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Context of this talk

Lower bound on Ramsey number R(H, k)

R(H, k) > n: need to show there exists an n-vertex graph G that is
(i) H-free, and (ii) each k-vertex set contains at least one edge

Remarks:

Probabilistic Method usually used to show existence of such G

This problem inspired development of many important approaches:

Alteration method, Lovász local lemma, Semi-random, H-free process...

Topic of this talk

Refinement of Probabilistic Method approach for online Ramsey settings

Applications: New bounds for online Ramsey games

1 Ramsey, Paper, Scissors (extending Fox–He–Wigderson 2019+)

2 Online Ramsey numbers (extending Conlon–Fox–Grinshpun–He 2018)



History of studying lower bounds on Ramsey numbers

Lower bound on Ramsey number R(H, k)

R(H, k) > n: need to show there exists an n-vertex graph G that is
(i) H-free, and (ii) each k-vertex set contains at least one edge

Testbed for new proof techniques/methods:

What kind of H? Authors Methods

K3 Erdős (1961) Alteration method

Ks or C` Spencer (1975/77) Lovász local lemma

Any graph H Krivelevich (1995) Alteration method

K3 Kim (1995) Semi-random

Ks or C` Bohman–Keevash (2010) H-free process

Many C` Mubayi–Verstraëte (2019+) Pseudo-random

Online results by Conlon, Fox et al. only for K3, based on Erdős (1961)

Krivelevich’s approach is not applicable for these online settings

We refine alteration method and get online results for any graph H



Widely applications of Erdős and Krivelevich approaches

(Part of) Applications of Erdős (1961) or Krivelevich (1995) approaches

Online Ramsey problems

Conlon et al. (2018); Fox et al. (2019+)

Induced bipartite graph in triangle-free graphs

Erdős–Faudree–Pach–Spencer (1988); Kwan–Letzter–Sudakov–Tran (2018+);

Batenburg–de Joannis de Verclos–Kang–Pirot (2018+); Guo–Warnke (2019++)

Minimum induced tree in graphs

Erdős–Saks–Sós (1986)

Various Ramsey numbers

Krivelevich (1998); Sudakov (2007)

Erdős–Rogers function

Krivelevich (1995); Sudakov (2004)

Coloring (hyper)graphs without certain structures

Osthus–Taraz (2000); Bohman–Frieze–Mubayi (2009)

Ramsey–Turán problems



Review of alteration method by Krivelevich

Lower bound on Ramsey number R(H, k)

R(H, k) > n: need to show there exists an n-vertex graph G that is
(i) H-free, and (ii) each k-vertex set contains at least one edge

High-level idea of Krivelevich (1995) for n = Θ
(
(k/ log k)(eH−1)/(vH−2)

)
Get G ⊆ Gn,p: remove edges of a maximal family of edge-disjoint H-copies

(i) G is H-free (otherwise the family can be increased)

(ii) Each k-vertex set K of G still contains ≥ 1 edge (main difficulty)

K

H = ∆
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Review of alteration method by Krivelevich

Lower bound on Ramsey number R(H, k)

R(H, k) > n: need to show there exists an n-vertex graph G that is
(i) H-free, and (ii) each k-vertex set contains at least one edge

High-level idea of Krivelevich (1995) for n = Θ
(
(k/ log k)(eH−1)/(vH−2)

)
Get G ⊆ Gn,p: remove edges of a maximal family of edge-disjoint H-copies

(i) G is H-free (otherwise the family can be increased)

(ii) Each k-vertex set K of G still contains ≥ 1 edge (main difficulty)

Drawback: not applicable to design online algorithms

In online Ramsey games, players cannot foresee whether or not an existing
edge will be contained in an H-copy in the future

−→ We develop a variant that applies to online Ramsey settings



Our new approach: removing edges of ALL H-copies

High-level idea of Krivelevich

Get G ⊆ Gn,p: remove edges of a maximal family of edge-disjoint H-copies

(i) G is H-free (otherwise the family can be increased)

(ii) Each k-vertex set K of G still contains ≥ 1 edge

High-level idea of our new approach: removing ALL H-copies

Get G ⊆ Gn,p: remove edges of ALL H-copies

(i) G is H-free (all H-copies have been removed)

(ii) Each k-vertex set K of G still contains ≥ 1 edge (main difficulty)

