The lower tail: Poisson approximation revisited

Lutz Warnke
University of Cambridge

Joint work with Svante Janson

Motivating Example

Important quantity in random graph theory

- $X_{H}=$ number of copies of H in $G_{n, p}$
- H is a fixed graph (triangle, 4-cycle, r-clique, etc)

Classical result (Janson-Łuczak-Ruciński, 1987)

Let $\Phi_{H}=\min _{J \subseteq H} \mathbb{E} X_{J}$. If $n \geq n_{0}(H)$, then

$$
\mathbb{P}\left(X_{H}=0\right)=\exp \left(-\Theta\left(\Phi_{H}\right)\right)
$$

This talk: lower tail problem (Janson-W., 2014+)
If $\varepsilon^{2} \Phi_{H} \geq c_{0}(H)$ and $n \geq n_{0}(H)$, then

$$
\mathbb{P}\left(X_{H} \leq(1-\varepsilon) \mathbb{E} X_{H}\right)=\exp \left(-\Theta\left(\varepsilon^{2} \Phi_{H}\right)\right)
$$

Motivating Example

Important quantity in random graph theory

- $X_{H}=$ number of copies of H in $G_{n, p}$
- H is a fixed graph (triangle, 4-cycle, r-clique, etc)

This talk: lower tail problem (Janson-W., 2014+)

Let $\Phi_{H}=\min _{J \subseteq H} \mathbb{E} X_{J}$. If $\varepsilon^{2} \Phi_{H} \geq c_{0}(H)$ and $n \geq n_{0}(H)$, then

$$
\mathbb{P}\left(X_{H} \leq(1-\varepsilon) \mathbb{E} X_{H}\right)=\exp \left(-\Theta\left(\varepsilon^{2} \Phi_{H}\right)\right)
$$

Why should we care?

- Test/develop tools in combinatorial probability (for tail behaviour)
- Interesting question: concentration of measure + large deviations
(1) State Janson's Inequality

$$
\mathbb{P}(X \leq(1-\varepsilon) \mathbb{E} X) \leq \exp \left(-\phi(-\varepsilon) \Psi_{X}\right)
$$

(2) Matching lower-bound in Poisson case

$$
\mathbb{P}(X \leq(1-\varepsilon) \mathbb{E} X) \geq \exp \left(-(1+o(1)) \phi(-\varepsilon) \Psi_{X}\right)
$$

(3) Lower-bound reduction to Poisson case (for subgraphs)

$$
\mathbb{P}\left(X_{H} \leq(1-\varepsilon) \mathbb{E} X_{H}\right) \geq \Omega(1) \cdot \mathbb{P}\left(X_{J} \leq(1-\varepsilon) \mathbb{E} X_{J}\right)
$$

(9) Open problem for triangle counts in $G_{n, p}$

$$
-\log \mathbb{P}\left(X_{K_{3}}=0\right) \sim f(c) n^{3 / 2} \text { for } p=c n^{-1 / 2} ?
$$

JANSON'S INEQUALITY

Binomial random subsets framework

- $\Gamma_{p}=$ random subset: each $i \in \Gamma$ included indep. with probability p
- $X=\sum_{A \in \mathcal{S}} I_{A}$, where $I_{A}=\mathbf{1}_{\left\{A \subseteq \Gamma_{p}\right\}}$
- Parameter δ measures how dependent the I_{A} are ($\delta=0$ if independent)
- Special structure: X is sum of increasing indicators
- $X=$ "Number elements from \mathcal{S} which are contained in $\Gamma_{p} "$

Janson's inequality (Janson, 1989)

Let $\phi(x)=(1+x) \log (1+x)-x$ and $\mu=\mathbb{E} X$. Then

$$
\mathbb{P}(X \leq(1-\varepsilon) \mu) \leq \exp (-\phi(-\varepsilon) \mu /(1+\delta))
$$

- Widely used in combinatorial probability/random graph theory
- Reduces to Chernoff/Bernstein bounds in case of $\delta=0$

Janson's inequality (Janson, 1989)

Let $\phi(x)=(1+x) \log (1+x)-x$ and $\mu=\mathbb{E} X$. Then

$$
\mathbb{P}(X \leq(1-\varepsilon) \mu) \leq \exp (-\phi(-\varepsilon) \mu /(1+\delta))
$$

- For special case of independent summands $(\delta=0)$ best possible (as Chernoff bounds are sharp)

