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Context

Fundamental Problem
Is an induced copy of F (or a large part of F) contained in G?

@ Variant of '‘Subgraph Containment Problem’
@ Relevant in Applications: Pattern Recognition, Computer vision, etc

e Many heuristic algorithms (NP-complete)

Today

Random variants of this problem: F and G independent random graphs

@ When does induced copy of G, , appear in Gy p,? How many copies?
@ Size of largest common induced subgraph of Gy p, and Gy p,?
o Difficult benchmark problem for algorithms



Part |I: Why induced containment of G, in Gyp,?

C. McCreesh, P. Prosser, C. Solnon, and J. Trimble (2018)

Deciding G, p, C Gp p, is difficult benchmark problem for algorithms

Empirically discovered interesting phase transition diagram:
G(10,z) — G(14,z) — G(15,z) — G(16,z) — G(20,z) — G(30,z) —
G(150,y) G(150,y) G(150,y) G(150,y) G(150,y)

G(150,y)
all

Satisfiable?
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-

Interest in Combinatorics and Probability

half

none

@ Knuth: asked for mathematical explanation

o Chatterjee—Diaconis: explained middle-points p; = pp = 1/2
o This talk: we explain all (p1, p2) € (0,1)?




When induced copy appears: previous work (uniform case)
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We write H C G if G contains an induced copy of H
Chatterjee-Diaconis (2021)

. 1 if n<2logo, N+1—¢p
lim P (Gn’1/2 C GN,1/2) — . 2
N—so00 0 if n>2logo, N+1+¢epy

@ Proof uses first and second moment method:
» X= Number of induced copies of G,1/> in Gp 1,2
@ Does not extend to G, p, T Gy p, when po # 1/2:

» Second moment method fails due to large variance: Var X >> (EX)?



When induced copy appears: new result (general case)

Appearance of induced copy of G, p, in Gy p, (Surya-W.-Zhu, 2023+)

Let p1, p2 € (0,1) be constants. Define a:=1/ (p5*(1 — p2)}~P*). Then
e Uniform case: if pp =1/2, then a =2 and

[im ]P)(G”ypl E GN,pQ) =

N—o00

1 if n<2log, N+1—¢p,
0 if n>2log, N+ 1+¢p.

@ Nonuniform case: if py # 1/2, then

1 if n—(2log, N +1) - —c0,
Jim P(Gop, C Grpp) = { F(c) if n—(2log, N+1) = c,
—00
0 if n—(2log, N+ 1) — oo,

where f(c) :=P (N(0,02) > ¢) with 0 = o(p1, p2)

@ Sharpness of phase transition differs for p, = 1/2 and py # 1/2



When induced copy appears: new result (remarks)

Remarks
@ Confirms simulation based predictions:

G(10,z) — G(14,z) — G(15,z) — G(16,z) — G(20,z) — G(30,z) —
G(150,7) G(150,y) G(150,7)

G(150,y) G(150,y) G(150,y)

@ Answers question of Chatterjee-Diaconis

Satisfiable?

L)

e Difference to size of largest clique in Gy p,
(differs by additive ©(loglog N) due to size of automorphism group)

@ Deviation in edge-count e(Gp, p,) causes large variance when py # 1/2
(responsible for different ‘sharpness’ when pp = 1/2 and py # 1/2)



Proof overview p, # 1/2: number of edges of G, ,, matters

For pseudorandom property P (controls automorphisms of subgraphs etc):

P(Gnpy © Gn,p,) & Z P(Gn,p, = H)P(H T Gpp,)
HeP

If n=2log, N+ 1+ c and H has e(H) = p1(5) + dn edges, then

EXy = (N), - pe(1 — pp)E)—eH)

so edge-deviation jn determines whether EXy — oo, which via second
moment method (work!) implies P(H C Gy p,) — 1. CLT then gives

P(Grpr E Gropy) = > P(Grpy = H)L(o()p (2) +ben}
HeP

~P(e(Gnp,) > p1(5) + 6cn) =~ f(c)



How many copies: Asymptotic distribution

X= Number of induced copies of G, p, in Gy p,

Uniform case: Asymptotically Poisson
If po =1/2 and n > 2log, N — 1 + ey, then dpv (X, Po(u)) — 0.