K

H = ∆



Our new approach: what we need to show

Idea: remove edges of all H-copies in Gn,p to get G
Aim: show G satisfies

(i) n-vertex H-free (X)
(ii) each k-vertex set K contains ≥ 1 edge

Need to show

|{edges of Gn,p inside K}| > |{removed edges inside K}|
By construction of G :

{removed edges inside K} = {edges in H-copies of Gn,p inside K}

K

H = ∆



Main technical result

Idea: remove edges of all H-copies in Gn,p to get G for n = Θ(( k
log k

)m2(H))

Aim: show G satisfies
(i) n-vertex H-free (X)
(ii) each k-vertex set K contains ≥ 1 edge

Need to show

|{edges of Gn,p inside K}| > |{removed edges inside K}|
By construction of G :

{removed edges inside K} = {edges in H-copies of Gn,p inside K}

Theorem (Guo–Warnke 2019+)

For any well-behaved H and δ > 0, for all large Cδ,H and small cδ,H,C > 0,

if n := bc(k/ log k)m2(H)c and p := C (log k)/k,

then in Gn,p whp (with high probability) for all k-vertex sets K:

|{edges of Gn,p inside K}| ≥ (1− δ) ·
(k
2

)
p,

|{edges in H-copies of Gn,p inside K}| ≤ δ ·
(k
2

)
p.



Main technical result

Idea: remove edges of all H-copies in Gn,p to get G for n = Θ(( k
log k

)m2(H))

Aim: show G satisfies

(i) n-vertex H-free (X)
(ii) each k-vertex set K contains ≥ 1 edge (X)

Theorem (Guo–Warnke 2019+)

For any well-behaved H and δ > 0, for all large Cδ,H and small cδ,H,C > 0,

if n := bc(k/ log k)m2(H)c and p := C (log k)/k,

then in Gn,p whp (with high probability) for all k-vertex sets K:

XK := |{edges of Gn,p inside K}| ≥ (1− δ) ·
(k
2

)
p,

YK := |{edges in H-copies of Gn,p inside K}| ≤ δ ·
(k
2

)
p.

How to verify (ii)?

|E (G [K ])| = XK − YK ≥ (1− 2δ) ·
(k
2

)
p ≥ 1 for δ < 1/2 (X)



Task: YK = # edges in H-copies of Gn,p inside K ≤ δ
(
k
2

)
p

Aim: n-vertex H-free graph G without independent set of size k

Strategy: Remove all edges of all H-copies in Gn,p to get G , where

n ∼ c( k
log k )m2(H) and p = C log k

k

Simple bound fails, where HK :={H-copies in Gn,p with ≥ 1 edge inside K}

Trivial bound: YK ≤ eH |HK |, but P
(
|HK | ≥ ε

(k
2

)
p
)
�

(n
k

)−1

Rules out naive union bound over all k-vertex sets K in Gn,p

“Infamous” upper tail behavior: example H = Ks

1 For t := Θ
(
(ε
(k
2

)
p)

1
s

)
, one Kt contains Θ(ts) ≥ ε

(k
2

)
p many Ks -copies

2 As t � k , one Kt fits inside K . Then

P
(
|HK | ≥ ε

(k
2

)
p
)
≥ P(one Kt occurs in Gn,p[K ]) ≥ p

(t
2

)
�

(n
k

)−1

Main message

Must handle H-copies that share a common edge inside K more carefully



Task: YK = # edges in H-copies of Gn,p inside K ≤ δ
(
k
2

)
p

Aim: n-vertex H-free graph G without independent set of size k
Strategy: Remove all edges of all H-copies in Gn,p to get G , where

n ∼ c( k
log k )m2(H) and p = C log k

k

Probabilistic & Combinatorial Observations

1 (P) Main contribution to YK : H-copies with exact 2 vertices inside K

“good” copies; #“bad” copies is negligible (as n� k)

2 (C) Multiple good copies on one edge contribute 1 to YK

Select one representative H-copy for each such edge

3 (P) |{representative good copies}| ≈ |max. edge-disjoint subfamily|
# pairs of intersecting representative good copies is negligible

K

H ′

H ′′



Task: YK = # edges in H-copies of Gn,p inside K ≤ δ
(
k
2

)
p

Aim: n-vertex H-free graph G without independent set of size k
Strategy: Remove all edges of all H-copies in Gn,p to get G , where

n ∼ c( k
log k )m2(H) and p = C log k

k

Probabilistic & Combinatorial Observations

1 (P) Main contribution to YK : H-copies with exact 2 vertices inside K

“good” copies; #“bad” copies is negligible (as n� k)

