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The Density of Costas Arrays Decays Exponentially
Lutz Warnke, Bill Correll, Jr., and Christopher N. Swanson

Abstract—Costas arrays are useful in radar and sonar engi-
neering, and many other settings in which optimal 2-D autocor-
relation is needed: they are permutation matrices in which the
vectors joining different pairs of ones are all distinct. We prove
that the density of Costas arrays among permutation matrices
decays exponentially, solving a core problem in the theory of
Costas arrays. The proof combines ideas from random graph
theory with tools from probabilistic combinatorics.

Index Terms—Costas arrays, density, permutations, combina-
torics, probability, radar, sonar

I. INTRODUCTION

COSTAS ARRAYS are fascinating objects of interdisci-
plinary interest: they not only have important engineering

applications, but also give rise to challenging mathematical
problems. Formally, a Costas array is simply a permutation
matrix with the additional property that all vectors between
any two different ones are distinct, see Figure 1. They were
introduced in 1965 by Costas [1], with the goal of improving
the target detection performance of frequency hopping sonar
systems [2]. Around the same time Gilbert also indepen-
dently studied them, motivated by the combinatorics of Latin
squares [3].

Since the 1960s, engineers and mathematicians alike have
been studying Costas arrays. Their optimal 2-D autocorrelation
is useful in a variety of different applications, including radar
waveforms [4]–[9], computer graphics, communications (par-
ticularly cell phones), experimental design, data mining, and a
patent [10] that uses Costas arrays to match patterns. Widely
studied mathematical questions include existence [11]–[13],
constructions [11], [14]–[17], structural properties [18]–[26],
and enumeration [27]–[35] of Costas arrays.

From the beginning, the number C(n) of n×n Costas arrays
has been of core theoretical interest. After determining C(n)
for n ≤ 13 by exhaustive search in 1984, Golomb and Taylor
compiled a fundamental list of 10 open problems regarding the
asymptotic behavior of C(n), see [11, Section V], including
the asymptotic enumeration conjecture that

C(n)

n!
→ 0 as n→∞, (1)

i.e., that the density C(n)/n! of Costas arrays among per-
mutation matrices tends to zero. This conjecture received
considerable attention, and three independent proofs emerged
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in the 1980s: first by Weiss, next by Reiner, and finally by
Davies, see [12], [36], [37]. In fact, they each proved that

C(n)

n!
≤ O(1)

n
. (2)

Supported by the values of C(n) for small n, in the
late 1980s it became a folklore speculation that the den-
sity C(n)/n! should in fact decay exponentially, see Table I
and [38, p. 119]. It remained a well-known challenge to
narrow the gap between the rigorous upper bound (2) and
the rate of decay observed in practice, see [12], [39], [40].

In this paper we prove that the density C(n)/n! of Costas
arrays among permutation matrices decays exponentially, con-
firming the above-mentioned speculations from the 1980s.
In particular, Theorem I.1 below solves the first part of
Problem 4 of Drakakis [40], which in his 2011 update of the
Golomb–Taylor open problems list is marked as one of the
core theoretical problems for Costas arrays.

Theorem I.1 (Main Result: Exponential Decay). There is a
constant c > 0 so that the density C(n)/n! of n × n Costas
arrays among n× n permutation matrices satisfies

C(n)

n!
≤ e−cn for all n ≥ 3. (3)

The exponential decay of (3) is nearly best possible, since
we have the elementary lower bound

C(n)

n!
≥ e−n logn for infinitely many n, (4)

see (38) in Section V. In (3) the restriction to n ≥ 3 is
necessary, since C(n)/n! = 1 for n ∈ {1, 2}, see Table I.
Theorem I.1 significantly improves upon the previously known
polynomial decay of C(n)/n!, where the smallest implicit
constant in (2) is due to Swanson, Correll and Ho [41].

