The degree-restricted random process is far from uniform

Lutz Warnke

UC San Diego

Joint work with Mike Molloy (Toronto) and Erlang Surya (UCSD)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Context and Overview

Random Graph Model: Random *d*-process

- Start with an empty graph on *n* vertices
- In each step: add one random edge so that max-degree stays $\leq d$
- Natural random greedy algorithm to generate d-regular graph (Balińska–Quintas 1985, Ruciński–Wormald 1992)

Basic Question: Wormald (1999)

How similar are *d*-process and uniform random *d*-regular graph G_d ?

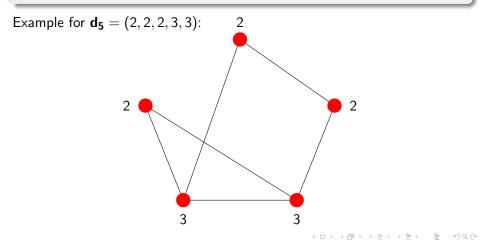
• Wormald conjectured they are similar (contiguous)

This Talk: Variant for degree sequences d_n Degree-restricted process <u>differs</u> from uniform G_{d_n} for *irregular* d_n

Variant for degree sequences $\mathbf{d_n} = (d_1, \dots, d_n)$

Degree-restricted random d_n -process

- Start with an empty graph on *n* vertices
- In each step: add one random edge to the graph, so that the degree of each vertex v_i stays $\leq d_i$



Variant for degree sequences $\mathbf{d_n} = (d_1, \dots, d_n)$

Degree-restricted random d_n -process

- Start with an empty graph on *n* vertices
- In each step: add one random edge to the graph, so that the degree of each vertex v_i stays $\leq d_i$

Basic Distributional Question:

How similar is final graph $G_{\mathbf{d}_n}^P$ of degree-restricted random \mathbf{d}_n -process to a uniform random graph $G_{\mathbf{d}_n}$ with degree sequence \mathbf{d}_n ?

- Statistics: can we (algorithmically) distinguish them?
- Combinatorial Probability: do both have similar typical properties?
- Algorithms: can dn-process be used for random sampling?
- Modeling/Physics: does the simplest model work?

Main Result: d_n -process and uniform model differ

 $\textbf{d}_{\textbf{n}} = (\textit{d}_1, \ldots, \textit{d}_n)$ not nearly regular : no degree <code>appears</code> $\geq 0.99 \textit{n}$ times

Molloy, Surya, Warnke (2022+)

If the bounded degree sequence \mathbf{d}_n is *not nearly regular*, then can whp <u>distinguish</u> \mathbf{d}_n -process $G_{\mathbf{d}_n}^P$ and uniform random \mathbf{d}_n -graph $G_{\mathbf{d}_n}$

Simple case (today): Assume # degree 1 vertices $\in [0.01n, 0.99n]$

- Proof Idea: Show discrepancy in edge statistic
 - Number of 1-1 edges differ whp (i.e., evolution of process matters)
- **Proof Technique:** 'Switching method' applied to d_n -process
 - Usually only applied to uniform models (not stochastic processes)

Intuition: why d_n -process prefers 1-1 edges

dn-Process Configuration Model

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - 釣A@

Main Technical Result: Discrepancy in Edge Statistic

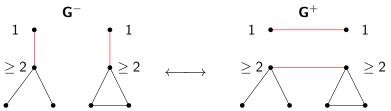
 $X_{1,1}(G) = \#$ of edges with endpoints of degree 1 in G

Can distinguish both models via $X_{1,1}$ There exists μ and $\epsilon = \epsilon(\Delta) > 0$ such that with high probability $X_{1,1}(G_{d_n}) \in [(1 - \epsilon)\mu, (1 + \epsilon)\mu]$ and $X_{1,1}(G_{d_n}^P) \notin [(1 - \epsilon)\mu, (1 + \epsilon)\mu]$ $X_{1,1}(G_{d_n}^P) \quad X_{1,1}(G_{d_n}) \qquad X_{1,1}(G_{d_n}^P)$

$$\begin{array}{c|c} & X & X \\ \hline & & 1 \\ \hline & & (1-\epsilon)\mu & (1+\epsilon)\mu \end{array} \end{array}$$

- **Concentration of** $X_{1,1}(G_{d_n})$: standard via configuration model
- Understanding $X_{1,1}(G_{\mathbf{d}_n}^P)$: adapt switching method (\longrightarrow This talk)