Goal of this talk

Prove that Janson's inequality is very often (close to) best possible

- In the 'weekly dependent' case $\delta=o(1)$ we, e.g., want to show

$$
\mathbb{P}(X \leq(1-\varepsilon) \mu) \geq \exp (-(1+o(1)) \phi(-\varepsilon) \mu)
$$

Janson's inequality sharp if X approx. Poisson (Janson-W., 2014+)

Let $\mu=\mathbb{E} X, \pi=\max _{A \in \mathcal{S}} \mathbb{E} I_{A}$ and $\phi(x)=(1+x) \log (1+x)-x$.
If $\max \{\delta, \pi\} \rightarrow 0$ and $\varepsilon^{2} \mu \rightarrow \infty$, then

$$
-\log \mathbb{P}(X \leq(1-\varepsilon) \mu) \sim \phi(-\varepsilon) \mu=\Theta\left(\varepsilon^{2} \mu\right)
$$

Remarks

- Condition $\varepsilon^{2} \mu \rightarrow \infty$ is natural: study exponentially small probabilities
- Condition $\max \{\delta, \pi\} \rightarrow 0$ is natural: implies $d_{\mathrm{TV}}(X, \operatorname{Po}(\mu)) \rightarrow 0$
- Stronger than usual: ε is not fixed
- When $\delta=O(1)$: determine exponent up to constant factors

Janson's inequality sharp if X approx. Poisson (Janson-W., 2014+)

Let $\mu=\mathbb{E} X, \pi=\max _{A \in \mathcal{S}} \mathbb{E} I_{A}$ and $\phi(x)=(1+x) \log (1+x)-x$. If $\max \{\delta, \pi\} \rightarrow 0$ and $\varepsilon^{2} \mu \rightarrow \infty$, then

$$
-\log \mathbb{P}(X \leq(1-\varepsilon) \mu) \sim \phi(-\varepsilon) \mu=\Theta\left(\varepsilon^{2} \mu\right)
$$

Proof remarks

- Our contribution: 'matching lower bound'
- Special case $\varepsilon=1$ has simple FKG-based proof (JŁR, 1987)
- We use Hoelder's inequality, Laplace transform, correlation ineq. etc

Janson's inequality sharp if X approx. Poisson (Janson-W., 2014+)

Let $\mu=\mathbb{E} X, \pi=\max _{A \in \mathcal{S}} \mathbb{E} I_{A}$ and $\phi(x)=(1+x) \log (1+x)-x$.
If $\max \{\delta, \pi\} \rightarrow 0$ and $\varepsilon^{2} \mu \rightarrow \infty$, then

$$
-\log \mathbb{P}(X \leq(1-\varepsilon) \mu) \sim \phi(-\varepsilon) \mu=\Theta\left(\varepsilon^{2} \mu\right)
$$

What about $\delta \rightarrow \infty$ case?

- For subgraph counts we can always reduce to (weakly) Poisson case
- There is $J \subseteq H$ with $\delta(J)=O(1)$, so that

$$
\mathbb{P}\left(X_{H} \leq(1-\varepsilon) \mathbb{E} X_{H}\right) \geq \Omega(1) \cdot \mathbb{P}\left(X_{J} \leq(1-\varepsilon) \mathbb{E} X_{J}\right)
$$

CASE-STUDY: ‘HOUSE OF SANTA CLAUS' GRAPH

$H=$ 'house of santa claus'
So far we know

$$
-\log \mathbb{P}\left(X_{H} \leq(1-\varepsilon) \mathbb{E} X_{H}\right) \sim \begin{cases}\phi(-\varepsilon) \mathbb{E} X_{H}, & \text { if } p \ll n^{-1 / 2} \\ \Theta\left(\varepsilon^{2} \mathbb{E} X_{H}\right), & \text { if } p=O\left(n^{-1 / 2}\right)\end{cases}
$$

- For $p \gg n^{-1 / 2}$ our discussed methods break: $\delta(H) \rightarrow \infty$
- Fact: for $n^{-1 / 2} \leq p \leq n^{-2 / 5}$ Janson's inequality gives

$$
\mathbb{P}\left(X_{H} \leq(1-\varepsilon) \mathbb{E} X_{H}\right) \leq \exp \left(-c \varepsilon^{2} \mathbb{E} X_{K_{4}}\right)
$$