In addition to proving a long-standing open problem in
the theory of Costas arrays, a further contribution of this
paper lies in the transfer of proof techniques from random
graph theory to Costas arrays. Indeed, we will prove (3) by
exploiting that C(n)/n! is the probability that a random n× n
permutation matrix is a Costas array. While previous work
then used the second moment method to obtain the polynomial
decay (2), in this paper we will instead use the bounded dif-
ferences inequality (Theorem III.1) to obtain the exponential
decay (3); see Sections III and IV. A major challenge for
obtaining exponential decay from this inequality is that a direct
application only gives the trivial upper bound C(n)/n! ≤ 1,
the key obstacle being that the relevant random variables are
not sufficiently smooth or Lipschitz; see Section III-B. We
will overcome this obstacle by adapting powerful ideas of
Bollobás [42] from random graph theory; see Section IV.
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Fig. 1. Example of an 8×8 Costas array, with black squares representing ones
(and the remaining squares representing zeros): in this permutation matrix
all

(8
2

)
= 28 vectors between pairs of different ones are distinct, i.e., they

differ in either length or slope.

II. BACKGROUND ON THE NUMBERS OF COSTAS ARRAYS

Definition II.1 (Costas Array). A Costas array is a permu-
tation matrix with the additional property that all vectors
between any two different ones are distinct.

An example of an 8× 8 Costas array is shown in Figure 1,
with black squares representing the ones of the permutation
matrix. In the frequency-hopping remote sensing applications
for which Costas arrays were originally designed, the dimen-
sions of the matrix correspond to transmit time intervals and
transmit frequencies. When the frequency hopping pattern is
shifted in both time (horizontally) and frequency (vertically),
then any one can be brought into coincidence with any other
one. The crux of Costas arrays is that no such shift (other
than the identity, which is not a shift at all) can bring two
different ones into coincidence with any two other ones. This
optimal auto-correlation also enables other applications, such
as magnetic clamping [10], sub-pixel metrology [43], digital
watermarking and steganography [44], [45].

A practical reason to care about the number C(n)
of n× n Costas arrays arises in remote sensing. The tone
transmit ordering for a frequency-hopped radar is rapidly
changed among a set of Costas arrays of the same order n
for two reasons: (i) to simultaneously maintain low probability
of intercept operations and target detection performance, and
(ii) to control pulse train ambiguities. Selecting the order n to
be approximately the time-bandwidth product of the system
such that many n× n Costas arrays exist addresses both
needs [46, Section III-IV]. Another reason to care about values
of C(n) arises in shared-band communications, for which
Costas arrays supply code schemes. In such applications,
performance is improved for orders n for which C(n) is large.

In the remainder of this section we shall review further rel-
evant background, which will illustrate that the number C(n)
of n× n Costas arrays has been inspected from various angles
since the 1980s.

TABLE I
NUMBER C(n) OF n× n COSTAS ARRAYS

n C(n) n C(n) n C(n) n C(n) n C(n)
1 1 7 200 13 12828 19 10240 25 88
2 2 8 444 14 17252 20 6464 26 56
3 4 9 760 15 19612 21 3536 27 204
4 12 10 2160 16 21104 22 2052 28 712
5 40 11 4368 17 18276 23 872 29 164
6 116 12 7852 18 15096 24 200 30 ??

A. Enumerative Efforts

Many structural insights into Costas arrays were gained by
studying C(n) for small orders n via exhaustive enumeration
of all possible n× n Costas arrays. For example, in 1984
Golomb and Taylor [11] reported the complete enumeration
for n ≤ 13 via exhaustive computer search, whose findings
underpinned their influential open problems list. During the
next three decades the complete enumeration was extended
to n ≤ 29 in sequence of papers [27]–[34], which in turn
was instrumental for the 2011 update of the aforementioned
fundamental open problems list [40]. The values of C(17)
and C(27) are particularly insightful as they reveal that C(n)
is neither monotone increasing nor unimodal.

The tabulated values of C(n) in Table I record the results of
these massively-distributed backtracking searches for Costas
arrays, which for orders n = 28 and n = 29 took the
equivalent of 70 and 366.55 years of single CPU time, respec-
tively [33], [34]. Despite such enormous computational efforts,
it remains unknown if Costas arrays exist for order n = 32,
see [12]. Part of the reason is the ‘combinatorial explosion’ of
the search space: for each increment of order n approximately
five times more computational resources are needed according
to [31, pp. 530-531] and [47, p. 22]. Interestingly, Correll [35,
Equation (3)] found a closed-form sum for C(n) based on
the Möbius Inversion Formula, but this expression has proven
difficult to evaluate [40, p. 8].

