The Density of Costas Arrays Decays Exponentially

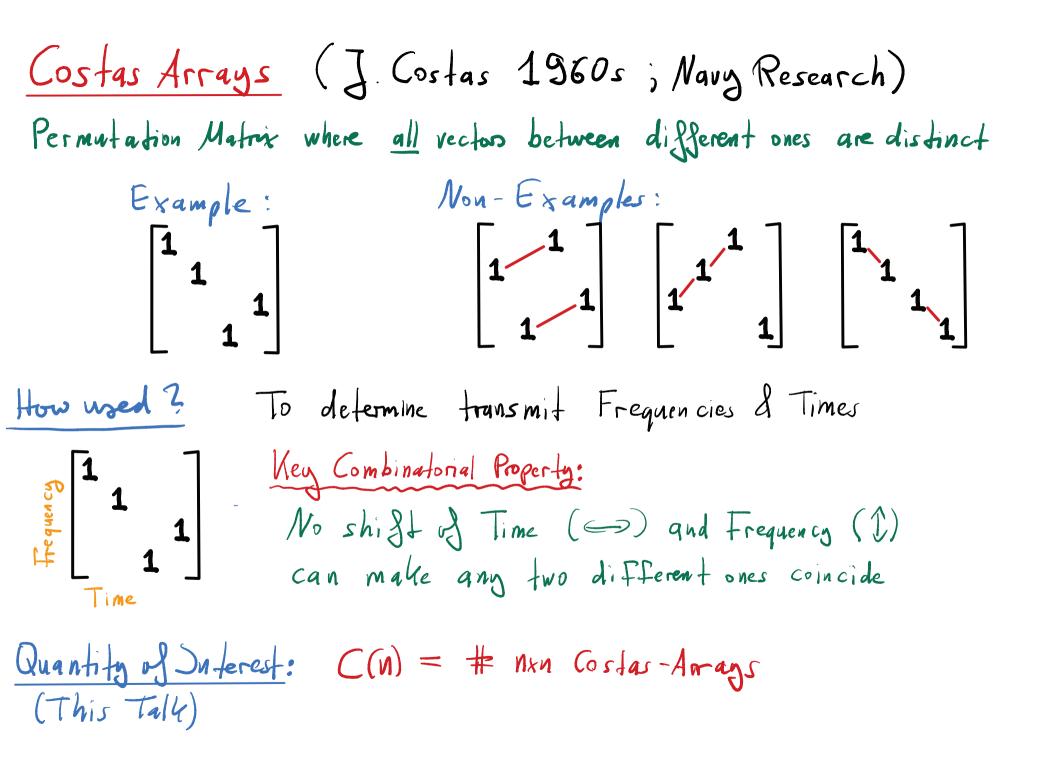
Lutz Warnke

Georgia Tech

Joint work with

Bill Correll Jr Chris Swanson Maxar Technologies

Ashland University



Back ground: Asymptotic Bounds
$$C(n) = \#$$
 nxn Costas-Arrags (= Permutation Matrices with Constraints)Algebraic constructions $C(n) \ge 1$ for ∞ many n (e.g. n= prime-1)Golomb-Taylor 1934 $C(n) \ge 1$ for ∞ many n (e.g. n= prime-1)Golomb-Taylor 1934 $C(n) \ge 1$ for ∞ many n (e.g. n= prime-1)Golomb-Taylor 1934 $C(n) \ge 1$ for ∞ many n (e.g. n= prime-1)Golomb-Taylor 1934 $C(n) \ge 1$ for ∞ many n (e.g. n= prime-1)Golomb-Taylor 1934 $C(n) \ge 1$ for ∞ many n (e.g. n= prime-1)Second Moment Method $C(n) \ge 0$ Beeijamin Weiss 1984 $C(n) \ge 0$ Victor Reiner 1986 $n! = 0$ Huw Daries 1983 $Conj colume$:Folkhone late 1980s $C(n) = e^{-\Omega(n)}$ Folkhone late 1980s $Conj colume$ Draktakis 2011 $Conj e dia e followConj colume $C(n) = e^{-\Omega(n)}$ Folkhone late 1980s $Conj e dia e followDraktakis 2011 $Conj e dia e follow$$$

$$C(n) = \# nxn \quad Costas - Arrays \qquad (= Permutation \quad Matrices where all vectors) \\ between \quad different ones are distinct Main Result (Correl, Swanson, W. 2021+) \\ Exponential decay:
$$\frac{C(n)}{n!} \leq e^{-Cn} \quad \text{for all } n \geq 3$$$$

· Verifies Core Problem + Speculations From 13805

Proved-J dea
(1) Find Forbidden "combinatorial" configuration:
Costas Arrays do not contain three equally spaced continue ones:

$$X = \#$$
 of these configurations in
Random and Permetation Matrix
(2) Exploit Probabilistic Jutes pretation:
 $\frac{C(n)}{n!} = \mathcal{P}(Random num Perm. Matrix is Costas Array) \leq \mathcal{P}(X=0)$
(3) Disjoint Approximation + Bounded Differences Inequality
 $\frac{C(n)}{n!} \leq \mathcal{P}(X=0) \leq \mathcal{P}(X_D=0) \leq \cdots \leq e^{-\theta(n)}$
max size of collection of three-one configurations
counted by X that use disjoint ones

<u>Open Problem</u>: More precise estimate of $\frac{C(n)}{n!}$ or C(n)C(n) = #nxn Permutation Matrices where all vectors between different ones are distinct.

We Know: n' <
$$\frac{C(n)}{n!} \leq e^{-cn}$$
 For ∞ many n

Difficulty: Forbidden Configurations are non-standard.

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 "more geometric than usual"

- · Enumerative / Analytic Combinatorics
- · Probability / Concentration / Probabilistic Combinatorics
- · Ad-Hoc Counting à la Stanley-Wilf Gnjechne

Density of Costas Arrays
Exponential decay:
$$\frac{C(n)}{n!} \leq e^{-cn}$$
 for all $n \geq 3$

Questions : -

• What approaches might give
$$\frac{C(u)}{n!} \le e^{-w(u)}$$
?