Tantalizing observation for $n^{-1 / 2} \leq p \leq n^{-2 / 5}$
K_{4} is in weakly Poisson case: $\delta\left(K_{4}\right)=O(1)$, so

$$
\mathbb{P}\left(X_{K_{4}} \leq(1-\varepsilon) \mathbb{E} X_{K_{4}}\right) \geq \exp \left(-C \varepsilon^{2} \mathbb{E} X_{K_{4}}\right)
$$

Reduction to $\delta=O(1)$ case

- Writing $\mathcal{D}_{J}=" X_{J} \leq(1-\varepsilon) \mathbb{E} X_{J}$ ", we aim at

$$
\mathbb{P}\left(\mathcal{D}_{H}\right) \geq \underbrace{\mathbb{P}\left(\mathcal{D}_{K_{4}}\right)}_{\begin{array}{c}
\text { apply lower bound } \\
\text { using } \delta\left(K_{4}\right)=O(1)
\end{array}} \cdot \underbrace{\mathbb{P}\left(\mathcal{D}_{H} \mid \mathcal{D}_{K_{4}}\right)}_{\text {hope that } \Omega(1)} \geq \exp \left(-\Theta\left(\varepsilon^{2} \mathbb{E} X_{K_{4}}\right)\right)
$$

- Idea: "conditioning on $\mathcal{D}_{K_{4}}$ converts rare event \mathcal{D}_{H} into typical one"

Intuition for $H=$ 'house of santa claus'

- 'Too few' K_{4}-copies typically implies 'too few' H-copies (*)
- $\mathbb{E}\left(X_{H} \mid \mathcal{D}_{K_{4}}\right) \leq(1-\varepsilon) \mathbb{E} X_{H}$
- !!! We only managed to prove weaker variants of $(*)$!!!
- Calculating conditional second moment seems difficult

Lower tail for subgraph counts (Janson-W., 2014+)
Let $\Phi_{H}=\min _{J \subseteq H} \mathbb{E} X_{J}$. If $\varepsilon^{2} \Phi_{H} \geq c_{0}(H)$ and $n \geq n_{0}(H)$, then

$$
\mathbb{P}\left(X_{H} \leq(1-\varepsilon) \mathbb{E} X_{H}\right)=\exp \left(-\Theta\left(\varepsilon^{2} \Phi_{H}\right)\right)
$$

Bootstrapping approach can always be applied

- Enough to focus on the subgraph $J \subseteq H$ with $\Phi_{H}=\mathbb{E} X_{J}$

Rate of decay consistent with normal approximation:

- $\varepsilon^{2} \Phi_{H}=\Theta\left(\left(\varepsilon \mathbb{E} X_{H}\right)^{2} / \operatorname{Var} X_{H}\right)$

With more care we can, e.g., also establish the following result

Gaussian behavior for 2-balanced graphs (Janson-W., 2014+)

Assume that H is "2-balanced" (a tree, cycle, clique, hypercube, etc) If $\left(\varepsilon \mathbb{E} X_{H}\right)^{2} \gg \operatorname{Var} X_{H}$ and $\varepsilon \ll 1$, then

$$
-\log \mathbb{P}\left(X_{H} \leq(1-\varepsilon) \mathbb{E} X_{H}\right) \sim \frac{\left(\varepsilon \mathbb{E} X_{H}\right)^{2}}{2 \operatorname{Var} X_{H}}
$$

excluding only the ranges $p=\Theta\left(n^{-1 / m_{2}(H)}\right)$ and $p=\Theta(1)$.

Informal summary (Janson-W.)

Janson's inequality is often close to best possible

- Large deviation rate function in Poisson case:

$$
-\log \mathbb{P}(X \leq(1-\varepsilon) \mathbb{E} X) \sim \varphi(\varepsilon) \mathbb{E} X
$$

- Subgraphs example (reduction to Poisson case for lower bound):

$$
\mathbb{P}\left(X_{H} \leq(1-\varepsilon) \mathbb{E} X_{H}\right)=\exp \left(-\Theta\left(\varepsilon^{2} \min _{J \subseteq G} \mathbb{E} X_{J}\right)\right)
$$

Open problem: Triangle counts in $G_{n, p}$ for $p=c n^{-1 / 2}$

Would be nice to prove $-\log \mathbb{P}\left(X_{K_{3}}=0\right) \sim f(c) n^{3 / 2}$

- Know asymptotics of $-\log \mathbb{P}\left(X_{K_{3}}=0\right)$ for all other ranges of p
- Maybe (some variant of) the interpolation method works?

