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Random Graphs

Random graph Gn,p

n vertices

each of the
(n

2

)
edges appears independently with probability p

Small subgraph H

graph of fixed size (v vertices and e edges)

XH = number of H-subgraphs in Gn,p

Expected number of H-subgraphs in Gn,p

E[XH ] = Θ(nv pe)

Is the number of H-subgraphs close to its expectation?



Small subgraphs in Random Graphs

XH = number of H-subgraphs in Gn,p

Is the number of H-subgraphs close to its expectation?

In many applications we want XH ≈ E[XH ]

Error probability:

‘very small’ ≈ 2−Θ(E[XH ])

‘small’ ≈ 2−Θ(
√

E[XH ])



How concentrated is XH around E[XH ]?

Fact: Number of H-subgraphs ≈ E[XH ] (Janson, Kim, Vu, ...)

The number of H-subgraphs is close to its expectation:

P [XH ≤ (1− ε)E[XH ]] = ‘very small’

P [XH ≥ (1 + ε)E[XH ]] = ‘small’

Heuristic reason for asymmetry:

can create ‘many’ H-copies by adding comparatively ‘few’ edges

by deleting ‘few’ edges we can’t always delete ‘many’ H-copies

Deleting a few edges might help?



Deletion Method

‘Deletion Lemma’ (Rödl-Ruciński, 1995)

With ‘very high’ probability it suffices to delete a ‘few edges’ to ensure
that the remaining graph does not contain ‘too many’ copies of H, i.e.

XH ≤ (1 + ε)E[XH ]

Usually applied together with a ‘Robustness-Lemma’

deleting a ‘few’ edges does not destroy too many copies of H

‘Deletion Lemma’+‘Robustness-Lemma’ (Rödl-Ruciński, 1995)

With ‘very high’ probability it suffices to delete a ‘few edges’ to ensure
that the remaining graph contains the ‘correct’ number of copies of H, i.e.

(1− ε)E[XH ] ≤ XH ≤ (1 + ε)E[XH ]



Bounded ‘local’ Subgraph Counts

Sometimes global bound on number of H-subgraphs is not enough!

In applications ‘local’ bounds are useful

bounds on the number of H-copies per edge/vertex

In the following we focus on triangles

strengthening of the ‘Deletion Lemma’ of Rödl-Ruciński

obtain ‘local’ bound on the number of triangles (per edge/vertex)



‘Local Triangle Deletion Lemma’

‘Local Triangle Deletion Lemma’ (Spöhel-Steger-W., 2009+)

With ‘very high’ probability we can delete a ‘few’ edges such that in the
remaining graph:

the global triangle-count is ‘correct’

the ‘local’ triangle-count (per vertex/edge) is ‘bounded’

Notation

X∆ = number of triangles

Global triangle-count is ‘correct’

(1− ε)E[X∆] ≤ X∆ ≤ (1 + ε)E[X∆]



‘Local Triangle Deletion Lemma’

‘Local Triangle Deletion Lemma’ (Spöhel-Steger-W., 2009+)

With ‘very high’ probability we can delete a ‘few’ edges such that in the
remaining graph:

the global triangle-count is ‘correct’

the ‘local’ triangle-count (per vertex/edge) is ‘bounded’

‘Few’ edges

at most ε min
{(n

2

)
p, E[X∆]

}
many

Why not ε
(n

2

)
p many edges?

then we could delete all triangles for E[X∆]�
(n

2

)
p



‘Local Triangle Deletion Lemma’

‘Local Triangle Deletion Lemma’ (Spöhel-Steger-W., 2009+)

With ‘very high’ probability we can delete a ‘few’ edges such that in the
remaining graph:

the global triangle-count is ‘correct’

the ‘local’ triangle-count (per vertex/edge) is ‘bounded’

Notation

Xv = number of triangles per vertex v

Triangle-count per vertex is ‘bounded’

Xv ≤ max{C , (1 + ε)E[Xv ]}

Why not Xv ≤ (1 + ε)E[Xv ]?

for certain p: X∆ ≥ 1 and E[Xv ]→ 0



‘Local Triangle Deletion Lemma’

‘Local Triangle Deletion Lemma’ (Spöhel-Steger-W., 2009+)