These exhaustive enumeration efforts have been facilitated
by an alternate definition of Costas arrays. Namely, for a given
permutation π of [n] := {1, . . . , n} the one-line form is

π = a1a2 . . . an, (5)

where aj = π(j). Row r of the difference triangle of π
for 1 ≤ r ≤ n− 1 is then given by the n− r differences

ar+1 − a1 ar+2 − a2 · · · an − an−r. (6)

Here the conceptual point is that the permutation π represents
an n × n Costas array if no row of its difference triangle
has repeated differences, which in turn can be efficiently
verified by a computer with only O(n3) many difference
comparisons [2], [48].

Interest in finding new Costas arrays and additional values
of C(n) has spawned research into constraints on difference
triangles of Costas arrays, in order to further accelerate back-
tracking searches. In particular, Chang [49] remarked in 1987
that only differences in rows r ≤ bn−12 c need to be computed
for verification, and Barker, Drakakis, and Rickard [48, Theo-
rem 4, Section V] showed in 2009 that an isosceles-trapezoidal
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region of differences in rows n
3 < r < bn−12 c need not be

computed. More recently, Correll [19] established constraints
on the number of positive differences in the rows r ≤ bn3 c,
and additional constraints [20] on first differences (r = 1).

Drakakis [39] quantified the overall restrictiveness of the
various structural constraints by defining the degrees of free-
dom L(n) of an n× n Costas array to be the minimal
number of integers from the domain [n] whose images need
to be specified in order to uniquely determine a Costas array.
Based on computational data he conjectured [39, Conjecture 2]
that L(n) ≤ 3 for n ≥ 24, and he proved that L(n) = o(n) in
fact already suffices [39, Section IV] to establish exponential
decay of the density C(n)/n! of Costas arrays.

B. Constructions of Costas Arrays and Beard’s Database

Costas arrays can be constructed using finite field tech-
niques. For example, Welch (within [14]) gave a construction
involving a single primitive element. Golomb also gave a
generalization of a construction due to Lempel to two distinct
primitive elements [15]. Unfortunately, such explicit construc-
tions (and variants thereof) do not work for all orders n, and
it remains open if Costas arrays exist for all n; see [12],
[17], [40]. However, the Welch and Lempel-Golomb construc-
tions and the infinitude of primes show that n × n Costas
arrays exist for infinitely many orders n, and even establish
that lim supC(n) =∞ as n→∞ [11, p. 1158].

All known Costas arrays up to order 1030 are in Beard’s
database [50]. Figure 2 displays the number of Costas arrays
of each order n in the database on logarithmic axes. The exact
values of Table I show up in the left-hand part of the figure.
The explicit constructions that account for the right-hand side
of Figure 2 are explained in more detail in [46, p. 1047].

C. Heuristic Prediction of C(n) and a Density Conjecture

In an effort towards understanding the asymptotic behavior
of the number C(n) of n×n Costas arrays, in 1988 Silverman,
Vickers and Mooney [27] accurately predicted the shape of
the left-hand hump in Figure 2, based on a probabilistic
model in which the entries of the difference triangle (see
Section II-A) associated with a random permutation matrix
are independent [12], [40]. Their heuristic predicts that

C(n)

n!
≈
(

1− K

n+ 1

)IP(n)

, (7)

where the constant K ≈ 1.111 was fit to the values of C(n)
for n ≤ 17 (all known values around 1988) and the parameter

IP(n) :=

{
n(n− 2)(2n+ 1)/24 if n odd,
(n+ 1)(n− 1)(2n− 3)/24 if n even.

(8)

In 2007, Beard et al. [31] fit K to the values of C(n)
for n ≤ 26, and the resulting constant K ≈ 1.10784 is nearly
unchanged.

