Bounds on Ramsey Games via Alterations

Lutz Warnke
Georgia Tech

Joint work with He Guo

Context of this talk

Lower bound on Ramsey number $R(H, k)$
$R(H, k)>n$: need to show there exists an n-vertex graph G that is
(i) H-free, and (ii) each k-vertex set contains at least one edge

Remarks:

- Probabilistic Method usually used to show existence of such G
- This problem inspired development of many important approaches:
- Alteration method, Lovász local lemma, Semi-random, H-free process...

Topic of this talk

Refinement of Probabilistic Method approach for online Ramsey settings
Applications: New bounds for online Ramsey games
(1) Ramsey, Paper, Scissors (extending Fox-He-Wigderson 2019+)
(2) Online Ramsey numbers (extending Conlon-Fox-Grinshpun-He 2018)

Lower bound on Ramsey number $R(H, k)$
$R(H, k)>n$: need to show there exists an n-vertex graph G that is
(i) H-free, and (ii) each k-vertex set contains at least one edge

- Testbed for new proof techniques/methods:

What kind of H ?	Authors	Methods
K_{3}	Erdős (1961)	Alteration method
K_{s} or C_{ℓ}	Spencer (1975/77)	Lovász local lemma
Any graph H	Krivelevich (1995)	Alteration method
K_{3}	Kim (1995)	Semi-random
K_{s} or C_{ℓ}	Bohman-Keevash (2010)	H-free process
Many C_{ℓ}	Mubayi-Verstraëte (2019+)	Pseudo-random

- Online results by Conlon, Fox et al. only for K_{3}, based on Erdős (1961)
- Krivelevich's approach is not applicable for these online settings
- We refine alteration method and get online results for any graph H

Widely applications of Erdős and Krivelevich approaches

(Part of) Applications of Erdős (1961) or Krivelevich (1995) approaches

- Online Ramsey problems
- Conlon et al. (2018); Fox et al. (2019+)
- Induced bipartite graph in triangle-free graphs
- Erdős-Faudree-Pach-Spencer (1988); Kwan-Letzter-Sudakov-Tran (2018+); Batenburg-de Joannis de Verclos-Kang-Pirot (2018+); Guo-Warnke (2019++)
- Minimum induced tree in graphs
- Erdős-Saks-Sós (1986)
- Various Ramsey numbers
- Krivelevich (1998); Sudakov (2007)
- Erdős-Rogers function
- Krivelevich (1995); Sudakov (2004)
- Coloring (hyper)graphs without certain structures
- Osthus-Taraz (2000); Bohman-Frieze-Mubayi (2009)
- Ramsey-Turán problems

Review of alteration method by Krivelevich

Lower bound on Ramsey number $R(H, k)$
$R(H, k)>n$: need to show there exists an n-vertex graph G that is
(i) H-free, and (ii) each k-vertex set contains at least one edge

High-level idea of Krivelevich (1995) for $n=\Theta\left((k / \log k)^{\left(\epsilon_{H}-1\right) /\left(v_{H}-2\right)}\right)$
Get $G \subseteq G_{n, p}$: remove edges of a maximal family of edge-disjoint H-copies
(i) G is H-free (otherwise the family can be increased)
(ii) Each k-vertex set K of G still contains ≥ 1 edge (main difficulty)

Review of alteration method by Krivelevich

Lower bound on Ramsey number $R(H, k)$
$R(H, k)>n$: need to show there exists an n-vertex graph G that is
(i) H-free, and (ii) each k-vertex set contains at least one edge

High-level idea of Krivelevich (1995) for $n=\Theta\left((k / \log k)^{\left(\epsilon_{H}-1\right) /\left(v_{H}-2\right)}\right)$
Get $G \subseteq G_{n, p}$: remove edges of a maximal family of edge-disjoint H-copies
(i) G is H -free (otherwise the family can be increased)
(ii) Each k-vertex set K of G still contains ≥ 1 edge (main difficulty)

Review of alteration method by Krivelevich

Lower bound on Ramsey number $R(H, k)$
$R(H, k)>n$: need to show there exists an n-vertex graph G that is
(i) H-free, and (ii) each k-vertex set contains at least one edge

High-level idea of Krivelevich (1995) for $n=\Theta\left((k / \log k)^{\left(\epsilon_{H}-1\right) /\left(v_{H}-2\right)}\right)$
Get $G \subseteq G_{n, p}$: remove edges of a maximal family of edge-disjoint H-copies
(i) G is H -free (otherwise the family can be increased)
(ii) Each k-vertex set K of G still contains ≥ 1 edge (main difficulty)