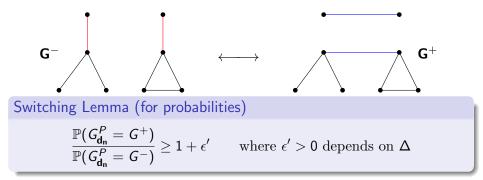
Switching: Change # of 1-1 edges by exactly one



• Goal: compare ratio $\mathbb{P}(G_{d_n}^P = G^+) / \mathbb{P}(G_{d_n}^P = G^-)$

- # of 1-1 edges in G^+ and G^- differ by exactly one
- ▶ switching between G⁺ and G⁻ is 'local perturbation'
- Extra difficulty for stochastic processes:
 - no longer uniform (order of edges matters)
- Solution:
 - look at all trajectories (= edge orderings) yielding a graph

How Switching Affect d_n -process Probabilities



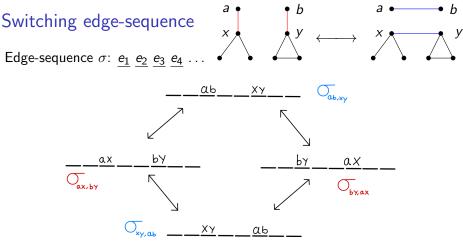
Proof Ideas:

• Expand probability based on edge-sequence σ of G

$$\mathbb{P}(G_{\mathbf{d}_{\mathbf{n}}}^{P} = G) = \sum_{\sigma} \mathbb{P}(\mathbf{d}_{\mathbf{n}} \operatorname{-process returns} \sigma) =: \sum_{\sigma} \mathbb{P}(\sigma)$$

• Understand how switching affects $\mathbb{P}(\sigma)$

Compare (averaged ratios of) probabilities of similar trajectories



• Key Inequality:

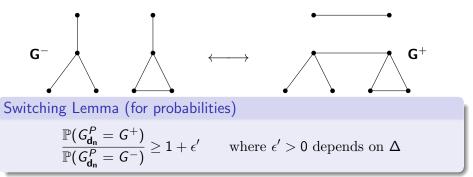
 $\mathbb{P}(\sigma_{ab,xy}) + \mathbb{P}(\sigma_{xy,ab}) \geq \mathbb{P}(\sigma_{ax,by}) + \mathbb{P}(\sigma_{by,ax})$

・ロト ・ 同ト ・ ヨト ・ ヨト

э

- LHS has one more 1-1 edge than RHS:
 - Indicates d_n-process prefers more 1-1 edges

How Switching Affect d_n -process Probabilities



Proof Idea: Use key inequality for all edge-sequences $\sigma = \sigma_{ab,xy}$ of G^+ :

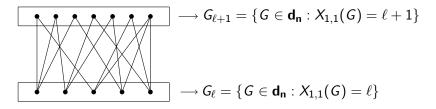
$$\mathbb{P}(G_{\mathbf{d}_{\mathbf{n}}}^{P} = G^{+}) = \sum_{\sigma_{ab,xy}} \left[\mathbb{P}(\sigma_{ab,xy}) + \mathbb{P}(\sigma_{xy,ab}) \right]$$
$$\geq \sum_{\sigma_{ax,by}} \left[\mathbb{P}(\sigma_{ax,by}) + \mathbb{P}(\sigma_{by,ax}) \right] = \mathbb{P}(G_{\mathbf{d}_{\mathbf{n}}}^{P} = G^{-})$$

• Often win a factor of $1 + \epsilon$ in key inequality: get $1 + \epsilon'$

Switching: Graph Count Based on $X_{1,1}$

Notation: $G \in \mathbf{d_n}$ if G has degree sequence $\mathbf{d_n}$

Auxiliary Graph: by adding edge between G^+ , G^- :



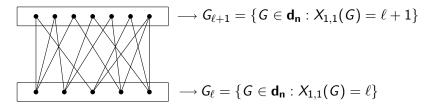
Key Point: Auxiliary graph is roughly regular when $\ell\approx\mu$ Switching lemma then implies:

$$\frac{\mathbb{P}(\textit{G}_{d_{n}}^{\textit{P}} \in \textit{G}_{\ell+1})}{\mathbb{P}(\textit{G}_{d_{n}}^{\textit{P}} \in \textit{G}_{\ell})} \geq 1 + \epsilon'$$

