A deletion method for local subgraph counts

Lutz Warnke
University of Oxford

Joint work with
Reto Spöhel and Angelika Steger
ETH Zürich

Mittagsseminar 17.12.2009

Random graph $G_{n, p}$

- n vertices
- each of the $\binom{n}{2}$ edges appears independently with probability p

Small subgraph H

- graph of fixed size (v vertices and e edges)
- $X_{H}=$ number of H-subgraphs in $G_{n, p}$

Expected number of H-subgraphs in $G_{n, p}$

- $\mathbb{E}\left[X_{H}\right]=\Theta\left(n^{\vee} p^{e}\right)$

Is the number of H-subgraphs close to its expectation?
$X_{H}=$ number of H-subgraphs in $G_{n, p}$
Is the number of H-subgraphs close to its expectation?
In many applications we want $X_{H} \approx \mathbb{E}\left[X_{H}\right]$

Error probability:

$$
\begin{aligned}
\text { 'very small' } & \approx 2^{-\Theta\left(\mathbb{E}\left[X_{H}\right]\right)} \\
\text { 'small' } & \approx 2^{-\Theta\left(\sqrt{\mathbb{E}\left[X_{H}\right]}\right)}
\end{aligned}
$$

FACT: Number of H-subgraphs $\approx \mathbb{E}\left[X_{H}\right]$ (Janson, Kim, Vu, ...)

The number of H-subgraphs is close to its expectation:

$$
\begin{aligned}
& \mathbb{P}\left[X_{H} \leq(1-\varepsilon) \mathbb{E}\left[X_{H}\right]\right]=\text { 'very small' } \\
& \mathbb{P}\left[X_{H} \geq(1+\varepsilon) \mathbb{E}\left[X_{H}\right]\right]=\text { 'small' }
\end{aligned}
$$

Heuristic reason for asymmetry:

- can create 'many' H-copies by adding comparatively 'few' edges
- by deleting 'few' edges we can't always delete 'many' H-copies

Deleting a few edges might help?

'Deletion Lemma' (Rödl-Ruciński, 1995)

With 'very high' probability it suffices to delete a 'few edges' to ensure that the remaining graph does not contain 'too many' copies of H, i.e.

$$
X_{H} \leq(1+\varepsilon) \mathbb{E}\left[X_{H}\right]
$$

Usually applied together with a 'Robustness-Lemma'

- deleting a 'few' edges does not destroy too many copies of H

'Deletion Lemma'+'Robustness-Lemma' (Rödl-Ruciński, 1995)

With 'very high' probability it suffices to delete a 'few edges' to ensure that the remaining graph contains the 'correct' number of copies of H, i.e.

$$
(1-\varepsilon) \mathbb{E}\left[X_{H}\right] \leq X_{H} \leq(1+\varepsilon) \mathbb{E}\left[X_{H}\right]
$$

Bounded 'LOCAL' SuBGRAPH COUNTS

Sometimes global bound on number of H-subgraphs is not enough!

In applications 'local' bounds are useful

- bounds on the number of H-copies per edge/vertex

In the following we focus on triangles

- strengthening of the 'Deletion Lemma’ of Rödl-Ruciński
- obtain 'local' bound on the number of triangles (per edge/vertex)

'Local Triangle Deletion Lemma' (Spöhel-Steger-W., 2009+)

With 'very high' probability we can delete a 'few' edges such that in the remaining graph:

- the global triangle-count is 'correct'
- the 'local' triangle-count (per vertex/edge) is 'bounded'

Notation

- $X_{\Delta}=$ number of triangles

Global triangle-count is 'correct'

- $(1-\varepsilon) \mathbb{E}\left[X_{\Delta}\right] \leq X_{\Delta} \leq(1+\varepsilon) \mathbb{E}\left[X_{\Delta}\right]$

'Local Triangle Deletion Lemma' (Spöhel-Steger-W., 2009+)

With 'very high' probability we can delete a 'few' edges such that in the remaining graph:

- the global triangle-count is 'correct'
- the 'local' triangle-count (per vertex/edge) is 'bounded'

'Few' edges

- at most $\varepsilon \min \left\{\binom{n}{2} p, \mathbb{E}\left[X_{\Delta}\right]\right\}$ many

Why not $\varepsilon\binom{n}{2} p$ many edges?

- then we could delete all triangles for $\mathbb{E}\left[X_{\Delta}\right] \ll\binom{n}{2} p$

'Local Triangle Deletion Lemma' (Spöhel-Steger-W., 2009+)

With 'very high' probability we can delete a 'few' edges such that in the remaining graph:

- the global triangle-count is 'correct'
- the 'local' triangle-count (per vertex/edge) is 'bounded'

Notation

- $X_{v}=$ number of triangles per vertex v

Triangle-count per vertex is 'bounded'

- $X_{v} \leq \max \left\{C,(1+\varepsilon) \mathbb{E}\left[X_{v}\right]\right\}$

Why not $X_{v} \leq(1+\varepsilon) \mathbb{E}\left[X_{v}\right]$?

- for certain $p: X_{\Delta} \geq 1$ and $\mathbb{E}\left[X_{v}\right] \rightarrow 0$

'Local Triangle Deletion Lemma' (Spöhel-Steger-W., 2009+)

With 'very high' probability we can delete a 'few' edges such that in the remaining graph:

- the global triangle-count is 'correct'
- the 'local' triangle-count (per vertex/edge) is 'bounded'

Notation

- $X_{e}=$ number of triangles per edge e

Triangle-count per edge is 'bounded'

- $X_{e} \leq \max \left\{C,(1+\varepsilon) \mathbb{E}\left[X_{e}\right]\right\}$

Why not $X_{e} \leq(1+\varepsilon) \mathbb{E}\left[X_{e}\right]$?