A more recent density prediction of Swanson, Correll, and
Ho [41] is based on the heuristic that, in a random permutation
matrix, the occurrences of the minimal configurations of ones
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Fig. 2. Numbers of n×n Costas arrays in Beard’s database [50]: for n ≤ 29
these equal C(n), and for n ≥ 30 these are lower bounds for C(n). Our main
result (Theorem I.1) shows that C(n)/n! decays exponentially with n.

that violate the definition of a Costas array are independent.
This probabilistic heuristic leads to the conjecture that

C(n)

n!
= O

(
e−n

2/18−n/8
)
. (9)

As it turns out, inequality (38) in Section V shows that the
two heuristic density predictions (7) and (9) are both false
for large n. The crux is that both formulas are not useful for
large n, as they predict that lim supC(n) = 0 as n→∞.

III. DENSITY OF COSTAS ARRAYS:
KEY CHALLENGES OF PROBABILISTIC APPROACH

Our upcoming proof of Theorem I.1 in Section IV will
use probabilistic techniques to bound the density C(n)/n! of
Costas arrays from above. To this end we define Sn as the
set of all permutations of [n] = {1, . . . , n}, and write Mπ

for the n× n permutation matrix representing π ∈ Sn (i.e.,
Mπ = (mij)i,j∈[n] with mij = 1 if π(i) = j and mij = 0
otherwise). Choosing the permutation π ∈ Sn uniformly at
random, we obtain that

P(Mπ is a Costas array) =
C(n)

n!
, (10)

since Mπ equals any given Costas array with probability 1/n!.
A Costas array cannot contain three equally-spaced collinear
ones, since otherwise the vector from the left one to the
middle one would be the same as the vector from the middle
one to the right one. These forbidden sets of three ones
are called L3-configurations (there are two other forbidden
configurations, see [41], but considering L3-configurations
suffices for our purposes). Writing X = X(π) for the number
of (unordered) L3-configurations in the random n× n permu-
tation matrix Mπ , using (10) it follows that

C(n)

n!
= P(Mπ is a Costas array) ≤ P(X = 0). (11)
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A. Second Moment Method

To establish the polynomial decay C(n)/n! = O(1/n) as
in previous work [12], [37], [41], in view of inequality (11)
it suffices to apply the second moment method to X . Indeed,
after carefully estimating the first two moments of X , Cheby-
chev’s inequality eventually gives the polynomial bound

P(X = 0) ≤ VarX/(EX)2 = O(1/n), (12)

see [12, Section 4.2]. It it well-known that such inequalities
obtained by estimating moments of small order (like Cheby-
chev’s inequality) usually do not give exponential bounds. In
other words, the basic moment based proof approach used in
previous work is not suitable for proving Theorem I.1.

B. Bounded Differences Inequality

To obtain the stronger exponential decay C(n)/n! ≤ e−cn
claimed by Theorem I.1, we will estimate P(X = 0) via a
more powerful tool from probabilistic combinatorics, namely
the following bounded differences inequality for random per-
mutations (which follows from Azuma-Hoeffding type martin-
gale arguments, see [51, Section 11.1] or [52, Section 1.1.4]).

Theorem III.1 (Bounded Differences Inequality). Let
f : Sn → R be a function with discrete Lipschitz coefficient D,
i.e., such that |f(σ)− f(σ′)| ≤ D whenever σ′ arises from σ
via a transposition. Choosing π ∈ Sn uniformly at random,
the random variable Z := f(π) satisfies, for all t ≥ 0,

P
(
Z ≤ EZ − t

)
≤ exp

(
− t2

2nD2

)
. (13)

Applying the bounded differences inequality (13) to the
number Z = X(π) of L3-configurations in the random n× n
permutation matrix Mπ , using X = X(π) ≥ 0 it follows that

P(X = 0) = P(X ≤ EX − EX) ≤ exp

(
− (EX)2

2nD2

)
, (14)

where D = DX is the discrete Lipschitz coefficient from
Theorem III.1 associated with the random variable X = X(π).
As we shall see in Equation (30) of Section IV-B, the expected
number of L3-configurations satisfies EX ∼ n/8 as n→∞.
The key challenge is that the Lipschitz coefficient D = DX

is too large for inequality (14) to be useful. Indeed, we shall
below prove that D = DX ≥ n− 2, which in view of

0 ≤ (EX)2

2nD2
≤ O(1)

n
(15)

implies that the right-hand side of inequality (14) tends to one
as n → ∞ (and not to zero as one might hope). Using (11)
this means that the bounded differences inequality only gives
the trivial density bound C(n)/n! ≤ 1 for large n.

