 1
* Q| W q
not for all positive n and N, but for only a single n strictly greater than 2.

By the way, it is impossible to get rid of the € in Roth’s theorem. This fol-
lows from the Hurwitz—Borel theorem, which was proved in our article “On Best

Approximations. II” (Kvant, 1971, no. 11; see pp. 37—47 in this book).
Translated by ILYA BERNSTEIN