Uniform random graphs: switching easy

Notation: $G \in \mathbf{d_n}$ if G has degree sequence $\mathbf{d_n}$

Auxiliary Graph: by adding edge between G^+ , G^- :



Uniform random graph G_{d_n} simpler: classical switching works

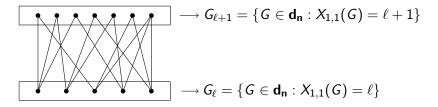
Crux is that normalization constants cancel out:

$$\frac{\mathbb{P}(\mathit{G}_{\mathsf{d}_{\mathsf{n}}} \in \mathit{G}_{\ell+1})}{\mathbb{P}(\mathit{G}_{\mathsf{d}_{\mathsf{n}}} \in \mathit{G}_{\ell})} = \frac{|\mathit{G}_{\ell+1}|}{|\mathit{G}_{\ell}|}$$

Degree-restricted process: why new ideas needed

Notation: $G \in \mathbf{d_n}$ if G has degree sequence $\mathbf{d_n}$

Auxiliary Graph: by adding edge between G^+ , G^- :



Degree-restricted random **d**_n-process: why more complicated Normalization constants *do not* cancel out:

$$\frac{\mathbb{P}(G_{\mathsf{d}_{\mathsf{n}}}^{P} \in G_{\ell+1})}{\mathbb{P}(G_{\mathsf{d}_{\mathsf{n}}}^{P} \in G_{\ell})} = \frac{\sum_{F \in G_{\ell+1}} \mathbb{P}(G_{\mathsf{d}_{\mathsf{n}}}^{P} = F)}{\sum_{H \in G_{\ell}} \mathbb{P}(G_{\mathsf{d}_{\mathsf{n}}}^{P} = H)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

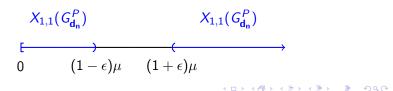
Proof of Main Theorem (Sketch) Definition: $\mathcal{N}_z = \{ G \in \mathbf{d_n} : |X_{1,1}(G) - \mu| \le z \}$

$$\begin{array}{l} \text{Key Point implies (for } z \leq 2\epsilon\mu) \\ \\ \frac{\mathbb{P}[G_{\mathsf{d}_{\mathsf{n}}}^{P} \in \mathcal{N}_{z}]}{\mathbb{P}[G_{\mathsf{d}_{\mathsf{n}}}^{P} \in \mathcal{N}_{z+1}]} \leq \frac{\sum_{\mu-z \leq \ell \leq \mu+z} \mathbb{P}(G_{\mathsf{d}_{\mathsf{n}}}^{P} \in G_{\ell})}{\sum_{\mu-z \leq \ell \leq \mu+z} \mathbb{P}(G_{\mathsf{d}_{\mathsf{n}}}^{P} \in G_{\ell+1})} \leq \frac{1}{1+\epsilon'} \end{array}$$

Get exponential decay by telescoping product argument:

$$\mathbb{P}(G_{\mathsf{d}_{\mathsf{n}}}^{P} \in \mathcal{N}_{\epsilon\mu}) \leq \frac{\mathbb{P}(G_{\mathsf{d}_{\mathsf{n}}}^{P} \in \mathcal{N}_{\epsilon\mu})}{\mathbb{P}(G_{\mathsf{d}_{\mathsf{n}}}^{P} \in \mathcal{N}_{2\epsilon\mu})} = \prod_{z=\epsilon\mu}^{2\epsilon\mu-1} \frac{\mathbb{P}(G_{\mathsf{d}_{\mathsf{n}}}^{P} \in \mathcal{N}_{z})}{\mathbb{P}(G_{\mathsf{d}_{\mathsf{n}}}^{P} \in \mathcal{N}_{z+1})} \leq \frac{1}{(1+\epsilon')^{\epsilon\mu}} \to 0$$

Conclusion: whp number of 1-1 edges satisfies



General case: more complicated

- Small vertex: $|\{v : \deg(v) \le s\}| \in [0.01n, 0.99n]$ (previously s = 1)
- Small edge: edge whose endpoints are small
- $X_{\text{small}}(G) = \text{number of small edges in } G$