For the interested reader we now prove that the discrete
Lipschitz coefficient of X indeed satisfies D = DX ≥ n−2, as
claimed above. To this end we consider the identity permuta-
tion σ ∈ Sn, and the permutation σ′ ∈ Sn which arises from σ
by transposing n − 1 and n. Recalling that X(σ) counts the
number of (unordered) L3-configurations in the permutation
matrix Mσ representing σ, by observing that the two bottom

right-hand ones in Mσ′ are not a part of any L3-configuration,
it follows that the above-defined permutations σ, σ′ satisfy

X(σ)−X(σ′) = Idl3(n)− Idl3(n− 2), (16)

where Idl3(n) denotes the number of (unordered)
L3-configurations in the n× n identity permutation matrix.
The formula

Idl3(n) =

{
1
4n(n− 2) if n even,
1
4 (n− 1)2 if n odd,

(17)

appearing in [41, Theorem 4] then implies that

D = DX ≥ |X(σ)−X(σ′)| = n− 2, (18)

i.e., that the discrete Lipschitz coefficient of X is very large.

IV. DENSITY OF COSTAS ARRAYS:
PROOF OF THEOREM I.1

In this section we prove Theorem I.1, by estimating the den-
sity C(n)/n! of Costas arrays using the bounded differences
inequality (13). We will overcome the technical challenge of
large Lipschitz coefficients (discussed in Section III) by trans-
ferring proof ideas from random graph theory to Costas arrays.

More concretely, we shall adapt a ‘disjoint approximation’
technique that can be traced back to a random graphs break-
through of Bollobás [42] from 1988. This powerful proof
technique consists of the following two key steps:
Step 1: Using the combinatorial idea of counting ‘disjoint’ ob-

jects, define an auxiliary random variable X ′ = X ′(π)
which (i) satisfies 0 ≤ X ′ ≤ X , and (ii) has a small
discrete Lipschitz coefficient D = DX′ .

Step 2: Using a random sampling approach, bound the ex-
pected value EX ′ from below.

To see why the auxiliary random variable X ′ = X ′(π) is
useful, note that 0 ≤ X ′ ≤ X implies

P(X = 0) ≤ P(X ′ = 0). (19)

Applying the bounded differences inequality (Theorem III.1)
to Z = X ′(π) similarly to (14), it follows from (11) that

C(n)

n!
≤ exp

(
− (EX ′)2

2nD2

)
, (20)

where D = DX′ is the discrete Lipschitz coefficient from The-
orem III.1 associated with the random variable X ′ = X ′(π).
Adapting the above-mentioned two key steps to Costas arrays,
in Equations (23) and (37) of Sections IV-A and IV-B we
will show that for all n ≥ 3 our auxiliary random vari-
able X ′ satisfies D = DX′ = 2 and EX ′ ≥ an for a suitable
constant a > 0. Inserting these estimates into (20) then gives

C(n)

n!
≤ exp

(
−a

2n

8

)
for all n ≥ 3, (21)

establishing the desired exponential Costas array density (3)
of Theorem I.1 with constant c := a2/8.

To complete the proof of Theorem I.1 it remains to adapt
the two key steps of the disjoint approximation technique to
Costas arrays, i.e., to define suitable X ′ = X ′(π) which sat-
isfies 0 ≤ X ′ ≤ X and D = DX′ = 2 as well as EX ′ ≥ an.
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A. Step 1: Define X ′ with Small Lipschitz Coefficient

The first step of the disjoint approximation technique
addresses the key challenge that the number X = X(π)
of L3-configurations in Mπ has a large discrete Lipschitz
coefficient. In the context of random graphs Bollobás [42]
realized that, by artificially limiting ‘overlaps’ between the
objects of interest, one can often replace X by an auxiliary
random variable that (i) behaves similarly to X , and (ii) has
a small discrete Lipschitz coefficient. Adapting this combi-
natorial insight to Costas arrays, we define X ′ = X ′(π) as
the maximum number of (unordered) L3-configurations in the
random n× n permutation matrix Mπ which are pairwise
disjoint, i.e., which share no ones. Note that

