Concentration of the chromatic number of sparse random graphs

> Lutz Warnke UC San Diego

Joint work with Erlang Surya (who created most of these slides)

Context and Main Question

- **Random graph** $G_{n,p}$: *n*-vertex graph where each of $\binom{n}{2}$ possible edges included independently with probability *p*
- Chromatic number χ(G): minimum number of colors needed to color vertices of G s.t. no two adjacent vertices have same color

Main Question

Suppose there is an interval of length $\ell(n, p)$ that contains chromatic number $\chi(G_{n,p})$ with high probability. How small can $\ell(n, p)$ be?

Past Results: constant p

Bollobas 1988

For constant edge-probability $p \in (0,1)$, whp

$$\chi(G_{n,p}) = (1 + o(1)) \frac{n}{2 \log_{1/(1-p)} n}.$$

So $\ell(n, p) = o(n/\log_b n)$.

- Lower bound: Show largest ISET is of size $(2 + o(1)) \log_{1/(1-p)} n$.
- Upper bound: Repeatedly pull out ISET of size 2 log_{1/(1−p)} n until O(√n/ log n) vertices are left (via Janson's inequality).

Past Results: all p

Shamir and Spencer 1987

- $\ell(n,p) \leq \omega \sqrt{n}$ for any p(n),
- $\ell(n,p) \leq \omega \sqrt{n}p \log n$ for $p = n^{-lpha}, lpha \in (0,1/2)$
 - Basic-Idea: Via Martingale argument to show that whp there exists $\Lambda \ge 0, Z \subseteq V, |Z| \le \omega \sqrt{n}$

$$\Lambda \leq \chi(G_{n,p}) \leq \Lambda + \chi(G_{n,p}[Z])$$

- For $p = n^{-\alpha}$, easy to remove extra log *n* term with modern argument
- Key-Task: argue that $G_{n,p}[Z]$ is sparse

Past Results

log improvement by Alon (and later independently by Scott) For $p \in [0, 1]$ constant, $\ell(n, p) \le \omega \sqrt{n} / \log n$

- Idea: Repeatedly remove ISET of size $\Theta(\log n)$ from $G_{n,p}[Z]$
- If we use Janson's inequality to pull out the ISET, this only works until $p = n^{-\alpha}$ for some small $\alpha > 0$

Alon and Krivelevich

Let $\epsilon > 0$. If $p \le n^{-1/2-\epsilon}$, then $\ell(n, p) \le 2$

New result: Sparse case p = o(1)

Surya and Warnke (2022+) Let $\epsilon > 0$. If $p \ge n^{-1/2+\epsilon}$, then $\ell(n,p) \le \frac{\omega\sqrt{np}}{\log n}$

• Use *density argument* instead of large deviation inequalities

More detailed statement: Sparse case p = o(1)

Surya and Warnke (2022+)

• If $\omega \sqrt{n}p \gg \log n$, then

$$\ell(n,p) = O\left(\frac{\omega\sqrt{n}p}{\log(\omega\sqrt{n}p/\log n)}\right)$$

• If $\omega \sqrt{n}p \ll \log n$, then

$$\ell(n,p) = O\left(\frac{\log n}{\log(\log n/(\omega\sqrt{n}p))}\right)$$

- If p = n^{-α}, α ∈ (0, 1/2) we have ℓ(n, p) = O (^{ω√np}/_{log n}), extending log improvement of Alon.
- Match the best known upper bound up to some constant factor when p constant and $p \le n^{-1/2-\epsilon}$

Key Ingredient: Greedy Algorithm

Will focus on controlling $\chi(G_{n,p}[Z])$.

We use greedy algorithm in two ways, exploiting small degree vertices:

- Pull out largest independent sets until $O(\frac{\log n}{p})$ vertices are left, which will have typical size $\simeq O(\log(\omega\sqrt{np}/\log n)/p)$.
 - Refined analysis: as fewer vertices remain, the independent sets get smaller (exploit that few vertices remain).

• Pick the minimum degree vertex among the remaining vertices, which will have degree $O(\log n)$.

