Convergence of Achlioptas processes via differential equations with unique solutions

Lutz Warnke University of Oxford

Joint work with Oliver Riordan

Achlioptas processes

- Start with an empty graph on *n* vertices
- Repeatedly: pick *two* random edges,

using some *rule*, add *one* of them to the graph

Remarks:

- Yields family of random graph processes
- Contains 'classical' Erdős-Rényi model

This talk:

• Want to understand how these evolve over time

WIDELY STUDIED ACHLIOPTAS RULES

Size rules

Decision (which edge to add) depends only on component sizes c_1, \ldots, c_4 .

Examples

• Sum and product rules (minimize sum/product of c_i)

Bounded-size rules

All component sizes larger than some constant B are treated the same.

Examples

- Erdős-Rényi rule (B = 0)
- Bohman-Frieze rule (B = 1)

Bounded-size rules (Bohman-Kravitz, Spencer-Wormald, Riordan-W.,...)

Undergo phase transition. Key statistics are *concentrated* and *convergent*:

- Vertices in 'small' components: $N_k(tn) \approx \varrho_k^{\mathcal{R}}(t)n$
- Largest component: $L_1(tn) \approx \varrho^{\mathcal{R}}(t)n$

Key points

- Qualitatively similar to Erdős-Rényi case
- Proofs use Wormald's 'differential equation method'

Size rules

Very few rigorous results; maybe different behaviour?

A CAUTIONARY TALE

Conjecture of Achlioptas-D'Souza-Spencer (Science 2009)

The product rule exhibits a *discontinuous* phase transition.

Riordan-W. (*Science* 2011)

For all Achlioptas processes the phase transition is continuous.

Simplified main result for size rules (Riordan-W. 2011+)

If a natural system of differential equations has a *unique* solution we establish *concentration* and *convergence*:

- Vertices in 'small' components: $N_k(tn) \approx \varrho_k^{\mathcal{R}}(t)n$
- Largest component: $L_1(tn) \approx \varrho^{\mathcal{R}}(t)n$

Remarks

- Generalizes previous results in the area
 - For these uniqueness is well-known
- System of differential equations may be infinite (depends on rule \mathcal{R})

Main contribution

New approach for proving convergence to solution of differential equations

Differential Equations Method (Wormald, 1995)

Under suitable technical conditions

$$\mathbb{E}[X_{tn+1} - X_{tn} \mid \mathcal{F}_{tn}] \approx f(t, X_{tn}/n),$$

implies that we obtain concentration/convergence

 $X_{tn}/n \approx x(t),$

where x(t) is unique solution to x'(t) = f(t, x(t)).

Remarks

- Plausible as $X_{tn} \approx x(t)n$ suggests $X_{tn+1} X_{tn} \approx x'(t)$
- Technical conditions imply uniqueness

THE SYSTEM OF DIFFERENTIAL EQUATIONS

Size rules decide using c_1, \ldots, c_4 only

 $d_k(c_1,\ldots,c_4)$ = change of N_k given component sizes c_1,\ldots,c_4

Simplification: let's assume v_1, \ldots, v_4 are in *different* components

System of differential equations

Motivated by expected one-step change of $N_k(tn) \approx \varrho_k(t)n$:

$$arrho_k'(t) = \sum_{c_1,\ldots,c_4\in\mathbb{N}\cup\{\infty\}} d_k(c_1,\ldots,c_4) \prod_{j\in[4]} arrho_{c_j}(t)$$

Key Idea of Proof

Main steps for showing $N_k(tn) \approx \varrho_k(t)n$

• We start with an infinite set of sample points

 $\omega_n \in \Omega_n$

• Pick subsequence (ω_n) such that for every $t \ge 0$ and $k \ge 1$:

$$\frac{N_k(tn)(\omega_n)}{n} \to \varrho_k(t)$$

• Show that the $\varrho_k(t)$ satisfy the system of differential equations:

$$\varrho'_k(t) = F_k(t, \varrho_1, \varrho_2, \ldots)$$

• If this has a unique solution $(\hat{\varrho}_k)_{k\geq 1}$ then

$$\varrho_{k} = \hat{\varrho}_{k},$$

so ρ_k does *not* depend on the selected subsequence!

Simplified main result (Riordan-W.)

Achlioptas processes using size rules are *concentrated* and *convergent* if an associated system of differential equations has a *unique* solution.

Main contribution

• New approach for proving convergence to solution of DE

Open problem

Can we establish uniqueness for the product rule?

Simplified result for size rules (Riordan–W. 2011+)

If a natural system of differential equations has a *unique* solution, then we establish *convergence* of key statistics:

• 'Small' components: $\frac{N_k(tn)}{n} \stackrel{\mathrm{p}}{\rightarrow} \varrho_k^{\mathcal{R}}(t)$

• Largest component:
$$\frac{L_1(tn)}{n} \xrightarrow{\mathrm{P}} \varrho^{\mathcal{R}}(t)$$

Remarks

- Generalizes previous results in the area (bounded size rules)
 - For these uniqueness is easy/well-known
- System of differential equations may be infinite (depends on rule \mathcal{R})
 - Causes technical difficulties (for, e.g., product rule)
 - Can remove uniqueness assumption up to certain critical $t_{\rm c}$