Concentration of the chromatic number of sparse random graphs

Lutz Warnke
UC San Diego

Joint work with Erlang Surya
(who created most of these slides)

Context and Main Question

- Random graph $G_{n, p}$: n-vertex graph where each of $\binom{n}{2}$ possible edges included independently with probability p
- Chromatic number $\chi(G)$: minimum number of colors needed to color vertices of G s.t. no two adjacent vertices have same color

Main Question

Suppose there is an interval of length $\ell(n, p)$ that contains chromatic number $\chi\left(G_{n, p}\right)$ with high probability. How small can $\ell(n, p)$ be?

Past Results: constant p

Bollobas 1988

For constant edge-probability $p \in(0,1)$, whp

$$
\chi\left(G_{n, p}\right)=(1+o(1)) \frac{n}{2 \log _{1 /(1-p)} n}
$$

So $\ell(n, p)=o\left(n / \log _{b} n\right)$.

- Lower bound: Show largest ISET is of size $(2+o(1)) \log _{1 /(1-p)} n$.
- Upper bound: Repeatedly pull out ISET of size $2 \log _{1 /(1-p)} n$ until $O(\sqrt{n} / \log n)$ vertices are left (via Janson's inequality).

Past Results: all p

Shamir and Spencer 1987

- $\ell(n, p) \leq \omega \sqrt{n}$ for any $p(n)$,
- $\ell(n, p) \leq \omega \sqrt{n} p \log n$ for $p=n^{-\alpha}, \alpha \in(0,1 / 2)$
- Basic-Idea: Via Martingale argument to show that whp there exists $\Lambda \geq 0, Z \subseteq V,|Z| \leq \omega \sqrt{n}$

$$
\Lambda \leq \chi\left(G_{n, p}\right) \leq \Lambda+\chi\left(G_{n, p}[Z]\right)
$$

- For $p=n^{-\alpha}$, easy to remove extra $\log n$ term with modern argument
- Key-Task: argue that $G_{n, p}[Z]$ is sparse

Past Results

log improvement by Alon (and later independently by Scott)
For $p \in[0,1]$ constant, $\ell(n, p) \leq \omega \sqrt{n} / \log n$

- Idea: Repeatedly remove ISET of size $\Theta(\log n)$ from $G_{n, p}[Z]$
- If we use Janson's inequality to pull out the ISET, this only works until $p=n^{-\alpha}$ for some small $\alpha>0$

Alon and Krivelevich

Let $\epsilon>0$. If $p \leq n^{-1 / 2-\epsilon}$, then $\ell(n, p) \leq 2$

New result: Sparse case $p=o(1)$

Surya and Warnke (2022+)
Let $\epsilon>0$. If $p \geq n^{-1 / 2+\epsilon}$, then

$$
\ell(n, p) \leq \frac{\omega \sqrt{n} p}{\log n}
$$

- Use density argument instead of large deviation inequalities

More detailed statement: Sparse case $p=o(1)$

Surya and Warnke (2022+)

- If $\omega \sqrt{n} p \gg \log n$, then

$$
\ell(n, p)=O\left(\frac{\omega \sqrt{n} p}{\log (\omega \sqrt{n} p / \log n)}\right)
$$

- If $\omega \sqrt{n} p \ll \log n$, then

$$
\ell(n, p)=O\left(\frac{\log n}{\log (\log n /(\omega \sqrt{n} p))}\right)
$$

- If $p=n^{-\alpha}, \alpha \in(0,1 / 2)$ we have $\ell(n, p)=O\left(\frac{\omega \sqrt{n} p}{\log n}\right)$, extending log improvement of Alon.
- Match the best known upper bound up to some constant factor when p constant and $p \leq n^{-1 / 2-\epsilon}$

Key Ingredient: Greedy Algorithm

Will focus on controlling $\chi\left(G_{n, p}[Z]\right)$.
We use greedy algorithm in two ways, exploiting small degree vertices:

- Pull out largest independent sets until $O\left(\frac{\log n}{p}\right)$ vertices are left, which will have typical size $\simeq O(\log (\omega \sqrt{n} p / \log n) / p)$.
- Refined analysis: as fewer vertices remain, the independent sets get smaller (exploit that few vertices remain).
- Pick the minimum degree vertex among the remaining vertices, which will have degree $O(\log n)$.