Review of alteration method by Krivelevich

Lower bound on Ramsey number $R(H, k)$
$R(H, k)>n$: need to show there exists an n-vertex graph G that is
(i) H-free, and (ii) each k-vertex set contains at least one edge

High-level idea of Krivelevich (1995) for $n=\Theta\left((k / \log k)^{\left(e_{H}-1\right) /\left(v_{H}-2\right)}\right)$
Get $G \subseteq G_{n, p}$: remove edges of a maximal family of edge-disjoint H-copies
(i) G is H-free (otherwise the family can be increased)
(ii) Each k-vertex set K of G still contains ≥ 1 edge (main difficulty)

Drawback: not applicable to design online algorithms

In online Ramsey games, players cannot foresee whether or not an existing edge will be contained in an H-copy in the future
\longrightarrow We develop a variant that applies to online Ramsey settings

Our new approach: removing edges of ALL H-copies

High-level idea of Krivelevich

Get $G \subseteq G_{n, p}$: remove edges of a maximal family of edge-disjoint H-copies
(i) G is H-free (otherwise the family can be increased)
(ii) Each k-vertex set K of G still contains ≥ 1 edge

High-level idea of our new approach: removing ALL H-copies
Get $G \subseteq G_{n, p}$: remove edges of ALL H-copies
(i) G is H-free (all H-copies have been removed)
(ii) Each k-vertex set K of G still contains ≥ 1 edge (main difficulty)

Our new approach: what we need to show

- Idea: remove edges of all H-copies in $G_{n, p}$ to get G
- Aim: show G satisfies
(i) n-vertex H-free (\checkmark)
(ii) each k-vertex set K contains ≥ 1 edge

Need to show

$$
\mid\left\{\text { edges of } G_{n, p} \text { inside } K\right\}|>|\{\text { removed edges inside } K\} \mid
$$

By construction of G :
$\{$ removed edges inside $K\}=\left\{\right.$ edges in H-copies of $G_{n, p}$ inside $\left.K\right\}$

Main technical result

- Idea: remove edges of all H-copies in $G_{n, p}$ to get G for $n=\Theta\left(\left(\frac{k}{\log k}\right)^{m_{2}(H)}\right)$
- Aim: show G satisfies
(i) n-vertex H-free (\checkmark)
(ii) each k-vertex set K contains ≥ 1 edge

Need to show
$\mid\left\{\right.$ edges of $G_{n, p}$ inside $\left.K\right\}|>|\{$ removed edges inside $K\} \mid$
By construction of G :
$\{$ removed edges inside $K\}=\left\{\right.$ edges in H-copies of $G_{n, p}$ inside $\left.K\right\}$

Theorem (Guo-Warnke 2019+)

For any well-behaved H and $\delta>0$, for all large $C_{\delta, H}$ and small $c_{\delta, H, C}>0$,

$$
\text { if } \quad n:=\left\lfloor c(k / \log k)^{m_{2}(H)}\right\rfloor \quad \text { and } \quad p:=C(\log k) / k
$$

then in $G_{n, p}$ whp (with high probability) for all k-vertex sets K :
$\mid\left\{\right.$ edges of $G_{n, p}$ inside $\left.K\right\} \left\lvert\, \geq(1-\delta) \cdot\binom{k}{2} p\right.$,
$\mid\left\{\right.$ edges in H-copies of $G_{n, p}$ inside $\left.K\right\} \left\lvert\, \leq \delta \cdot\binom{k}{2} p\right.$.

Main technical result

- Idea: remove edges of all H-copies in $G_{n, p}$ to get G for $n=\Theta\left(\left(\frac{k}{\log k}\right)^{m_{2}(H)}\right)$
- Aim: show G satisfies
(i) n-vertex H -free (\checkmark)
(ii) each k-vertex set K contains ≥ 1 edge (\checkmark)

Theorem (Guo-Warnke 2019+)

For any well-behaved H and $\delta>0$, for all large $C_{\delta, H}$ and small $c_{\delta, H, C}>0$,

$$
\text { if } \quad n:=\left\lfloor c(k / \log k)^{m_{2}(H)}\right\rfloor \quad \text { and } \quad p:=C(\log k) / k
$$

then in $G_{n, p}$ whp (with high probability) for all k-vertex sets K :

$$
\begin{aligned}
X_{K}:=\mid\left\{\text { edges of } G_{n, p} \text { inside } K\right\} \mid & \geq(1-\delta) \cdot\binom{k}{2} p, \\
Y_{K}:=\mid\left\{\text { edges in } H \text {-copies of } G_{n, p} \text { inside } K\right\} \mid & \leq \delta \cdot\binom{k}{2} p .
\end{aligned}
$$

How to verify (ii)?

