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Context and Overview

Random Graph Model: Random d-process

Start with an empty graph on n vertices

In each step: add one random edge so that max-degree stays ≤ d

Natural random greedy algorithm to generate d-regular graph
(Balińska–Quintas 1985, Ruciński–Wormald 1992)

Basic Question: Wormald (1999)

How similar are d-process and uniform random d-regular graph Gd?

Wormald conjectured they are similar (contiguous)

This Talk: Variant for degree sequences dn

Degree-restricted process differs from uniform Gdn for irregular dn



Variant for degree sequences dn = (d1, . . . , dn)

Degree-restricted random dn-process

Start with an empty graph on n vertices

In each step: add one random edge to the graph,
so that the degree of each vertex vi stays ≤ di

Example for d5 = (2, 2, 2, 3, 3):
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Variant for degree sequences dn = (d1, . . . , dn)

Degree-restricted random dn-process

Start with an empty graph on n vertices

In each step: add one random edge to the graph,
so that the degree of each vertex vi stays ≤ di

Basic Distributional Question:

How similar is final graph GP
dn

of degree-restricted random dn-process
to a uniform random graph Gdn with degree sequence dn?

Statistics: can we (algorithmically) distinguish them?

Combinatorial Probability: do both have similar typical properties?

Algorithms: can dn-process be used for random sampling?

Modeling/Physics: does the simplest model work?



Main Result: dn-process and uniform model differ

dn = (d1, . . . , dn) not nearly regular : no degree appears ≥ 0.99n times

Molloy, Surya, Warnke (2022+)

If the bounded degree sequence dn is not nearly regular, then
can whp distinguish dn-process GP

dn
and uniform random dn-graph Gdn

Simple case (today): Assume # degree 1 vertices ∈ [0.01n, 0.99n]

Proof Idea: Show discrepancy in edge statistic
▶ Number of 1-1 edges differ whp (i.e., evolution of process matters)

Proof Technique: ‘Switching method’ applied to dn-process
▶ Usually only applied to uniform models (not stochastic processes)



Intuition: why dn-process prefers 1-1 edges



Main Technical Result: Discrepancy in Edge Statistic

X1,1(G ) = # of edges with endpoints of degree 1 in G

Can distinguish both models via X1,1

There exists µ and ϵ = ϵ(∆) > 0 such that with high probability

X1,1(Gdn) ∈ [(1− ϵ)µ, (1 + ϵ)µ] and X1,1(G
P
dn) ̸∈ [(1− ϵ)µ, (1 + ϵ)µ]

(1− ϵ)µ (1 + ϵ)µ

X1,1(Gdn) X1,1(G
P
dn
)X1,1(G

P
dn
)

0

Concentration of X1,1(Gdn): standard via configuration model

Understanding X1,1(G
P
dn
): adapt switching method (−→ This talk)



Switching: Change # of 1-1 edges by exactly one

Definition via Example:

←−−→

G− G+

1 1 1 1

≥ 2 ≥ 2 ≥ 2≥ 2

Goal: compare ratio P(GP
dn

= G+)/P(GP
dn

= G−)
▶ # of 1-1 edges in G+ and G− differ by exactly one
▶ switching between G+ and G− is ‘local perturbation’

Extra difficulty for stochastic processes:
▶ no longer uniform (order of edges matters)

Solution:
▶ look at all trajectories (= edge orderings) yielding a graph



How Switching Affect dn-process Probabilities

←−−→G− G+

Switching Lemma (for probabilities)

P(GP
dn

= G+)

P(GP
dn

= G−)
≥ 1 + ϵ′ where ϵ′ > 0 depends on ∆

Proof Ideas:

Expand probability based on edge-sequence σ of G

P(GP
dn = G ) =

∑
σ

P(dn-process returns σ) =:
∑
σ

P(σ)

Understand how switching affects P(σ)
▶ Compare (averaged ratios of) probabilities of similar trajectories



Switching edge-sequence

Edge-sequence σ: e1 e2 e3 e4 . . .

Key Inequality:

P(σab,xy ) + P(σxy ,ab) ≥ P(σax ,by ) + P(σby ,ax)

LHS has one more 1-1 edge than RHS:
▶ Indicates dn-process prefers more 1-1 edges

←−−→

a b a b

x y yx



How Switching Affect dn-process Probabilities

←−−→G− G+

Switching Lemma (for probabilities)

P(GP
dn

= G+)

P(GP
dn

= G−)
≥ 1 + ϵ′ where ϵ′ > 0 depends on ∆

Proof Idea: Use key inequality for all edge-sequences σ = σab,xy of G+:

P(GP
dn = G+) =

∑
σab,xy

[
P(σab,xy ) + P(σxy ,ab)

]
≥

∑
σax,by

[
P(σax ,by ) + P(σby ,ax)

]
= P(GP

dn = G−)

Often win a factor of 1 + ϵ in key inequality: get 1 + ϵ′



Switching: Graph Count Based on X1,1

Notation: G ∈ dn if G has degree sequence dn

Auxiliary Graph: by adding edge between G+,G−:

Gℓ = {G ∈ dn : X1,1(G ) = ℓ}

Gℓ+1 = {G ∈ dn : X1,1(G ) = ℓ+ 1}

Key Point: Auxiliary graph is roughly regular when ℓ ≈ µ

Switching lemma then implies:

P(GP
dn
∈ Gℓ+1)

P(GP
dn
∈ Gℓ)

≥ 1 + ϵ′



Uniform random graphs: switching easy

Notation: G ∈ dn if G has degree sequence dn

Auxiliary Graph: by adding edge between G+,G−:

Gℓ = {G ∈ dn : X1,1(G ) = ℓ}

Gℓ+1 = {G ∈ dn : X1,1(G ) = ℓ+ 1}

Uniform random graph Gdn simpler: classical switching works

Crux is that normalization constants cancel out:

P(Gdn ∈ Gℓ+1)

P(Gdn ∈ Gℓ)
=
|Gℓ+1|
|Gℓ|



Degree-restricted process: why new ideas needed

Notation: G ∈ dn if G has degree sequence dn

Auxiliary Graph: by adding edge between G+,G−:

Gℓ = {G ∈ dn : X1,1(G ) = ℓ}

Gℓ+1 = {G ∈ dn : X1,1(G ) = ℓ+ 1}

Degree-restricted random dn-process: why more complicated

Normalization constants do not cancel out:

P(GP
dn
∈ Gℓ+1)

P(GP
dn
∈ Gℓ)

=

∑
F∈Gℓ+1

P(GP
dn

= F )∑
H∈Gℓ

P(GP
dn

= H)



Proof of Main Theorem (Sketch)
Definition: Nz = {G ∈ dn : |X1,1(G )− µ| ≤ z}

Key Point implies (for z ≤ 2ϵµ)

P[GP
dn
∈ Nz ]

P[GP
dn
∈ Nz+1]

≤
∑

µ−z≤ℓ≤µ+z P(GP
dn
∈ Gℓ)∑

µ−z≤ℓ≤µ+z P(GP
dn
∈ Gℓ+1)

≤ 1

1 + ϵ′

Get exponential decay by telescoping product argument:

P(GP
dn ∈ Nϵµ) ≤

P(GP
dn
∈ Nϵµ)

P(GP
dn
∈ N2ϵµ)

=

2ϵµ−1∏
z=ϵµ

P(GP
dn
∈ Nz)

P(GP
dn
∈ Nz+1)

≤ 1

(1 + ϵ′)ϵµ
→ 0

Conclusion: whp number of 1-1 edges satisfies

(1− ϵ)µ (1 + ϵ)µ

X1,1(G
P
dn
)X1,1(G

P
dn
)

0



General case: more complicated

Small vertex: |{v : deg(v) ≤ s}| ∈ [0.01n, 0.99n] (previously s = 1)

Small edge: edge whose endpoints are small

Xsmall(G ) = number of small edges in G

Goal: Distinguish both models via Xsmall

There exists µ and ϵ = ϵ(∆) > 0 such that with high probability

Xsmall(Gdn) ∈ [(1− ϵ)µ, (1+ ϵ)µ] and Xsmall(G
P
dn) ̸∈ [(1− ϵ)µ, (1+ ϵ)µ]

(1− ϵ)µ (1 + ϵ)µ

Xsmall(Gdn) Xsmall(G
P
dn
)Xsmall(G

P
dn
)

0

Major Difficulty: Several key inequalities can fail



The point where old argument breaks down

Issue: the following key inequality is no longer true

P(GP
dn

= G+)

P(GP
dn

= G−)
≥ 1 + ϵ′

The ratio is ≈ 0.82 in the following example:

G+G−



General case: refined switching idea
Definition: Nz = {G ∈ dn : |Xsmall(G )− µ| ≤ z}

Key Idea: Switching on clusters (=suitable sets of graphs)

P(GP
dn
∈ Nz)

P(GP
dn
∈ Nz+5∆)

≤ 1

1 + ϵ′



General case: refined switching idea
Definition: Nz = {G ∈ dn : |Xsmall(G )− µ| ≤ z}

Key Idea: Switching on clusters (=suitable sets of graphs)

P(GP
dn
∈ Nz)

P(GP
dn
∈ Nz+5∆)

≤ 1

1 + ϵ′

Get exponential decay by telescoping product argument:

P(GP
dn ∈ Nϵµ) ≤

P(GP
dn
∈ Nϵµ)

P(GP
dn
∈ N2ϵµ)

=

ϵ/(5∆)∏
i=0

P(GP
dn
∈ Nϵµ+i5∆)

P(GP
dn
∈ Nϵµ+(i+1)5∆)

≤ 1

(1 + ϵ′)ϵµ

−→ 0

Conclusion: whp number of small edges satisfies

(1− ϵ)µ (1 + ϵ)µ

Xsmall(G
P
dn
)Xsmall(G

P
dn
)

0



Summary

Degree-restricted random dn-process G
P
dn

Start with an empty graph on n vertices

In each step: add one random edge to the graph,
so that the degree of each vertex vi stays ≤ di

Main result: dn-process GP
dn

and uniform model Gdn differ

If the bounded degree sequence dn is not nearly regular, then
can whp distinguish dn-process GP

dn
and random dn-graph Gdn

Proof technique: adapt switching method to stochastic process

Open Question

Wormald’s conjecture for 2-regular degree-restricted random process?