Chernoff bound + Union bound: small degree conditions holds whp

Greedy Lemmas

To iteratively pull out largest independent set (until few vertices remain):

Large independent sets: greedy bound

Given graph G and 0 < d < 1 < u with $\delta(G[S]) \le d(|S|-1)$ for all $S \subseteq V(G)$ of size $|S| \ge u$. Then

$$\alpha(G[W]) \ge -\log_{(1-d)(1-1/u)}(|W|/u)$$

for any $W \subseteq V(G)$ of size $|W| \ge u$.

To color the remaining $O(\log n/p)$ vertices:

Chromatic number: greedy bound Given a graph G with $\delta(G[S]) \leq r$ for all $S \subseteq V(G)$. Then

 $\chi(G) \leq r+1$

Large independent sets: greedy bound

Given graph G and 0 < d < 1 < u with $\delta(G[S]) \le d(|S|-1)$ for all $S \subseteq V(G)$ of size $|S| \ge u$. Then $\alpha(G[W]) \ge -\log_{(1-d)(1-1/u)}(|W|/u)$ for any $W \subseteq V(G)$ of size $|W| \ge u$.

Construct independent set greedily: set $W_0 = W$ and, for $i \ge 1$, pick $w_i \in W_{i-1}$ with minimal degree in $G[W_{i-1}]$ and set

 $W_i = \{ v \in W_{i-1} : v \text{ not adjacent to } w_i \}.$

If $|W_{i-1}| \ge u$ holds, then $\deg_{G[W_i]}(w_i) \le d(|W_i|-1)$, implying that

$$|W_i| \ge (1-d)(|W_{i-1}|-1) \ge (1-d)(1-1/u)|W_{i-1}|.$$

Large independent sets: greedy bound

Given graph G and 0 < d < 1 < u with $\delta(G[S]) \le d(|S|-1)$ for all $S \subseteq V(G)$ of size $|S| \ge u$. Then $\alpha(G[W]) \ge -\log_{(1-d)(1-1/u)}(|W|/u)$ for any $W \subseteq V(G)$ of size $|W| \ge u$.

Construct independent set greedily: set $W_0 = W$ and, for $i \ge 1$, pick $w_i \in W_{i-1}$ with minimal degree in $G[W_{i-1}]$ and set

$$W_i = ig\{ v \in W_{i-1} \; : \; v ext{ not adjacent to } w_i ig\}.$$

If $|W_{i-1}| \ge u$ holds, then $\deg_{G[W_i]}(w_i) \le d(|W_i| - 1)$, implying that $|W_i| \ge (1 - d)(|W_{i-1}| - 1) \ge (1 - d)(1 - 1/u)|W_{i-1}|.$

So W_i is non-empty for

$$i - 1 \le -\log_{(1-d)(1-1/u)}(|W|/u) =: I(W|),$$

so we terminate with an independent set $\{w_1, \ldots, w_j\} \subseteq W$ of size $j \ge \lfloor I(|W|) + 1 \rfloor \ge I(|W|)$.

Very dense case $1 - p = n^{-\Omega(1)}$

- Heuristic: Optimal colouring is obtained by taking as many disjoint α -ISETs as possible, then covering the rest with $(\alpha 1)$ -ISETs
- Main source of fluctuation: number of α-ISETs

Conjecture

 $(\log n)^{1/\binom{r}{2}} n^{-2/r} \ll 1 - p \ll n^{-2/(r+1)}$ for some integer $r \ge 1$. Let $\mu_{r+1} = \mu_{r+1}(n,p) := \binom{n}{r+1}(1-p)^{\binom{r+1}{2}}$ be the expected number of r + 1-ISET. Then

$$\ell(n,p) = \omega \sqrt{\mu_{r+1}}$$

Very dense case $1 - p = n^{-\Omega(1)}$ conjecture

Figure: Conjecture predicts if $n^2(1-p) = n^{x+o(1)}$, then $\ell(n,p) = n^{y+o(1)}$

◆□> ◆□> ◆目> ◆目> ◆目 ● のへで

Concentration result: 1 - p = O(1/n)

- Number of ISET of size ≥ 3 is negligible: Problem reduces to studying maximum matching on complement
- Main source of fluctuation in maximum matching on $G_{n,q}$: Fluctuation of isolated edges.

```
Theorem Surya and Warnke (2022+)
Cn\sqrt{q} \le \ell(n,p) \le \omega n\sqrt{q}
```

• **Lower bound**: from fluctuation of isolated edges in complement $G_{n,q}$

• Upper bound: from Talagrand's inequality