- $|E(G[K])|=X_{K}-Y_{K} \geq(1-2 \delta) \cdot\binom{k}{2} p \geq 1$ for $\delta<1 / 2(\checkmark)$

Task: $Y_{K}=\#$ edges in H-copies of $G_{n, p}$ inside $K \leq \delta\binom{k}{2} p$

- Aim: n-vertex H-free graph G without independent set of size k
- Strategy: Remove all edges of all H-copies in $G_{n, p}$ to get G, where

$$
n \sim c\left(\frac{k}{\log k}\right)^{m_{2}(H)} \quad \text { and } \quad p=C \frac{\log k}{k}
$$

Simple bound fails, where $\mathcal{H}_{K}:=\left\{H\right.$-copies in $G_{n, p}$ with ≥ 1 edge inside $\left.K\right\}$
Trivial bound: $Y_{K} \leq e_{H}\left|\mathcal{H}_{K}\right|$, but $\mathbb{P}\left(\left|\mathcal{H}_{K}\right| \geq \varepsilon\binom{k}{2} p\right) \gg\binom{n}{k}^{-1}$

- Rules out naive union bound over all k-vertex sets K in $G_{n, p}$
"Infamous" upper tail behavior: example $H=K_{s}$
(1) For $t:=\Theta\left(\left(\varepsilon\binom{k}{2} p\right)^{\frac{1}{s}}\right)$, one K_{t} contains $\Theta\left(t^{s}\right) \geq \varepsilon\binom{k}{2} p$ many K_{s}-copies
(2) As $t \ll k$, one K_{t} fits inside K. Then

Main message

Must handle H-copies that share a common edge inside K more carefully

Task: $Y_{K}=\#$ edges in H-copies of $G_{n, p}$ inside $K \leq \delta\binom{k}{2} p$

- Aim: n-vertex H-free graph G without independent set of size k
- Strategy: Remove all edges of all H-copies in $G_{n, p}$ to get G, where

$$
n \sim c\left(\frac{k}{\log k}\right)^{m_{2}(H)} \quad \text { and } \quad p=C \frac{\log k}{k}
$$

Probabilistic \& Combinatorial Observations

(1) (P) Main contribution to Y_{K} : H-copies with exact 2 vertices inside K - "good" copies; \#"bad" copies is negligible (as $n \gg k$)
(2) (C) Multiple good copies on one edge contribute 1 to Y_{K}

- Select one representative H-copy for each such edge
(3) (P) $\mid\{$ representative good copies $\}|\approx|$ max. edge-disjoint subfamily \mid
- \# pairs of intersecting representative good copies is negligible

Task: $Y_{K}=\#$ edges in H-copies of $G_{n, p}$ inside $K \leq \delta\binom{k}{2} p$

- Aim: n-vertex H-free graph G without independent set of size k
- Strategy: Remove all edges of all H-copies in $G_{n, p}$ to get G, where

$$
n \sim c\left(\frac{k}{\log k}\right)^{m_{2}(H)} \quad \text { and } \quad p=C \frac{\log k}{k}
$$

Probabilistic \& Combinatorial Observations

(1) (P) Main contribution to Y_{K} : H-copies with exact 2 vertices inside K - "good" copies; \#"bad" copies is negligible (as $n \gg k$)
(2) (C) Multiple good copies on one edge contribute 1 to Y_{K}

- Select one representative H-copy for each such edge
(3) (P) $\mid\{$ representative good copies $\}|\approx|$ max. edge-disjoint subfamily \mid
- \# pairs of intersecting representative good copies is negligible

Task: $Y_{K}=\#$ edges in H-copies of $G_{n, p}$ inside $K \leq \delta\binom{k}{2} p$

- Aim: n-vertex H-free graph G without independent set of size k
- Strategy: Remove all edges of all H-copies in $G_{n, p}$ to get G, where

$$
n \sim c\left(\frac{k}{\log k}\right)^{m_{2}(H)} \quad \text { and } \quad p=C \frac{\log k}{k}
$$

Probabilistic \& Combinatorial Observations

(1) (P) Main contribution to Y_{K} : H-copies with exact 2 vertices inside K - "good" copies; \#"bad" copies is negligible (as $n \gg k$)
(2) (C) Multiple good copies on one edge contribute 1 to Y_{K}

- Select one representative H-copy for each such edge
(3) (P) $\mid\{$ representative good copies $\}|\approx|$ max. edge-disjoint subfamily \mid
- \# pairs of intersecting representative good copies is negligible