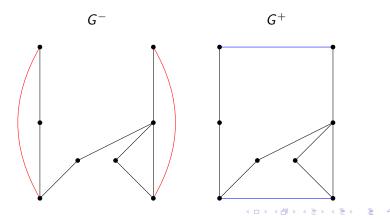
• Major Difficulty: Several key inequalities can fail

The point where old argument breaks down

Issue: the following key inequality is no longer true

$$\frac{\mathbb{P}(G_{\mathsf{d}_{\mathsf{n}}}^{\mathsf{P}}=G^{+})}{\mathbb{P}(G_{\mathsf{d}_{\mathsf{n}}}^{\mathsf{P}}=G^{-})} \geq 1 + \epsilon'$$

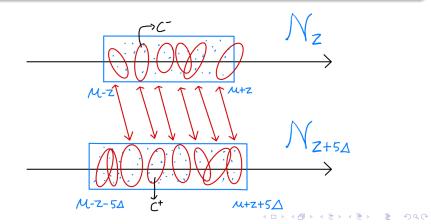
The ratio is ≈ 0.82 in the following example:



General case: refined switching idea Definition: $\mathcal{N}_z = \{ \mathcal{G} \in \mathbf{d_n} : |X_{\text{small}}(\mathcal{G}) - \mu| \le z \}$

Key Idea: Switching on clusters (=suitable sets of graphs)

$$\frac{\mathbb{P}(G^{P}_{\mathsf{d}_{\mathsf{n}}} \in \mathcal{N}_{z})}{\mathbb{P}(G^{P}_{\mathsf{d}_{\mathsf{n}}} \in \mathcal{N}_{z+5\Delta})} \leq \frac{1}{1+\epsilon'}$$



General case: refined switching idea Definition: $\mathcal{N}_z = \{G \in \mathbf{d_n} : |X_{\text{small}}(G) - \mu| \le z\}$

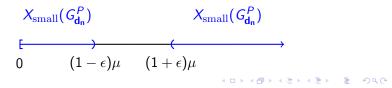
Key Idea: Switching on clusters (=suitable sets of graphs)

$$\frac{\mathbb{P}(G_{\mathsf{d}_{\mathsf{n}}}^{P} \in \mathcal{N}_{z})}{\mathbb{P}(G_{\mathsf{d}_{\mathsf{n}}}^{P} \in \mathcal{N}_{z+5\Delta})} \leq \frac{1}{1+\epsilon'}$$

Get exponential decay by telescoping product argument:

$$\mathbb{P}(G_{\mathsf{d}_{\mathsf{n}}}^{P} \in \mathcal{N}_{\epsilon\mu}) \leq \frac{\mathbb{P}(G_{\mathsf{d}_{\mathsf{n}}}^{P} \in \mathcal{N}_{\epsilon\mu})}{\mathbb{P}(G_{\mathsf{d}_{\mathsf{n}}}^{P} \in \mathcal{N}_{2\epsilon\mu})} = \prod_{i=0}^{\epsilon/(5\Delta)} \frac{\mathbb{P}(G_{\mathsf{d}_{\mathsf{n}}}^{P} \in \mathcal{N}_{\epsilon\mu+i5\Delta})}{\mathbb{P}(G_{\mathsf{d}_{\mathsf{n}}}^{P} \in \mathcal{N}_{\epsilon\mu+(i+1)5\Delta})} \leq \frac{1}{(1+\epsilon')^{\epsilon\mu}} \longrightarrow 0$$

Conclusion: whp number of small edges satisfies



Summary

Degree-restricted random \mathbf{d}_{n} -process $G_{\mathbf{d}_{n}}^{P}$

• Start with an empty graph on *n* vertices

• In each step: add one random edge to the graph, so that the degree of each vertex v_i stays $\leq d_i$

Main result: \mathbf{d}_{n} -process $G_{\mathbf{d}_{n}}^{P}$ and uniform model $G_{\mathbf{d}_{n}}$ differ If the bounded degree sequence \mathbf{d}_{n} is not nearly regular, then can whp <u>distinguish</u> \mathbf{d}_{n} -process $G_{\mathbf{d}_{n}}^{P}$ and random \mathbf{d}_{n} -graph $G_{\mathbf{d}_{n}}$

Proof technique: adapt switching method to stochastic process

Open Question

Wormald's conjecture for 2-regular degree-restricted random process?