Chernoff bound + Union bound: small degree conditions holds whp

Greedy Lemmas

To iteratively pull out largest independent set (until few vertices remain):
Large independent sets: greedy bound
Given graph G and $0<d<1<u$ with $\delta(G[S]) \leq d(|S|-1)$ for all $S \subseteq V(G)$ of size $|S| \geq u$. Then

$$
\alpha(G[W]) \geq-\log _{(1-d)(1-1 / u)}(|W| / u)
$$

for any $W \subseteq V(G)$ of size $|W| \geq u$.
To color the remaining $O(\log n / p)$ vertices:
Chromatic number: greedy bound
Given a graph G with $\delta(G[S]) \leq r$ for all $S \subseteq V(G)$. Then

$$
\chi(G) \leq r+1
$$

Large independent sets: greedy bound

Given graph G and $0<d<1<u$ with $\delta(G[S]) \leq d(|S|-1)$ for all $S \subseteq V(G)$ of size $|S| \geq u$. Then $\alpha(G[W]) \geq-\log _{(1-d)(1-1 / u)}(|W| / u)$ for any $W \subseteq V(G)$ of size $|W| \geq u$.

Construct independent set greedily: set $W_{0}=W$ and, for $i \geq 1$, pick $w_{i} \in W_{i-1}$ with minimal degree in $G\left[W_{i-1}\right]$ and set

$$
W_{i}=\left\{v \in W_{i-1}: v \text { not adjacent to } w_{i}\right\} .
$$

If $\left|W_{i-1}\right| \geq u$ holds, then $\operatorname{deg}_{G\left[W_{i}\right]}\left(w_{i}\right) \leq d\left(\left|W_{i}\right|-1\right)$, implying that

$$
\left|W_{i}\right| \geq(1-d)\left(\left|W_{i-1}\right|-1\right) \geq(1-d)(1-1 / u)\left|W_{i-1}\right|
$$

Large independent sets: greedy bound

Given graph G and $0<d<1<u$ with $\delta(G[S]) \leq d(|S|-1)$ for all $S \subseteq V(G)$ of size $|S| \geq u$. Then $\alpha(G[W]) \geq-\log _{(1-d)(1-1 / u)}(|W| / u)$ for any $W \subseteq V(G)$ of size $|W| \geq u$.

Construct independent set greedily: set $W_{0}=W$ and, for $i \geq 1$, pick $w_{i} \in W_{i-1}$ with minimal degree in $G\left[W_{i-1}\right]$ and set

$$
W_{i}=\left\{v \in W_{i-1}: v \text { not adjacent to } w_{i}\right\} .
$$

If $\left|W_{i-1}\right| \geq u$ holds, then $\operatorname{deg}_{G\left[W_{i}\right]}\left(w_{i}\right) \leq d\left(\left|W_{i}\right|-1\right)$, implying that

$$
\left|W_{i}\right| \geq(1-d)\left(\left|W_{i-1}\right|-1\right) \geq(1-d)(1-1 / u)\left|W_{i-1}\right|
$$

So W_{i} is non-empty for

$$
i-1 \leq-\log _{(1-d)(1-1 / u)}(|W| / u)=: I(W \mid)
$$

so we terminate with an independent set $\left\{w_{1}, \ldots, w_{j}\right\} \subseteq W$ of size $j \geq\lfloor I(|W|)+1\rfloor \geq I(|W|)$.

Very dense case $1-p=n^{-\Omega(1)}$

- Heuristic: Optimal colouring is obtained by taking as many disjoint α-ISETs as possible, then covering the rest with $(\alpha-1)$-ISETs
- Main source of fluctuation: number of α-ISETs

Conjecture

 $\left.\mu_{r+1}=\mu_{r+1}(n, p):=\binom{n}{r+1}(1-p)\right)_{\binom{r+1}{2}}$ be the expected number of $r+1$-ISET. Then

$$
\ell(n, p)=\omega \sqrt{\mu_{r+1}}
$$

Very dense case $1-p=n^{-\Omega(1)}$ conjecture

Figure: Conjecture predicts if $n^{2}(1-p)=n^{x+o(1)}$, then $\ell(n, p)=n^{y+o(1)}$

Concentration result: $1-p=O(1 / n)$

- Number of ISET of size $\geq \mathbf{3}$ is negligible:

Problem reduces to studying maximum matching on complement

- Main source of fluctuation in maximum matching on $G_{n, q}$: Fluctuation of isolated edges.

Theorem Surya and Warnke (2022+)
$C n \sqrt{q} \leq \ell(n, p) \leq \omega n \sqrt{q}$

- Lower bound: from fluctuation of isolated edges in complement $G_{n, q}$
- Upper bound: from Talagrand's inequality

