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Context: classical Erdős–Rényi model

Erdős–Rényi random graph process

Start with an empty graph on n vertices

In each step: add a random edge to the graph

Phase transition of largest component (Erdős-Rényi, 1959)

Size ‘dramatically changes’ after ≈ n/2 steps. For fixed t, whp

L1(tn) =

{
Θ(log n) if t < 1/2

Θ(n) if t > 1/2



Variant of Erdős–Rényi with Dependencies

Achlioptas processes (‘power of two random choices’)

Start with an empty graph on n vertices

In each step: pick two edges uniformly at random (independently),
add one of them to the graph (using some rule)

Dimitris Achlioptas



Variant of Erdős–Rényi with Dependencies

Achlioptas processes (‘power of two random choices’)

Start with an empty graph on n vertices

In each step: pick two edges uniformly at random (independently),
add one of them to the graph (using some rule)

Remarks:

Yields family of random graph processes (includes Erdős–Rényi process)

Interdisciplinary interest: ≥ 300 related papers since 2009

Key difficulty: non-trivial dependencies between the edges added

Motivation

Improve our understanding of the phase transition phenomenon

Test / develop methods for analyzing processes with dependencies



Behaviour of different Achlioptas proceses

Key example (suggested by Achlioptas)

Fraction of vertices in largest component after tn steps: L1(tn)/n
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Goal of this talk

Understand/Analyze how these proceses evolve over time



Widely studied Achlioptas rules

Size rules

v1
v2 v3 v4

c1 c2 c3 c4 Decision (which edge to add) depends
only on component sizes c1, . . . , c4

Sum rule: add e1 = {v1v2} iff c1 + c2 ≤ c3 + c4
(‘add the edge which results in the smaller component’)

Bounded-size rules

All component sizes larger than some constant B are treated the same

Bohman–Frieze: add e1 = {v1v2} iff its endvertices are isolated
(‘add random edge with slight bias towards joining isolated vertices’)



Previous work

Bounded-size rules: most things known

Phase transition of all bounded-size rules exhibits Erdős–Rényi behaviour

Location of Phase-Transition (Spencer–Wormald, Riordan–W.)

Critical Window (Bhamidi–Budhiraja–Wang)

Sub- and Supercritical Phases (Riordan–W.)

Size rules: only one conditional result (Riordan–W.)

IF an associated system of differential equations has a unique solution,
then key statistics (small/largest component) are concentrated

System of differential equations can be infinite (e.g. for sum-rule)

Uniqueness open question (but easy for bounded-size rules)



New Result for Size Rules

Susceptibility χ(G ) =
∑

k≥1 kNk(G )/n

Expected size of component containing randomly selected vertex

New result for size rules (Riordan–W.)

Any size rule R is ‘well-behaved’ until a critical time tc = tRc ,
where the susceptibility χ diverges. For fixed t < tc, whp

Small components: Nk(tn) ∼ %Rk (t)n

Exponential tails: Nk(tn) ≤ Ae−akn → L1(tn) ≤ 2
a log n

Conjecture for size rules (Riordan–W.)

For t > tc we have a giant component: whp L1(tn) = Ω(n)

Motivated by percolation theory (equality of two critical point def.)

True: bounded-size rules + certain size rules (e.g., max. sum rule)



A cautionary Example

Several simulations of %(t) = L1(tn)
n using a certain size rule:
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Punchline: Convergence up to tc seems best possible

Beyond tc some rules look nonconvergent in simulations



Structure of the proof

Inductively establish concentration (of a given size rule)

steps

Need: evolution starting from initial graph F

Assumption: initial graph F is ‘nice’

Conclusion: graph after σn steps is again ‘nice’ (if σ small enough)

In comparison to bounded size rules

We track key statistics without using differential equations

We investigate dependencies amoung choices in more detail



Investigating dependencies

How far can decisions propagate?

For size rules, decisions can only propagate inside clusters

Here we ignore order of pairs

Inside each cluster:

Order of the pairs uniquely determines decisions of any size rule



Glimpse of the proof

v

Determine component size |Cv | via two-step exposure

Reveal all pairs of edges offered

Determine relevant cluster for v ≈ Branching process

Reveal order of all (relevant) pairs

Apply size rule R inside cluster

Why do we need susceptibility χ <∞ ?

Branching process must be ‘sub-critical’ (need σ ≤ cχ−1)

Only ‘few’ edges/components influence |Cv | → Concentration



Summary

First rigorous result for size rules (Riordan–W.)

Key statistics are ‘well-behaved’ until the susceptibility diverges

 0

 0.25

 0.5

 0.75

 1

 0.25  0.5  0.75  1

ER

BF

PR

Open problems

How can we analyze the later evolution of size rules?

Does the phase transition occur when the susceptibility diverges?



The System of Differential Equations

Size rules decide using c1, . . . , c4 only

v1
v2 v3 v4

c1 c2 c3 c4

dk(c1, . . . , c4) = change of Nk given component sizes c1, . . . , c4

Simplification: let’s assume v1, . . . , v4 are in different components

System of differential equations

Motivated by expected one-step change of Nk(tn) ≈ %k(t)n:

%′k(t) =
∑

c1,...,c4∈N∪{∞}

dk(c1, . . . , c4)
∏
j∈[4]

%cj (t)