Task: $Y_{K}=\#$ edges in H-copies of $G_{n, p}$ inside $K \leq \delta\binom{k}{2} p$

- Aim: n-vertex H-free graph G without independent set of size k
- Strategy: Remove all edges of all H-copies in $G_{n, p}$ to get G, where

$$
n \sim c\left(\frac{k}{\log k}\right)^{m_{2}(H)} \quad \text { and } \quad p=C \frac{\log k}{k}
$$

Probabilistic \& Combinatorial Observations

(1) (P) Main contribution to $Y_{K}: H$-copies with exact 2 vertices inside K - "good" copies; \#"bad" copies is negligible (as $n \gg k$)
(2) (C) Multiple good copies on one edge contribute 1 to Y_{K}

- Select one representative H-copy for each such edge
(3) (P) $\mid\{$ representative good copies $\}|\approx|$ max. edge-disjoint subfamily \mid
- \# pairs of intersecting representative good copies is negligible
- $\mathcal{I}_{K}:=$ this subfamily of edge-disjoint good H-copies

Combining these three observations, we have

$$
Y_{K} \approx\left|\mathcal{I}_{K}\right| .
$$

Intuitively, $\left|\mathcal{I}_{K}\right|$ behaves like sum of independent random variables:

$$
\mathbb{P}\left(\left|\mathcal{I}_{K}\right| \geq \delta\binom{k}{2} p / 2\right) \leq \exp \left(-\Theta\left(\delta\binom{k}{2} p\right)\right) \ll n^{-k}, \text { by } C \geq C_{0}(\delta, H)
$$

A brief summery

H is well-behaved: strictly 2-balanced graph with $m_{2}(H)>1$

Theorem (Guo-Warnke 2019+)

For any well-behaved H and $\delta>0$, for all large $C_{\delta, H}$ and small $c_{\delta, H, C}>0$,

$$
\text { if } \quad n:=\left\lfloor c(k / \log k)^{m_{2}(H)}\right\rfloor \quad \text { and } \quad p:=C(\log k) / k \text {, }
$$

then in $G_{n, p}$ whp for all k-vertex sets K :
\# edges in H-copies of $G_{n, p}$ inside $K \leq \delta \cdot\binom{k}{2} p$.

Corollary (Random-like n-vertex H-free graph G without ISET of size k)

Remove all edges of all H-copies in $G_{n, p}$ (as above) to get G. Whp for all k-vertex sets K :

$$
|E(G[K])|=(1 \pm \varepsilon) \cdot\binom{k}{2} p .
$$

- G is random-like, e.g., $\operatorname{deg}_{G}(v)=(1 \pm \varepsilon) \cdot n p,|E(G)|=(1 \pm \varepsilon) \cdot\binom{n}{2} p$

Motivation: Online Ramsey games

Lower bound on Ramsey number $R(H, k)$
$R(H, k)>n$: need to show there exists an n-vertex graph G that is
(i) H-free, and (ii) each k-vertex set contains at least one edge

- Polynomial gaps from best upper bounds, despite long history

What kind of H ?	Authors	Methods
K_{3}	Erdős (1961)	Alteration method
K_{s} or C_{ℓ}	Spencer (1975/77)	Lovász local lemma
Any graph H	Krivelevich (1995)	Alteration method
K_{3}	Kim (1995)	Semi-random
K_{s} or C_{ℓ}	Bohman-Keevash (2010)	H-free process
Many C_{ℓ}	Mubayi-Verstraëte (2019+)	Pseudo-random

Motivation for Online Ramsey settings

- Development of new proof techniques

Application 1: Ramsey, Paper, Scissors (RPS)

Ramsey, Paper, Scissors game

- Board: n initially isolated vertices; Two players: Proposer, Decider
- In each turn, simultaneously:
- Proposer proposes a new pair in $\binom{[n]}{2}$ that does not form an H-copy with edges of current graph
- Decider decides it to be an edge or not (without knowing the pair)
- Proposer wins if in the final graph \exists ISET of size k

Ramsey, Paper, Scissors number $\operatorname{RPS}(H, n)$

$\operatorname{RPS}(H, n)=$ maximum k : Proposer has a strategy to win with prob. $\geq \frac{1}{2}$
Theorem (Fox-He-Wigderson 2019+)
$\operatorname{RPS}\left(K_{3}, n\right)=\Theta\left(n^{1 / 2} \log n\right)$.

- Their upper bound is based on Erdős (1961) construction for $R\left(K_{3}, k\right)$

Theorem (Guo-Warnke 2019+)
$R P S(H, n)=O\left(n^{1 / m_{2}(H)} \log n\right)$ for any well-behaved H.

