Isomorphisms between dense random graphs

Lutz Warnke
UC San Diego

Joint work with Erlang Surya and Emily Zhu (UC San Diego)

Context

Fundamental Problem

Is an induced copy of F (or a large part of F) contained in G ?

- Variant of 'Subgraph Containment Problem'
- Relevant in Applications: Pattern Recognition, Computer vision, etc
- Many heuristic algorithms (NP-complete)

Today

Random variants of this problem: F and G independent random graphs

- When does induced copy of $G_{n, p_{1}}$ appear in $G_{N, p_{2}}$? How many copies?
- Size of largest common induced subgraph of $G_{N, p_{1}}$ and $G_{N, p_{2}}$?
- Difficult benchmark problem for algorithms

Part I: Why induced containment of $G_{n, p_{1}}$ in $G_{N, p_{2}}$?
C. McCreesh, P. Prosser, C. Solnon, and J. Trimble (2018)

Deciding $G_{n, p_{1}} \sqsubseteq G_{N, p_{2}}$ is difficult benchmark problem for algorithms

Empirically discovered interesting phase transition diagram:

Interest in Combinatorics and Probability

- Knuth: asked for mathematical explanation
- Chatterjee-Diaconis: explained middle-points $p_{1}=p_{2}=1 / 2$
- This talk: we explain all $\left(p_{1}, p_{2}\right) \in(0,1)^{2}$

When induced copy appears: previous work (uniform case)

We write $H \sqsubseteq G$ if G contains an induced copy of H

Chatterjee-Diaconis (2021)

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(G_{n, 1 / 2} \sqsubseteq G_{N, 1 / 2}\right)= \begin{cases}1 & \text { if } n \leq 2 \log _{2} N+1-\varepsilon_{N} \\ 0 & \text { if } n \geq 2 \log _{2} N+1+\varepsilon_{N}\end{cases}
$$

- Proof uses first and second moment method:
- $X=$ Number of induced copies of $G_{n, 1 / 2}$ in $G_{N, 1 / 2}$
- Does not extend to $G_{n, p_{1}} \sqsubseteq G_{N, p_{2}}$ when $p_{2} \neq 1 / 2$:
- Second moment method fails due to large variance: $\operatorname{Var} X \gg(\mathbb{E} X)^{2}$

When induced copy appears: new result (general case)

Appearance of induced copy of $G_{n, p_{1}}$ in $G_{N, p_{2}}$ (Surya-W.-Zhu, 2023+)
Let $p_{1}, p_{2} \in(0,1)$ be constants. Define $a:=1 /\left(p_{2}^{p_{1}}\left(1-p_{2}\right)^{1-p_{1}}\right)$. Then

- Uniform case: if $p_{2}=1 / 2$, then $a=2$ and

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(G_{n, p_{1}} \sqsubseteq G_{N, p_{2}}\right)= \begin{cases}1 & \text { if } n \leq 2 \log _{a} N+1-\varepsilon_{N} \\ 0 & \text { if } n \geq 2 \log _{a} N+1+\varepsilon_{N} .\end{cases}
$$

- Nonuniform case: if $p_{2} \neq 1 / 2$, then

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(G_{n, p_{1}} \sqsubseteq G_{N, p_{2}}\right)= \begin{cases}1 & \text { if } n-\left(2 \log _{a} N+1\right) \rightarrow-\infty, \\ f(c) & \text { if } n-\left(2 \log _{a} N+1\right) \rightarrow c, \\ 0 & \text { if } n-\left(2 \log _{a} N+1\right) \rightarrow \infty,\end{cases}
$$

where $f(c):=\mathbb{P}\left(N\left(0, \sigma^{2}\right) \geq c\right)$ with $\sigma=\sigma\left(p_{1}, p_{2}\right)$

- Sharpness of phase transition differs for $p_{2}=1 / 2$ and $p_{2} \neq 1 / 2$

When induced copy appears: new result (remarks)

Remarks

- Confirms simulation based predictions:

- Answers question of Chatterjee-Diaconis
- Difference to size of largest clique in $G_{N, p_{2}}$ (differs by additive $\Theta(\log \log N)$ due to size of automorphism group)
- Deviation in edge-count $e\left(G_{n, p_{1}}\right)$ causes large variance when $p_{2} \neq 1 / 2$ (responsible for different 'sharpness' when $p_{2}=1 / 2$ and $p_{2} \neq 1 / 2$)