- for certain $p: X_{\Delta} \geq 1$ and $\mathbb{E}\left[X_{e}\right] \rightarrow 0$

'Local Triangle Deletion Lemma' (Spöhel-Steger-W., 2009+)

With 'very high' probability we can delete at most $\varepsilon \min \left\{\binom{n}{2} p, \mathbb{E}\left[X_{\Delta}\right]\right\}$ edges such that in the remaining graph:

- the global triangle-count is 'correct':
- $(1-\varepsilon) \mathbb{E}\left[X_{\Delta}\right] \leq X_{\Delta} \leq(1+\varepsilon) \mathbb{E}\left[X_{\Delta}\right]$
- the 'local' triangle-count is 'bounded':
- $X_{v} \leq \max \left\{C,(1+\varepsilon) \mathbb{E}\left[X_{v}\right]\right\}$
- $X_{e} \leq \max \left\{C,(1+\varepsilon) \mathbb{E}\left[X_{e}\right]\right\}$

Strengthening of Rödl-Ruciński 'Deletion Lemma’ for triangles:

- only guarantees that the global triangle-count is 'correct'

Key Lemma

With 'very high' probability there exists a subgraph with:

- reasonable 'many' triangles
- every vertex/edge is not contained in 'too many' triangles

Main ingredient of the proof:

- an application of the so-called FKG Inequality

Monotone Graph-Properties

Monotone Graph-Property \mathcal{P}

\mathcal{P} increasing \Leftrightarrow it can't be destroyed by adding edges
\mathcal{P} decreasing \Leftrightarrow it can't be destroyed by deleting edges

Examples:

- connectivity: increasing
- k-colorability: decreasing

Observation:

- \mathcal{P} increasing $\Longleftrightarrow \neg \mathcal{P}$ decreasing

FKG Inequality (Fourtain-Kasteleyn-Ginibre, 1971)

Let \mathcal{A} and \mathcal{B} be two decreasing graph properties. Then for $G_{n, p}$ we have

$$
\mathbb{P}[\mathcal{A}] \leq \mathbb{P}[\mathcal{A} \mid \mathcal{B}]
$$

i.e. the probability of a decreasing event \mathcal{A} does not decrease if we condition on another decreasing event \mathcal{B}

Example:

- $\mathcal{A}=$ being k-colorable
- $\mathcal{B}=$ maxdegree at most $k+2$

FKG Inequality (Fourtain-Kasteleyn-Ginibre, 1971)

Let \mathcal{A} and \mathcal{B} be two decreasing graph properties. Then for $G_{n, p}$ we have

$$
\mathbb{P}[\mathcal{A}] \leq \mathbb{P}[\mathcal{A} \mid \mathcal{B}]
$$

i.e. the probability of a decreasing event \mathcal{A} does not decrease if we condition on another decreasing event \mathcal{B}

Remarks:

- statement also holds for two increasing events \mathcal{A} and \mathcal{B}
- not valid for arbitrary probability spaces
- in particular not for the random graph $G_{n, m}$

Events

- $\mathcal{S}=$ there exists a subgraph satisfying \mathcal{I} and \mathcal{D}
- $\mathcal{I}=$ increasing Property
- $\mathcal{D}=$ decreasing Property

Observations

- \mathcal{S} is increasing $\Longleftrightarrow \neg \mathcal{S}$ is decreasing
- $\neg \mathcal{S} \cap \mathcal{D}$ implies $\neg \mathcal{I} \Longrightarrow \mathbb{P}[\neg \mathcal{S} \cap \mathcal{D}] \leq \mathbb{P}[\neg \mathcal{I}]$

FKG Trick

$$
\mathbb{P}[\neg \mathcal{S}] \leq \mathbb{P}[\neg \mathcal{S} \mid \mathcal{D}]=\frac{\mathbb{P}[\neg \mathcal{S} \cap \mathcal{D}]}{\mathbb{P}[\mathcal{D}]} \leq \frac{\mathbb{P}[\neg \mathcal{I}]}{\mathbb{P}[\mathcal{D}]}
$$

\Rightarrow we reduced the problem of bounding $\mathbb{P}[\neg \mathcal{S}]$ to bounding $\mathbb{P}[\neg \mathcal{I}]$ from above and $\mathbb{P}[\neg \mathcal{D}]$ from below

Proof of Key Lemma using FKG Trick

Key Lemma (Simplified)

With 'very high' probability there exists a subgraph such that:

- there are 'many' triangles (I)
- every vertex/edge is not contained in 'too many' triangles

Define Events

- $\mathcal{S}=$ there exists a subgraph satisfying \mathcal{I} and \mathcal{D}
- monotonicity: \mathcal{I} increasing and \mathcal{D} decreasing

FKG Trick implies

$$
\mathbb{P}[\neg \mathcal{S}] \leq \frac{\mathbb{P}[\neg \mathcal{I}]}{\mathbb{P}[\mathcal{D}]} \leq 2 \mathbb{P}[\neg \mathcal{I}]=\text { 'very small' }
$$

Technical Lemma

$$
\mathbb{P}[\neg \mathcal{I}]=\text { 'very small' } \quad \text { and } \quad \mathbb{P}[\mathcal{D}] \geq 1 / 2
$$

SUMMARY

'Local Triangle Deletion Lemma' (Spöhel-Steger-W., 2009+)

with 'very high' probability:
deleting a few edges \Longrightarrow fix global + bound local triangle counts

Strengthening of the Rödl-Ruciński 'Deletion Lemma' for triangles:

'Deletion Lemma' (Rödl-Ruciński, 1995)

with 'very high' probability:
deleting a few edges \Longrightarrow fix global subgraph count

Work in progress:

- extension to general case (arbitrary subgraphs)