Application 1: Ramsey, Paper, Scissors (RPS)

Ramsey, Paper, Scissors game

- Board: n initially isolated vertices; Two players: Proposer, Decider - In each turn, simultaneously:
- Proposer proposes a new pair in $\binom{[n]}{2}$ that does not form an H-copy with edges of current graph
- Decider decides it to be an edge or not (without knowing the pair) - Proposer wins if in the final graph \exists ISET of size k

Theorem (Guo-Warnke 2019+: Ramsey, Paper, Scissors)

No matter how Proposer plays, Decider has a randomized strategy so that whp there is no ISET of size $k=\Theta\left(n^{1 / m_{2}(H)} \log n\right)$ in the final graph.

Analysis: Decider adds each pair as edge independently with probability p
(1) $\binom{[n]}{2}=\{$ proposed pairs $\} \sqcup\{$ pairs not proposed $\}$ at the end of the game
(2) Final graph $G \subseteq G_{n, p}: E(G)=p$-random subset of proposed pairs
(3) Not proposed pair forms H-copy with $E(G) \Rightarrow|E(G[K])| \geq X_{K}-Y_{K} \geq 1$

Application 2: Online Ramsey numbers

(H, k)-online Ramsey game

- Board: infinite initially isolated vertices; Two players: Builder, Painter
- Each turn: Builder builds a new edge, then Painter paints it red/blue
- Builder wins if a red H or blue K_{k} shows up

Online Ramsey number $\tilde{r}(H, k)$ $\tilde{r}(H, k)=$ minimum N : Builder has a strategy to win for sure in N turns

Theorem (Conlon-Fox-Grinshpun-He 2018)

 $\tilde{r}\left(K_{3}, k\right)=\Omega\left(k \cdot\left(\frac{k}{\log k}\right)^{2}\right)+$ many further results.- Their lower bound is based on Erdős (1961) construction for $R\left(K_{3}, k\right)$
- Erdős (1961) really uses special structure of K_{3}

Theorem (Guo-Warnke 2019+)

$$
\tilde{r}(H, k)=\Omega\left(k \cdot\left(\frac{k}{\log k}\right)^{m_{2}(H)}\right) \text { for any graph } H .
$$

Application 2: Online Ramsey numbers

(H, k)-online Ramsey game

- Board: infinite initially isolated vertices; Two players: Builder, Painter
- Each turn: Builder builds a new edge, then Painter paints it red/blue
- Builder wins if a red H or blue K_{k} shows up

Online Ramsey number $\tilde{r}(H, k)$
$\tilde{r}(H, k)=$ minimum N : Builder has a strategy to win for sure in N turns
Theorem (Guo-Warnke 2019+)
$\tilde{r}(H, k)=\Omega\left(k \cdot\left(\frac{k}{\log k}\right)^{m_{2}(H)}\right)$ for any graph H.

Theorem (Guo-Warnke 2019+: Online Ramsey numbers)

No matter how Builder builds an edge in each turn, Painter has a strategy to paint it red/blue to avoid red H or blue K_{k} in $\Omega\left(k \cdot\left(\frac{k}{\log k}\right)^{m_{2}(H)}\right)$ turns.

- Infinite vertex-set board causes difficulties for taking union bound

Remarks on the applications to online Ramsey games

Theorem (Guo-Warnke 2019+: Ramsey, Paper, Scissors)

No matter how Proposer plays, Decider has a randomized strategy so that whp there is no ISET of size $k=\Theta\left(n^{1 / m_{2}(H)} \log n\right)$ in the final graph.

Theorem (Guo-Warnke 2019+: Online Ramsey numbers)

No matter how Builder builds an edge in each turn, Painter has a strategy to paint it red/blue to avoid red H or blue K_{k} in $\Omega\left(k \cdot\left(\frac{k}{\log k}\right)^{m_{2}(H)}\right)$ turns.

- Krivelevich's approach is not applicable to design online algorithms
- players cannot foresee creation of H -copies on existing edges
- We have randomized algorithms for Painter/Decider
- Based on our approach to $R(H, k)$; Benefit from deleting all H-copies

Main point of our new approach

After removing all H-copies from $G_{n, p}$, the remaining G is still random-like

Remarks:

- Previous approaches only remove some H-copies
- Advantage of our refined approach: works in online settings

Two applications:

(1) Ramsey, Paper, Scissors (extending Fox et al. 2019+)
(2) Online Ramsey numbers (extending Conlon et al. 2018)