With ‘very high’ probability we can delete a ‘few’ edges such that in the
remaining graph:

the global triangle-count is ‘correct’

the ‘local’ triangle-count (per vertex/edge) is ‘bounded’

Notation

Xe = number of triangles per edge e

Triangle-count per edge is ‘bounded’

Xe ≤ max{C , (1 + ε)E[Xe ]}

Why not Xe ≤ (1 + ε)E[Xe ]?

for certain p: X∆ ≥ 1 and E[Xe ]→ 0



‘Local Triangle Deletion Lemma’

‘Local Triangle Deletion Lemma’ (Spöhel-Steger-W., 2009+)

With ‘very high’ probability we can delete at most ε min
{(n

2

)
p, E[X∆]

}
edges such that in the remaining graph:

the global triangle-count is ‘correct’:

(1− ε)E[X∆] ≤ X∆ ≤ (1 + ε)E[X∆]

the ‘local’ triangle-count is ‘bounded’:

Xv ≤ max{C , (1 + ε)E[Xv ]}
Xe ≤ max{C , (1 + ε)E[Xe ]}

Strengthening of Rödl-Ruciński ‘Deletion Lemma’ for triangles:

only guarantees that the global triangle-count is ‘correct’



Key-Lemma of the Proof

Key Lemma

With ‘very high’ probability there exists a subgraph with:

reasonable ‘many’ triangles

every vertex/edge is not contained in ‘too many’ triangles

Main ingredient of the proof:

an application of the so-called FKG Inequality



Monotone Graph-Properties

Monotone Graph-Property P
P increasing ⇔ it can’t be destroyed by adding edges
P decreasing ⇔ it can’t be destroyed by deleting edges

Examples:

connectivity: increasing

k-colorability: decreasing

Observation:

P increasing ⇐⇒ ¬P decreasing



FKG Inequality

FKG Inequality (Fourtain-Kasteleyn-Ginibre, 1971)

Let A and B be two decreasing graph properties. Then for Gn,p we have

P [A] ≤ P [A | B]

i.e. the probability of a decreasing event A does not decrease if we
condition on another decreasing event B

Example:

A = being k-colorable

B = maxdegree at most k + 2



FKG Inequality

FKG Inequality (Fourtain-Kasteleyn-Ginibre, 1971)

Let A and B be two decreasing graph properties. Then for Gn,p we have

P [A] ≤ P [A | B]

i.e. the probability of a decreasing event A does not decrease if we
condition on another decreasing event B

Remarks:

statement also holds for two increasing events A and B
not valid for arbitrary probability spaces

in particular not for the random graph Gn,m



FKG Trick

Events

S = there exists a subgraph satisfying I and D
I = increasing Property

D = decreasing Property

Observations

S is increasing ⇐⇒ ¬S is decreasing

¬S ∩ D implies ¬I =⇒ P [¬S ∩ D] ≤ P [¬I]

FKG Trick

P [¬S] ≤ P [¬S | D] =
P [¬S ∩ D]

P [D]
≤ P [¬I]

P [D]

⇒ we reduced the problem of bounding P [¬S] to bounding
P [¬I] from above and P [¬D] from below



Proof of Key Lemma using FKG Trick

Key Lemma (Simplified)

With ‘very high’ probability there exists a subgraph such that:

there are ‘many’ triangles (I)

every vertex/edge is not contained in ‘too many’ triangles (D)

Define Events

S = there exists a subgraph satisfying I and D
monotonicity: I increasing and D decreasing

FKG Trick implies

P [¬S] ≤ P [¬I]

P [D]
≤ 2 P [¬I] = ‘very small’

Technical Lemma

P [¬I] = ‘very small’ and P [D] ≥ 1/2



Summary

‘Local Triangle Deletion Lemma’ (Spöhel-Steger-W., 2009+)

with ‘very high’ probability:

deleting a few edges =⇒ fix global + bound local triangle counts

Strengthening of the Rödl-Ruciński ‘Deletion Lemma’ for triangles:

‘Deletion Lemma’ (Rödl-Ruciński, 1995)

with ‘very high’ probability:

deleting a few edges =⇒ fix global subgraph count

Work in progress:

extension to general case (arbitrary subgraphs)