0 ≤ X ′ ≤ X. (22)

Recall that the discrete Lipschitz coefficient D = DX′ from
Theorem III.1 is an upper bound on the maximum change
of X ′(σ) that can result from applying a transposition τ
to σ ∈ Sn. Since each one in the permutation matrix Mσ is
contained in at most one L3-configuration counted by X ′(σ),
for any permutation σ ∈ Sn and transposition τ it follows that

|X ′(σ)−X ′(τσ)| ≤ 2. (23)

Hence D = DX′ := 2 is a valid choice for the discrete
Lipschitz coefficient of X ′.

B. Step 2: Lower Bound on the Expectation EX ′

In the second step of the disjoint approximation technique it
remains to show that the expected value EX ′ of the auxiliary
random variable X ′ = X ′(π) is large. Here our main tool is a
random sampling technique from probabilistic combinatorics
(cf. [53, Theorem 3.2.1 and Lemma 7.3.1]), which uses
randomness to construct a set of disjoint L3-configurations.

Turning to the details, let L = L(π) denote the collection
of all (unordered) L3-configurations in the n× n permutation
matrix Mπ representing the random permutation π ∈ Sn, so
that |L| = X . Let O = O(π) denote the collection of all
unordered pairs {L,L′} ⊆ L which overlap in exactly one or
two ones (note that this implies L 6= L′). Let Lq = Lq(π)
be a random subset of L defined by including each L ∈ L
independently with probability q, where q ∈ [0, 1] is deter-
mined later. Let Oq = Oq(π) contain all pairs {L,L′} ∈ O
with L,L′ ∈ Lq . Since each L ∈ L is included in Lq
independently with probability q, it follows that

E|Lq| = qE|L| and E|Oq| = q2E|O|. (24)

Deleting from Lq one element from each pair in Oq , we obtain
a collection L∗q of pairwise disjoint L3-configurations in Mπ .
Noting X ′ ≥ |L∗q | ≥ |Lq| − |Oq|, using the linearity of the
expectation together with (24) and |L| = X we infer that

EX ′ ≥ E|Lq| − E|Oq| = qEX − q2E|O|. (25)

To establish our desired lower bound EX ′ ≥ an, it remains
to estimate the expectations EX and E|O|, and then choose
the inclusion probability q ∈ [0, 1] which maximizes (25).

We start with the expected number EX of L3-configurations
in the random permutation matrix Mπ . Let L3(n) denote

the collection of all possible (unordered) L3-configurations
that can appear in some n× n permutation matrix.
Given L ∈ L3(n), we denote by 1{L⊆Mπ} the indicator vari-
able for the event that L ⊆Mπ holds, i.e., that L is contained
in Mπ . Noting that the number X = X(π) of (unordered)
L3-configurations in Mπ can be expressed as the sum

X =
∑

L∈L3(n)

1{L⊆Mπ}, (26)

using the linearity of the expectation we see that

EX =
∑

L∈L3(n)

E(1{L⊆Mπ}) =
∑

L∈L3(n)

P(L ⊆Mπ). (27)

Note that there are exactly (n − 3)! permutation matrices of
order n which contain a given L ∈ L3(n). Since Mπ equals
any such matrix with probability 1/n!, it follows that

EX =
∑

L∈L3(n)

(n− 3)!

n!
= |L3(n)| · (n− 3)!

n!
. (28)

According to [12, Equations (4.4) and (4.5)] the total number
of (unordered) potential L3-configurations is

|L3(n)| =

{
1
8n

2(n− 2)2 if n even,
1
8 (n− 1)4 if n odd,

(29)

and so we conclude that

µ := EX =
|L3(n)|

n(n− 1)(n− 2)
∼ n

8
. (30)