By Stein-Chen method and pseudorandomness

Nonuniform case: ‘squashed’ log-normal
If pp #1/2 and n— (2log, N — 1) — ¢, then
log(1+ X
log(1 + X) 4 SN(—c, 0?)
log N

for a ‘squashed’ log-normal distribution SN(u, 0?) with o = o(p1, p2), i.e.,
with cumulative distribution function F(x) := L0y P(N(p,0?) < x).

By second moment method and conditioning on number of edges e(G, p,)




Proof ingredient: Pseudorandom Properties

In Second Moment Calculation we restrict to pseudorandom H:
@ Every large induced subgraph of H has trivial automorphism group
o Edges in every large subgraph of H are ‘super-concentrated’
Difference between G, ., and G, , matters

Edges of uniform G, ,, are 'more concentrated’ than of binomial G, ,

Example: for all vertex-subsets S C [n], writing p = m/(3) we have
&(GrnlS]) = (3)p| < n?3(n— IS

while for sets S of size |S| = n — o(n'/3) we expect that

e(Gnp[S]) — (15 )>Q(|S|\/ 1-p ) n) > n?3(n— |S))



Part IlI: Another induced containment variant

So far: when does induced copy of G, p, appear in Gy p,?

Now: largest part of G, ,, that appears as induced copy of Gy p,

Size of largest (#vertex) common induced subgraph of Gy p, and Gy p,? J

e Considered by Chatterjee—Diaconis in uniform case p; = po = 1/2:
motivated by fact that two infinite Rado graphs G 1> are isomorphic

e Natural question (should have been asked 30+ years ago!)



Two point concentration: largest common induced subgr.

In = size of largest common induced subgraph of Gy p, and Gy p,

Chatterjee-Diaconis (2021): uniform case

For p1 = p2 = 1/2, Iy is concentrated on two values around
4logy N — 2log, log, N — 2log,(4/e) + 1

Surya-Warnke-Zhu (2023+): general case

For constants p1, p2 € (0,1), Iy is concentrated on two values around

. (0) (1) (2)
max min {x0e) P (p), PP}

where for some by, b1, b, depending on p1, p> we have
x,(\?)(p) = 4logp, N — 2logy, logp,, N —2log, (4/€) + 1,
x{(p) == 2log,, N — 2logy, log,, N — 2log,, (2/€) + 1.




Failure of (naive) first moment prediction
Xnp= # of pairs of common induced n-vertex subgraphs of Gy, and Gy p,
First moment prediction (heuristic) for ‘correct’ vertex-size n

e EX, < 1 implies P(X, =0) — 1
e EX, > 1 implies P(X, > 1) — 1

@ Chatterjee and Diaconis confirmed prediction when p; = p, =1/2

e We proved that prediction is only true in the following (p1, p2) region:

0.0
00 02 04 06 08 1.0
P

@ Qutside that region second moment method fails due to large variance



Form of answer: why optimize over three different terms?

Graph H fails to appear in Gy p, and Gy p,:
1. expected number of pairs of copies of H in Gy p, and Gy p, is o(1)
2. expected number of copies of H in Gy p, is o(1)
3. expected number of copies of H in Gy p, is o(1)
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Figure: The corresponding conditions determine the ‘optimal’ size n of H



Two point concentration: largest common induced subgr.

In = size of largest common induced subgraph of Gy p, and Gy p,

Surya-Warnke-Zhu (2023+): general case

For constant p1, p2 € (0,1), Iy is concentrated on two values around

. (0) (1) (2)
ma min {x0e) 5P (e), D)}

where for some by, b1, bo depending on pz, p» we have
X\ (p) = 4logy, N — 2logy, logy, N — 2log, (4/€) + 1,
x,(\;)(p) = 2logy, N — 2log), logy, N — 2log,, (2/e) + 1.

@ The optimization over p takes all possible edge-densities into account.
@ Surprising: form of answer changes for constant edge-probability
@ Proof uses (fairly technical) first and second moment method



Summary

—
-

Questions we answered
@ When does induced copy of G, ,, appear in Gy p,? How many copies?

@ Size of largest common induced subgraph of Gy, and Gy p,?

@ Each time vanilla second moment failed due to large variance
@ Unusual distribution: squashed lognormal

@ Surprising: form of answer changes for constant edge-probabilities

Open Problem
Size of the largest common induced subgraph of Gy, p, and Gp, p,?

o Complete understanding would unify our results



