# When does the $K_{4}$-free process stop? 

Lutz Warnke<br>University of Oxford

(Pre-)Doc-Course: Probabilistic \& Enumerative Combinatorics

## Random graph process

(a) Start with empty graph on $n$ vertices
(b) Add edges, one at a time, chosen uniformly at random from all remaining pairs

## Well-understood:

- Gives uniform distribution (after inserting $i$ edges)


## The PROBLEM

## Random H-free graph process

(a) Start with empty graph on $n$ vertices
(b) Add edges, one at a time, chosen uniformly at random from all remaining pairs that do not complete a copy of $H$

## Observation:

- ends with maximal $H$-free graph on $n$ vertices


## Basic question: Erdős-Suen-Winkler (1995)

Typical final number of edges?

## Motivation for the H-Free process

## Motivation 1: Random graphs with structural constraints

- understanding typical properties of such random objects
- e.g. the degrees, or the number of small subgraphs


## Motivation 2: Extremal Combinatorics

- analysis of $H$-free process gives new results
- e.g. lower bounds for the off-diagonal Ramsey numbers $R(s, t)$


## Motivation 3: Developement of tools/methods

- many standard tools/methods require 'lots of independence'

Final number of edges of the $H$-free process
For 'many' $H$ up to log-factors:

- Osthus-Taraz, 2001
- Bohman and Keevash, 2009

Exact order of magnitude only for $H=K_{1, d+1}$ and $H=K_{3}$ :

- Ruciński and Wormald, 1992
- Bohman, 2008

Previous Results: 2/2

Final number of edges for $H=K_{4}$
At least $\Omega\left(n^{8 / 5} \sqrt[5]{\log n}\right)$ and at most $O\left(n^{8 / 5} \sqrt{\log n}\right)$ edges:

- Bollobás-Riordan, 2000
- Osthus-Taraz, 2001
- Bohman, 2008


## Conjecture (Bohman-Keevash, 2009)

For special case $H=K_{4}$ their conjecture implies:

- final number of edges: $\Theta\left(n^{8 / 5} \sqrt[5]{\log n}\right)$
- maximum degree: $O\left(n^{3 / 5} \sqrt[5]{\log n}\right)$


## Our Result: Maxdegree in $K_{4}$-FREE PROCESS

## Main result (W., 2010+)

There exists $C>0$ such that whp the maximum-degree is at most $\mathrm{Cn}^{3 / 5} \sqrt[5]{\log n}$ in the $K_{4}$-free process

## Best possible up to the constant:

- the minimum degree is at least $c n^{3 / 5} \sqrt[5]{\log n}$ whp (Bohman-Keevash)


## Contribution:

(a) proves a conjecture of Bohman and Keevash for $\mathrm{H}=\mathrm{K}_{4}$
(b) allows us to answer a question of Erdős-Suen-Winkler for $H=K_{4}$ :

- whp final number of edges is $\Theta\left(n^{8 / 5} \sqrt[5]{\log n}\right)$

Final number of edges of the $H$-free process (Previous results)

- order of magnitude was only known for $H=K_{1, d+1}$ and $H=K_{3}$

Typical structural properties of the $K_{4}$-free proces

- final number of edges: $\Theta\left(n^{8 / 5} \sqrt[5]{\log n}\right)$
- maximum degree: $O\left(n^{3 / 5} \sqrt[5]{\log n}\right)$