2 (C) Multiple good copies on one edge contribute 1 to YK

Select one representative H-copy for each such edge

3 (P) |{representative good copies}| ≈ |max. edge-disjoint subfamily|
# pairs of intersecting representative good copies is negligible

K

H ′

H ′′



Task: YK = # edges in H-copies of Gn,p inside K ≤ δ
(
k
2

)
p

Aim: n-vertex H-free graph G without independent set of size k
Strategy: Remove all edges of all H-copies in Gn,p to get G , where

n ∼ c( k
log k )m2(H) and p = C log k

k

Probabilistic & Combinatorial Observations

1 (P) Main contribution to YK : H-copies with exact 2 vertices inside K

“good” copies; #“bad” copies is negligible (as n� k)

2 (C) Multiple good copies on one edge contribute 1 to YK

Select one representative H-copy for each such edge

3 (P) |{representative good copies}| ≈ |max. edge-disjoint subfamily|
# pairs of intersecting representative good copies is negligible

K

H ′

H ′′



Task: YK = # edges in H-copies of Gn,p inside K ≤ δ
(
k
2

)
p

Aim: n-vertex H-free graph G without independent set of size k
Strategy: Remove all edges of all H-copies in Gn,p to get G , where

n ∼ c( k
log k )m2(H) and p = C log k

k

Probabilistic & Combinatorial Observations

1 (P) Main contribution to YK : H-copies with exact 2 vertices inside K

“good” copies; #“bad” copies is negligible (as n� k)

2 (C) Multiple good copies on one edge contribute 1 to YK

Select one representative H-copy for each such edge

3 (P) |{representative good copies}| ≈ |max. edge-disjoint subfamily|
# pairs of intersecting representative good copies is negligible
IK := this subfamily of edge-disjoint good H-copies

Combining these three observations, we have

YK ≈ |IK |.
Intuitively, |IK | behaves like sum of independent random variables:

P
(
|IK | ≥ δ

(k
2

)
p/2

)
≤ exp

(
−Θ(δ

(k
2

)
p)
)
� n−k , by C ≥ C0(δ,H)



A brief summery

H is well-behaved: strictly 2-balanced graph with m2(H) > 1

Theorem (Guo–Warnke 2019+)

For any well-behaved H and δ > 0, for all large Cδ,H and small cδ,H,C > 0,

if n := bc(k/ log k)m2(H)c and p := C (log k)/k,

then in Gn,p whp for all k-vertex sets K:

# edges in H-copies of Gn,p inside K ≤ δ ·
(k
2

)
p.

Corollary (Random-like n-vertex H-free graph G without ISET of size k)

Remove all edges of all H-copies in Gn,p (as above) to get G. Whp for all
k-vertex sets K:

|E (G [K ])| = (1± ε) ·
(k
2

)
p.

G is random-like, e.g., degG (v) = (1± ε) · np, |E (G )| = (1± ε) ·
(n
2

)
p



Motivation: Online Ramsey games

Lower bound on Ramsey number R(H, k)

R(H, k) > n: need to show there exists an n-vertex graph G that is
(i) H-free, and (ii) each k-vertex set contains at least one edge

Polynomial gaps from best upper bounds, despite long history

What kind of H? Authors Methods

K3 Erdős (1961) Alteration method

Ks or C` Spencer (1975/77) Lovász local lemma

Any graph H Krivelevich (1995) Alteration method

K3 Kim (1995) Semi-random

Ks or C` Bohman–Keevash (2010) H-free process

Many C` Mubayi–Verstraëte (2019+) Pseudo-random

Motivation for Online Ramsey settings

Development of new proof techniques



Application 1: Ramsey, Paper, Scissors (RPS)

Ramsey, Paper, Scissors game

Board: n initially isolated vertices; Two players: Proposer, Decider

In each turn, simultaneously:

Proposer proposes a new pair in
([n]
2

)
that does not form an

H-copy with edges of current graph
Decider decides it to be an edge or not (without knowing the pair)

Proposer wins if in the final graph ∃ ISET of size k

Ramsey, Paper, Scissors number RPS(H, n)

RPS(H, n) = maximum k: Proposer has a strategy to win with prob. ≥ 1
2

Theorem (Fox–He–Wigderson 2019+)

RPS(K3, n) = Θ(n1/2 log n).

