A deletion method for local subgraph counts

Lutz Warnke

University of Oxford

Joint work with

Reto Spöhel and Angelika Steger ETH Zürich

Mittagsseminar 17.12.2009

RANDOM GRAPHS

Random graph $G_{n,p}$

- n vertices
- each of the $\binom{n}{2}$ edges appears independently with probability p

Small subgraph H

- graph of *fixed* size (v vertices and e edges)
- X_H = number of *H*-subgraphs in $G_{n,p}$

Expected number of *H*-subgraphs in $G_{n,p}$

• $\mathbb{E}[X_H] = \Theta(n^v p^e)$

Is the number of *H*-subgraphs close to its expectation?

Small subgraphs in Random Graphs

 X_H = number of *H*-subgraphs in $G_{n,p}$

Is the number of *H*-subgraphs close to its expectation?

In many applications we want $X_H \approx \mathbb{E}[X_H]$

Error probability:

'very small' $\approx 2^{-\Theta(\mathbb{E}[X_H])}$ 'small' $\approx 2^{-\Theta(\sqrt{\mathbb{E}[X_H]})}$

How concentrated is X_H around $\mathbb{E}[X_H]$?

FACT: Number of H-subgraphs $\approx \mathbb{E}[X_H]$ (Janson, Kim, Vu, ...)

The number of *H*-subgraphs is close to its expectation:

$$\mathbb{P}\left[X_{H} \leq (1 - \varepsilon)\mathbb{E}[X_{H}]\right] = \text{`very small'}$$
$$\mathbb{P}\left[X_{H} \geq (1 + \varepsilon)\mathbb{E}[X_{H}]\right] = \text{`small'}$$

Heuristic reason for asymmetry:

- can create 'many' H-copies by adding comparatively 'few' edges
- by deleting 'few' edges we can't always delete 'many' H-copies

Deleting a few edges might help?

'Deletion Lemma' (Rödl-Ruciński, 1995)

With 'very high' probability it suffices to delete a 'few edges' to ensure that the remaining graph does not contain 'too many' copies of H, i.e.

 $X_H \leq (1 + \varepsilon) \mathbb{E}[X_H]$

Usually applied together with a 'Robustness-Lemma'

• deleting a 'few' edges does not destroy too many copies of H

'Deletion Lemma'+'Robustness-Lemma' (Rödl-Ruciński, 1995)

With 'very high' probability it suffices to delete a 'few edges' to ensure that the remaining graph contains the 'correct' number of copies of H, i.e.

 $(1-\varepsilon)\mathbb{E}[X_H] \le X_H \le (1+\varepsilon)\mathbb{E}[X_H]$

Sometimes global bound on number of *H*-subgraphs is not enough!

In applications 'local' bounds are useful

• bounds on the number of *H*-copies per edge/vertex

In the following we focus on triangles

- strengthening of the 'Deletion Lemma' of Rödl-Ruciński
- obtain 'local' bound on the number of triangles (per edge/vertex)

'Local Triangle Deletion Lemma' (Spöhel-Steger-W., 2009+)

With 'very high' probability we can delete a 'few' edges such that in the remaining graph:

- the global triangle-count is 'correct'
- the 'local' triangle-count (per vertex/edge) is 'bounded'

Notation

• X_{Δ} = number of triangles

Global triangle-count is 'correct'

•
$$(1 - \varepsilon)\mathbb{E}[X_{\Delta}] \le X_{\Delta} \le (1 + \varepsilon)\mathbb{E}[X_{\Delta}]$$

'Local Triangle Deletion Lemma' (Spöhel-Steger-W., 2009+)

With 'very high' probability we can delete a 'few' edges such that in the remaining graph:

- the global triangle-count is 'correct'
- the 'local' triangle-count (per vertex/edge) is 'bounded'

'Few' edges

• at most $\varepsilon \min \left\{ \binom{n}{2} p, \mathbb{E}[X_{\Delta}] \right\}$ many

Why not $\varepsilon\binom{n}{2}p$ many edges?

• then we could delete all triangles for $\mathbb{E}[X_{\Delta}] \ll \binom{n}{2}p$

'Local Triangle Deletion Lemma' (Spöhel-Steger-W., 2009+)

With 'very high' probability we can delete a 'few' edges such that in the remaining graph:

- the global triangle-count is 'correct'
- the 'local' triangle-count (per vertex/edge) is 'bounded'

Notation

• X_v = number of triangles per vertex v

Triangle-count per vertex is 'bounded'

• $X_{v} \leq \max\{C, (1 + \varepsilon)\mathbb{E}[X_{v}]\}$

Why not $X_{\nu} \leq (1 + \varepsilon) \mathbb{E}[X_{\nu}]$?

• for certain $p: \ X_\Delta \geq 1$ and $\mathbb{E}[X_\nu] \to 0$

'Local Triangle Deletion Lemma' (Spöhel-Steger-W., 2009+)

With 'very high' probability we can delete a 'few' edges such that in the remaining graph:

- the global triangle-count is 'correct'
- the 'local' triangle-count (per vertex/edge) is 'bounded'

Notation

Triangle-count per edge is 'bounded'

• $X_e \leq \max\{C, (1 + \varepsilon)\mathbb{E}[X_e]\}$

Why not $X_e \leq (1 + \varepsilon) \mathbb{E}[X_e]$?