Proof overview $p_{2} \neq 1 / 2$: number of edges of $G_{n, p_{1}}$ matters

For pseudorandom property \mathcal{P} (controls automorphisms of subgraphs etc):

$$
\mathbb{P}\left(G_{n, p_{1}} \sqsubseteq G_{N, p_{2}}\right) \approx \sum_{H \in \mathcal{P}} \mathbb{P}\left(G_{n, p_{1}}=H\right) \mathbb{P}\left(H \sqsubseteq G_{N, p_{2}}\right)
$$

If $n=2 \log _{a} N+1+c$ and H has $e(H)=p_{1}\binom{n}{2}+\delta n$ edges, then

$$
\mathbb{E} X_{H}=(N)_{n} \cdot p_{2}^{e(H)}\left(1-p_{2}\right)^{\binom{n}{2}-e(H)} \approx\left[\left(\frac{p_{2}}{1-p_{2}}\right)^{\delta} a^{-c}\right]^{n}
$$

so edge-deviation δn determines whether $\mathbb{E} X_{H} \rightarrow \infty$, which via second moment method (work!) implies $\mathbb{P}\left(H \sqsubseteq G_{N, p_{2}}\right) \rightarrow 1$. CLT then gives

$$
\begin{aligned}
\mathbb{P}\left(G_{n, p_{1}} \sqsubseteq G_{N, p_{2}}\right) & \approx \sum_{H \in \mathcal{P}} \mathbb{P}\left(G_{n, p_{1}}=H\right) \mathbb{1}_{\left\{e(H) \geq p_{1}\binom{n}{2}+\delta_{c} n\right\}} \\
& \approx \mathbb{P}\left(e\left(G_{n, p_{1}}\right) \geq p_{1}\binom{n}{2}+\delta_{c} n\right) \approx f(c)
\end{aligned}
$$

How many copies: Asymptotic distribution

$X=$ Number of induced copies of $G_{n, p_{1}}$ in $G_{N, p_{2}}$
Uniform case: Asymptotically Poisson
If $p_{2}=1 / 2$ and $n \geq 2 \log _{\mathrm{a}} N-1+\varepsilon_{N}$, then $\mathrm{d}_{\mathrm{TV}}(X, \operatorname{Po}(\mu)) \rightarrow 0$.
By Stein-Chen method and pseudorandomness
Nonuniform case: 'squashed' log-normal
If $p_{2} \neq 1 / 2$ and $n-\left(2 \log _{a} N-1\right) \rightarrow c$, then

$$
\frac{\log (1+X)}{\log N} \xrightarrow{\mathrm{~d}} \mathrm{SN}\left(-c, \sigma^{2}\right)
$$

for a 'squashed' log-normal distribution $\operatorname{SN}\left(\mu, \sigma^{2}\right)$ with $\sigma=\sigma\left(p_{1}, p_{2}\right)$, i.e., with cumulative distribution function $F(x):=\mathbb{1}_{\{x \geq 0\}} \mathbb{P}\left(\mathrm{N}\left(\mu, \sigma^{2}\right) \leq x\right)$.

By second moment method and conditioning on number of edges $e\left(G_{n, p_{1}}\right)$

Proof ingredient: Pseudorandom Properties

In Second Moment Calculation we restrict to pseudorandom H :

- Every large induced subgraph of H has trivial automorphism group
- Edges in every large subgraph of H are 'super-concentrated'

Difference between $G_{n, m}$ and $G_{n, p}$ matters

Edges of uniform $G_{n, m}$ are 'more concentrated' than of binomial $G_{n, p}$
Example: for all vertex-subsets $S \subseteq[n]$, writing $p=m /\binom{n}{2}$ we have

$$
\left|e\left(G_{n, m}[S]\right)-\binom{|S|}{2} p\right| \leq n^{2 / 3}(n-|S|),
$$

while for sets S of size $|S|=n-o\left(n^{1 / 3}\right)$ we expect that

$$
\left|e\left(G_{n, p}[S]\right)-\binom{|S|}{2} p\right| \geq \Omega(|S| \sqrt{p(1-p)})=\Theta(n) \gg n^{2 / 3}(n-|S|)
$$

Part II: Another induced containment variant

So far: when does induced copy of $G_{n, p_{1}}$ appear in $G_{N, p_{2}}$?
Now: largest part of $G_{n, p_{2}}$ that appears as induced copy of $G_{N, p_{2}}$
Size of largest (\#vertex) common induced subgraph of $G_{N, p_{1}}$ and $G_{N, p_{2}}$?

- Considered by Chatterjee-Diaconis in uniform case $p_{1}=p_{2}=1 / 2$: motivated by fact that two infinite Rado graphs $G_{\infty, 1 / 2}$ are isomorphic
- Natural question (should have been asked 30+ years ago!)