We now turn to the expected number E|O| of unordered
overlapping pairs of L3-configurations in the random permu-
tation matrix Mπ . Given L,L′ ∈ L3(n), let |L∩L′| denote the
number of overlapping ones in these two L3-configurations.
Proceeding similarly to Equations (26) and (27), using the
linearity of the expectation it follows that

E|O| = 1
2

∑
(L,L′)∈L3(n)×L3(n):
|L∩L′|∈{1,2}

P(L ⊆Mπ and L′ ⊆Mπ), (31)

where the factor of 1/2 takes into account that |O| counts
unordered pairs. Writing L3,j(n) for the collection of
all (L,L′) ∈ L3(n)×L3(n) with |L∩L′| = j, with analogous
counting reasoning as for Equation (28), it then follows that

E|O| = |L3,1(n)|
2

· (n− 5)!

n!
+
|L3,2(n)|

2
· (n− 4)!

n!
. (32)

To bound |L3,2(n)| from above, note that there are |L3(n)|
choices for L ∈ L3(n), and then at most 3 · 3 = 9 choices
for L′ ∈ L3(n) with |L ∩ L′| = 2 (as there are 3 ways to
choose the two common ones, and at most 3 ways to choose
a third one of L′). It follows that

|L3,2(n)| ≤ |L3(n)| · 9. (33)

To bound |L3,1(n)| from above, we proceed similarly: note
that there are |L3(n)| choices for L ∈ L3(n), and then at
most 3 · n2 · 3 = 9n2 choices for L′ ∈ L3(n) with |L∩L′| = 1
(as there are 3 ways to choose the single common one, at
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most n2 ways to choose a second one of L′, and at most 3
ways to choose a third one of L′). It follows that

|L3,1(n)| ≤ |L3(n)| · 9n2. (34)

To clean up border cases, note that |L3,1(n)| = 0 if n ≤ 4
and that |L3,2(n)| = 0 if n ≤ 3. Inserting the above estimates
into (32), using Equation (30) it follows that

E|O| ≤ 9µ

2

[
1{n≥5}n

2

(n− 3)(n− 4)
+
1{n≥4}

n− 3

]
=: ∆, (35)

where 1{n≥j} is the indicator function for n ≥ j, as usual.
We are now ready to derive the desired lower bound

on EX ′. Namely, after inserting the bounds EX = µ and
E|O| ≤ ∆ into inequality (25), we see that the inclusion
probability q := min{µ/(2∆), 1} yields

EX ′ ≥ q(µ− q∆) ≥ qµ

2
=
µ

4
·min

{
µ

∆
, 2

}
. (36)

Inspecting (29), (30) and (35), it follows that there is a
constant a > 0 such that for all n ≥ 3 we have

EX ′ ≥ an. (37)

This concludes the disjoint approximation technique, and thus
completes the proof of Theorem I.1, as discussed.

V. CONCLUSION

In this paper we proved that the density C(n)/n! of Costas
arrays among permutation matrices decays exponentially, nar-
rowing the gap between the theoretical and empirical bounds
that had existed since the 1980s. We did this by showing,
more generally, that the density of permutation matrices with-
out three equally-spaced collinear ones decays exponentially.
A key proof ingredient was an approximation technique from
random graph theory, which allowed us to overcome the
concentration inequality-related obstacle of large Lipschitz
coefficients. This combinatorial technique does not seem to
be as widely known in other fields, and we hope that our
exposition in Section IV makes it accessible to a wider range
of researchers.

Our knowledge of the number C(n) of n × n Costas
arrays remains somewhat incomplete. For orders n ≥ 1 for
which n× n Costas arrays do exist, note that we trivially
have C(n)/n! ≥ 1/n! ≥ n−n. It thus follows from Theo-
rem I.1 and the explicit constructions mentioned in Sec-
tion II-B that for infinitely many (but not all) n we have

e−n logn ≤ C(n)

n!
≤ e−cn. (38)

In terms of asymptotic enumeration of Costas arrays, the main
open problem is to close the gap in (38). As a first step in this
direction, we propose the following more modest problem.

Problem V.1 (Exponential Rate of Decay). Determine the
order of magnitude of − log (C(n)/n!) as n→∞.
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