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Context and Main Question

Random graph Gn,p: n-vertex graph where each of
(n
2

)
possible edges

included independently with probability p

Chromatic number χ(G ): minimum number of colors needed to color
vertices of G s.t. no two adjacent vertices have same color

Main Question

Suppose there is an interval of length `(n, p) that contains chromatic
number χ(Gn,p) with high probability. How small can `(n, p) be?



Past Results: constant p

Bollobas 1988

For constant edge-probability p ∈ (0, 1), whp

χ(Gn,p) = (1 + o(1))
n

2 log1/(1−p) n
.

So `(n, p) = o(n/ logb n).

Lower bound: Show largest ISET is of size (2 + o(1)) log1/(1−p) n.

Upper bound: Repeatedly pull out ISET of size 2 log1/(1−p) n until
O(
√
n/ log n) vertices are left (via Janson’s inequality).



Past Results: all p

Shamir and Spencer 1987

`(n, p) ≤ ω
√
n for any p(n),

`(n, p) ≤ ω
√
np log n for p = n−α, α ∈ (0, 1/2)

Basic-Idea: Via Martingale argument to show that whp there exists
Λ ≥ 0,Z ⊆ V , |Z | ≤ ω

√
n

Λ ≤ χ(Gn,p) ≤ Λ + χ(Gn,p[Z ])

For p = n−α, easy to remove extra log n term with modern argument

Key-Task: argue that Gn,p[Z ] is sparse



Past Results

log improvement by Alon (and later independently by Scott)

For p ∈ [0, 1] constant, `(n, p) ≤ ω
√
n/ log n

Idea: Repeatedly remove ISET of size Θ(log n) from Gn,p[Z ]

If we use Janson’s inequality to pull out the ISET, this only works
until p = n−α for some small α > 0

Alon and Krivelevich

Let ε > 0. If p ≤ n−1/2−ε, then `(n, p) ≤ 2



New result: Sparse case p = o(1)

Surya and Warnke (2022+)

Let ε > 0. If p ≥ n−1/2+ε, then

`(n, p) ≤ ω
√
np

log n

Use density argument instead of large deviation inequalities



More detailed statement: Sparse case p = o(1)

Surya and Warnke (2022+)

If ω
√
np � log n, then

`(n, p) = O

(
ω
√
np

log(ω
√
np/ log n)

)
If ω
√
np � log n, then

`(n, p) = O

(
log n

log(log n/(ω
√
np))

)

If p = n−α, α ∈ (0, 1/2) we have `(n, p) = O
(
ω
√
np

log n

)
, extending log

improvement of Alon.

Match the best known upper bound up to some constant factor when
p constant and p ≤ n−1/2−ε



Key Ingredient: Greedy Algorithm

Will focus on controlling χ(Gn,p[Z ]).

We use greedy algorithm in two ways, exploiting small degree vertices:

Pull out largest independent sets until O( log np ) vertices are left,

which will have typical size ' O(log(ω
√
np/ log n)/p).

I Refined analysis: as fewer vertices remain, the independent sets get
smaller (exploit that few vertices remain).

Pick the minimum degree vertex among the remaining vertices,
which will have degree O(log n).

Chernoff bound + Union bound: small degree conditions holds whp



Greedy Lemmas

To iteratively pull out largest independent set (until few vertices remain):

Large independent sets: greedy bound

Given graph G and 0 < d < 1 < u with δ(G [S ]) ≤ d(|S | − 1) for
all S ⊆ V (G ) of size |S | ≥ u. Then

α(G [W ]) ≥ − log(1−d)(1−1/u)
(
|W |/u

)
for any W ⊆ V (G ) of size |W | ≥ u.

To color the remaining O(log n/p) vertices:

Chromatic number: greedy bound

Given a graph G with δ(G [S ]) ≤ r for all S ⊆ V (G ). Then

χ(G ) ≤ r + 1



Large independent sets: greedy bound

Given graph G and 0 < d < 1 < u with δ(G [S ]) ≤ d(|S | − 1) for
all S ⊆ V (G ) of size |S | ≥ u. Then α(G [W ]) ≥ − log(1−d)(1−1/u)

(
|W |/u

)
for any W ⊆ V (G ) of size |W | ≥ u.

Construct independent set greedily: set W0 = W and, for i ≥ 1, pick
wi ∈Wi−1 with minimal degree in G [Wi−1] and set

Wi =
{
v ∈Wi−1 : v not adjacent to wi

}
.

If |Wi−1| ≥ u holds, then degG [Wi ](wi ) ≤ d(|Wi | − 1), implying that

|Wi | ≥ (1− d)(|Wi−1| − 1) ≥ (1− d)(1− 1/u)|Wi−1|.

So Wi is non-empty for

i − 1 ≤ − log(1−d)(1−1/u)
(
|W |/u

)
=: I

(
W |

)
,

so we terminate with an independent set {w1, . . . ,wj} ⊆W of size
j ≥

⌊
I (|W |) + 1

⌋
≥ I (|W |).



Large independent sets: greedy bound
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v ∈Wi−1 : v not adjacent to wi

}
.
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So Wi is non-empty for
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)
,
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Very dense case 1− p = n−Ω(1)

Heuristic: Optimal colouring is obtained by taking as many disjoint
α-ISETs as possible, then covering the rest with (α− 1)-ISETs

Main source of fluctuation: number of α-ISETs

Conjecture

(log n)1/(
r
2)n−2/r � 1− p � n−2/(r+1) for some integer r ≥ 1. Let

µr+1 = µr+1(n, p) :=
( n
r+1

)
(1− p)(r+1

2 ) be the expected number of
r + 1-ISET. Then

`(n, p) = ω
√
µr+1



Very dense case 1− p = n−Ω(1) conjecture
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Figure: Conjecture predicts if n2(1− p) = nx+o(1), then `(n, p) = ny+o(1)



Concentration result: 1− p = O(1/n)

Number of ISET of size ≥ 3 is negligible:
Problem reduces to studying maximum matching on complement

Main source of fluctuation in maximum matching on Gn,q:
Fluctuation of isolated edges.

Theorem Surya and Warnke (2022+)

Cn
√
q ≤ `(n, p) ≤ ωn√q

Lower bound: from fluctuation of isolated edges in complement Gn,q

Upper bound: from Talagrand’s inequality