Two point concentration: largest common induced subgr.
$I_{N}=$ size of largest common induced subgraph of $G_{N, p_{1}}$ and $G_{N, p_{2}}$
Chatterjee-Diaconis (2021): uniform case
For $p_{1}=p_{2}=1 / 2, I_{N}$ is concentrated on two values around $4 \log _{2} N-2 \log _{2} \log _{2} N-2 \log _{2}(4 / e)+1$

Surya-Warnke-Zhu (2023+): general case
For constants $p_{1}, p_{2} \in(0,1), I_{N}$ is concentrated on two values around

$$
\max _{p \in[0,1]} \min \left\{x_{N}^{(0)}(p), x_{N}^{(1)}(p), x_{N}^{(2)}(p)\right\}
$$

where for some b_{0}, b_{1}, b_{2} depending on p_{1}, p_{2} we have

$$
\begin{gathered}
x_{N}^{(0)}(p)=4 \log _{b_{0}} N-2 \log _{b_{0}} \log _{b_{0}} N-2 \log _{b_{0}}(4 / e)+1, \\
x_{N}^{(i)}(p):=2 \log _{b_{i}} N-2 \log _{b_{i}} \log _{b_{i}} N-2 \log _{b_{i}}(2 / e)+1 .
\end{gathered}
$$

Failure of (naive) first moment prediction

$X_{n}=\#$ of pairs of common induced n-vertex subgraphs of $G_{N, p_{1}}$ and $G_{N, p_{2}}$
First moment prediction (heuristic) for 'correct' vertex-size n

- $\mathbb{E} X_{n} \ll 1$ implies $\mathbb{P}\left(X_{n}=0\right) \rightarrow 1$
- $\mathbb{E} X_{n} \gg 1$ implies $\mathbb{P}\left(X_{n} \geq 1\right) \rightarrow 1$
- Chatterjee and Diaconis confirmed prediction when $p_{1}=p_{2}=1 / 2$
- We proved that prediction is only true in the following $\left(p_{1}, p_{2}\right)$ region:

- Outside that region second moment method fails due to large variance

Form of answer: why optimize over three different terms?

Graph H fails to appear in $G_{N, p_{1}}$ and $G_{N, p_{2}}$:

1. expected number of pairs of copies of H in $G_{N, p_{1}}$ and $G_{N, p_{2}}$ is o(1)
2. expected number of copies of H in $G_{N, p_{1}}$ is $o(1)$
3. expected number of copies of H in $G_{N, p_{2}}$ is o(1)

(a) case 1

(b) cases 1,2

(c) cases 1,3

Figure: The corresponding conditions determine the 'optimal' size n of H

Two point concentration: largest common induced subgr.
$I_{N}=$ size of largest common induced subgraph of $G_{N, p_{1}}$ and $G_{N, p_{2}}$

Surya-Warnke-Zhu (2023+): general case

For constant $p_{1}, p_{2} \in(0,1), I_{N}$ is concentrated on two values around

$$
\max _{p \in[0,1]} \min \left\{x_{N}^{(0)}(p), x_{N}^{(1)}(p), x_{N}^{(2)}(p)\right\},
$$

where for some b_{0}, b_{1}, b_{2} depending on p_{1}, p_{2} we have

$$
\begin{aligned}
& x_{N}^{(0)}(p)=4 \log _{b_{0}} N-2 \log _{b_{0}} \log _{b_{0}} N-2 \log _{b_{0}}(4 / e)+1, \\
& x_{N}^{(i)}(p)=2 \log _{b_{i}} N-2 \log _{b_{i}} \log _{b_{i}} N-2 \log _{b_{i}}(2 / e)+1 .
\end{aligned}
$$

- The optimization over p takes all possible edge-densities into account.
- Surprising: form of answer changes for constant edge-probability
- Proof uses (fairly technical) first and second moment method

Summary

Questions we answered

- When does induced copy of $G_{n, p_{1}}$ appear in $G_{N, p_{2}}$? How many copies?
- Size of largest common induced subgraph of $G_{N, p_{1}}$ and $G_{N, p_{2}}$?
- Each time vanilla second moment failed due to large variance
- Unusual distribution: squashed lognormal
- Surprising: form of answer changes for constant edge-probabilities

Open Problem

Size of the largest common induced subgraph of $G_{N_{1}, p_{1}}$ and $G_{N_{2}, p_{2}}$?

- Complete understanding would unify our results