Their upper bound is based on Erdős (1961) construction for R(K3, k)

Theorem (Guo–Warnke 2019+)

RPS(H, n) = O(n1/m2(H) log n) for any well-behaved H.



Application 1: Ramsey, Paper, Scissors (RPS)

Ramsey, Paper, Scissors game

Board: n initially isolated vertices; Two players: Proposer, Decider

In each turn, simultaneously:

Proposer proposes a new pair in
([n]
2

)
that does not form an

H-copy with edges of current graph
Decider decides it to be an edge or not (without knowing the pair)

Proposer wins if in the final graph ∃ ISET of size k

Theorem (Guo–Warnke 2019+: Ramsey, Paper, Scissors)

No matter how Proposer plays, Decider has a randomized strategy so that
whp there is no ISET of size k = Θ(n1/m2(H) log n) in the final graph.

Analysis: Decider adds each pair as edge independently with probability p

1
([n]
2

)
= {proposed pairs} t {pairs not proposed} at the end of the game

2 Final graph G ⊆ Gn,p: E (G ) = p-random subset of proposed pairs

3 Not proposed pair forms H-copy with E (G ) ⇒ |E (G [K ])| ≥ XK −YK ≥ 1



Application 2: Online Ramsey numbers

(H, k)-online Ramsey game

Board: infinite initially isolated vertices; Two players: Builder, Painter

Each turn: Builder builds a new edge, then Painter paints it red/blue

Builder wins if a red H or blue Kk shows up

Online Ramsey number r̃(H, k)

r̃(H, k) = minimum N: Builder has a strategy to win for sure in N turns

Theorem (Conlon–Fox–Grinshpun–He 2018)

r̃(K3, k) = Ω
(
k · ( k

log k )2
)

+ many further results.

Their lower bound is based on Erdős (1961) construction for R(K3, k)
Erdős (1961) really uses special structure of K3

Theorem (Guo–Warnke 2019+)

r̃(H, k) = Ω
(
k · ( k

log k )m2(H)
)

for any graph H.



Application 2: Online Ramsey numbers

(H, k)-online Ramsey game

Board: infinite initially isolated vertices; Two players: Builder, Painter

Each turn: Builder builds a new edge, then Painter paints it red/blue

Builder wins if a red H or blue Kk shows up

Online Ramsey number r̃(H, k)

r̃(H, k) = minimum N: Builder has a strategy to win for sure in N turns

Theorem (Guo–Warnke 2019+)

r̃(H, k) = Ω
(
k · ( k

log k )m2(H)
)

for any graph H.

Theorem (Guo–Warnke 2019+: Online Ramsey numbers)

No matter how Builder builds an edge in each turn, Painter has a strategy
to paint it red/blue to avoid red H or blue Kk in Ω

(
k · ( k

log k )m2(H)
)

turns.

Infinite vertex-set board causes difficulties for taking union bound



Remarks on the applications to online Ramsey games

Theorem (Guo–Warnke 2019+: Ramsey, Paper, Scissors)

No matter how Proposer plays, Decider has a randomized strategy so that
whp there is no ISET of size k = Θ(n1/m2(H) log n) in the final graph.

Theorem (Guo–Warnke 2019+: Online Ramsey numbers)

No matter how Builder builds an edge in each turn, Painter has a strategy
to paint it red/blue to avoid red H or blue Kk in Ω

(
k · ( k

log k )m2(H)
)

turns.

Results of Fox, Conlon et al. based on Erdős lower bound on R(K3, k)Erdős’ (1961) construction really uses special structure of K3

Krivelevich’s approach is not applicable to design online algorithms

players cannot foresee creation of H-copies on existing edges

We have randomized algorithms for Painter/Decider

Based on our approach to R(H, k); Benefit from deleting all H-copies



Summary

Main point of our new approach

After removing all H-copies from Gn,p, the remaining G is still random-like

Remarks:

Previous approaches only remove some H-copies

Advantage of our refined approach: works in online settings

Two applications:

1 Ramsey, Paper, Scissors (extending Fox et al. 2019+)

2 Online Ramsey numbers (extending Conlon et al. 2018)