• for certain $p: \ X_\Delta \geq 1$ and $\mathbb{E}[X_e] \to 0$

'Local Triangle Deletion Lemma' (Spöhel-Steger-W., 2009+)

With 'very high' probability we can delete at most $\varepsilon \min \left\{ \binom{n}{2} p, \mathbb{E}[X_{\Delta}] \right\}$ edges such that in the remaining graph:

• the global triangle-count is 'correct':

•
$$(1 - \varepsilon)\mathbb{E}[X_{\Delta}] \le X_{\Delta} \le (1 + \varepsilon)\mathbb{E}[X_{\Delta}]$$

• the 'local' triangle-count is 'bounded':

•
$$X_v \leq \max\{C, (1+\varepsilon)\mathbb{E}[X_v]\}$$

• $X_e \leq \max\{C, (1+\varepsilon)\mathbb{E}[X_e]\}$

Strengthening of Rödl-Ruciński 'Deletion Lemma' for triangles:

only guarantees that the global triangle-count is 'correct'

Key Lemma

With 'very high' probability there exists a subgraph with:

- reasonable 'many' triangles
- every vertex/edge is not contained in 'too many' triangles

Main ingredient of the proof:

an application of the so-called FKG Inequality

Monotone Graph-Property \mathcal{P}

 \mathcal{P} increasing \Leftrightarrow it can't be destroyed by adding edges \mathcal{P} decreasing \Leftrightarrow it can't be destroyed by deleting edges

Examples:

- connectivity: increasing
- k-colorability: decreasing

Observation:

• \mathcal{P} increasing $\iff \neg \mathcal{P}$ decreasing

FKG Inequality (Fourtain-Kasteleyn-Ginibre, 1971)

Let \mathcal{A} and \mathcal{B} be two decreasing graph properties. Then for $G_{n,p}$ we have

$$\mathbb{P}\left[\mathcal{A}\right] \, \leq \, \mathbb{P}\left[\mathcal{A} \mid \mathcal{B}\right]$$

i.e. the probability of a decreasing event ${\cal A}$ does not decrease if we condition on another decreasing event ${\cal B}$

Example:

- $\mathcal{A} = \text{being } k\text{-colorable}$
- $\mathcal{B} = \max$ degree at most k + 2

FKG Inequality (Fourtain-Kasteleyn-Ginibre, 1971)

Let \mathcal{A} and \mathcal{B} be two decreasing graph properties. Then for $G_{n,p}$ we have

$$\mathbb{P}\left[\mathcal{A}\right] \, \leq \, \mathbb{P}\left[\mathcal{A} \mid \mathcal{B}\right]$$

i.e. the probability of a decreasing event ${\cal A}$ does not decrease if we condition on another decreasing event ${\cal B}$

Remarks:

- \bullet statement also holds for two increasing events ${\cal A}$ and ${\cal B}$
- not valid for arbitrary probability spaces
 - in particular not for the random graph $G_{n,m}$

FKG TRICK

Events

- $\bullet \,\, \mathcal{S} =$ there exists a subgraph satisfying \mathcal{I} and \mathcal{D}
- $\mathcal{I} = \text{increasing Property}$
- $\mathcal{D} = \text{decreasing Property}$

Observations

- \mathcal{S} is increasing $\iff \neg \mathcal{S}$ is decreasing
- $\neg S \cap D$ implies $\neg I \implies \mathbb{P}[\neg S \cap D] \le \mathbb{P}[\neg I]$

FKG Trick

$$\mathbb{P}[\neg \mathcal{S}] \leq \mathbb{P}[\neg \mathcal{S} \mid \mathcal{D}] = \frac{\mathbb{P}[\neg \mathcal{S} \cap \mathcal{D}]}{\mathbb{P}[\mathcal{D}]} \leq \frac{\mathbb{P}[\neg \mathcal{I}]}{\mathbb{P}[\mathcal{D}]}$$

 $\label{eq:problem} \begin{array}{l} \Rightarrow \mbox{ we reduced the problem of bounding } \mathbb{P}\left[\neg\mathcal{S}\right] \mbox{ to bounding } \\ \mathbb{P}\left[\neg\mathcal{I}\right] \mbox{ from above and } \mathbb{P}\left[\neg\mathcal{D}\right] \mbox{ from below } \end{array}$

PROOF OF KEY LEMMA USING FKG TRICK

Key Lemma (Simplified)

With 'very high' probability there exists a subgraph such that:

- there are 'many' triangles (\mathcal{I})
- ullet every vertex/edge is not contained in 'too many' triangles (\mathcal{D})

Define Events

- $\mathcal{S} =$ there exists a subgraph satisfying \mathcal{I} and \mathcal{D}
- \bullet monotonicity: ${\mathcal I}$ increasing and ${\mathcal D}$ decreasing

FKG Trick implies

$$\mathbb{P}\left[\neg \mathcal{S}\right] \leq \frac{\mathbb{P}\left[\neg \mathcal{I}\right]}{\mathbb{P}\left[\mathcal{D}\right]} \leq 2 \mathbb{P}\left[\neg \mathcal{I}\right] = \text{ 'very small'}$$

 $\mathbb{P}[\mathcal{D}] \geq 1/2$

Technical Lemma

 $\mathbb{P}\left[\neg \mathcal{I}
ight] =$ 'very small' and

'Local Triangle Deletion Lemma' (Spöhel-Steger-W., 2009+)

with 'very high' probability:

deleting a few edges \implies fix global + bound local triangle counts

Strengthening of the Rödl-Ruciński 'Deletion Lemma' for triangles:

'Deletion Lemma' (Rödl-Ruciński, 1995)

with 'very high' probability:

deleting a few edges \implies fix global subgraph count

Work in progress:

• extension to general case (arbitrary subgraphs)