Bounds on Ramsey Games via Alterations

Lutz Warnke

Georgia Tech

Joint work with He Guo

Lower bound on Ramsey number R(H, k)

R(H, k) > n: need to show there exists an *n*-vertex graph G that is (i) H-free, and (ii) each k-vertex set contains at least one edge

Remarks:

- Probabilistic Method usually used to show existence of such G
- This problem inspired development of many important approaches:
 - Alteration method, Lovász local lemma, Semi-random, H-free process...

Topic of this talk

Refinement of Probabilistic Method approach for online Ramsey settings

Applications: New bounds for online Ramsey games

- Ramsey, Paper, Scissors (extending Fox-He-Wigderson 2019+)
- **2** Online Ramsey numbers (extending Conlon–Fox–Grinshpun–He 2018)

History of studying lower bounds on Ramsey numbers

Lower bound on Ramsey number R(H, k)

R(H, k) > n: need to show there exists an *n*-vertex graph G that is (i) H-free, and (ii) each k-vertex set contains at least one edge

• Testbed for new proof techniques/methods:

? Authors	Methods
Erdős (1961)	Alteration method
Spencer (1975/77)	Lovász local lemma
Krivelevich (1995)	Alteration method
Kim (1995)	Semi-random
Bohman–Keevash (2010)	H-free process
Mubayi–Verstraëte (2019+) Pseudo-random
	Authors Erdős (1961) Spencer (1975/77) Krivelevich (1995) Kim (1995) Bohman–Keevash (2010) Mubayi–Verstraëte (2019+

• Online results by Conlon, Fox et al. only for K_3 , based on Erdős (1961)

- Krivelevich's approach is not applicable for these online settings
- We refine alteration method and get online results for any graph H

Widely applications of Erdős and Krivelevich approaches

(Part of) Applications of Erdős (1961) or Krivelevich (1995) approaches

- Online Ramsey problems
 - Conlon et al. (2018); Fox et al. (2019+)
- Induced bipartite graph in triangle-free graphs
 - Erdős–Faudree–Pach–Spencer (1988); Kwan–Letzter–Sudakov–Tran (2018+); Batenburg–de Joannis de Verclos–Kang–Pirot (2018+); Guo–Warnke (2019++)
- Minimum induced tree in graphs
 - Erdős–Saks–Sós (1986)
- Various Ramsey numbers
 - Krivelevich (1998); Sudakov (2007)
- Erdős–Rogers function
 - Krivelevich (1995); Sudakov (2004)
- Coloring (hyper)graphs without certain structures
 - Osthus-Taraz (2000); Bohman-Frieze-Mubayi (2009)
- Ramsey-Turán problems

Review of alteration method by Krivelevich

Lower bound on Ramsey number R(H, k)

R(H, k) > n: need to show there exists an *n*-vertex graph G that is(i) H-free, and (ii) each k-vertex set contains at least one edge

High-level idea of Krivelevich (1995) for $n = \Theta((k/\log k)^{(e_H-1)/(v_H-2)})$

Get G ⊆ G_{n,p}: remove edges of a maximal family of edge-disjoint H-copies
(i) G is H-free (otherwise the family can be increased)
(ii) Each k-vertex set K of G still contains ≥ 1 edge (main difficulty)

Review of alteration method by Krivelevich

Lower bound on Ramsey number R(H, k)

R(H, k) > n: need to show there exists an *n*-vertex graph G that is(i) H-free, and (ii) each k-vertex set contains at least one edge

High-level idea of Krivelevich (1995) for $n = \Theta((k/\log k)^{(e_H-1)/(v_H-2)})$

Get G ⊆ G_{n,p}: remove edges of a maximal family of edge-disjoint H-copies
(i) G is H-free (otherwise the family can be increased)
(ii) Each k-vertex set K of G still contains ≥ 1 edge (main difficulty)

Review of alteration method by Krivelevich

Lower bound on Ramsey number R(H, k)

R(H, k) > n: need to show there exists an *n*-vertex graph G that is(i) H-free, and (ii) each k-vertex set contains at least one edge

High-level idea of Krivelevich (1995) for $n = \Theta((k/\log k)^{(e_H-1)/(v_H-2)})$

Get G ⊆ G_{n,p}: remove edges of a maximal family of edge-disjoint H-copies
(i) G is H-free (otherwise the family can be increased)
(ii) Each k-vertex set K of G still contains ≥ 1 edge (main difficulty)

Lower bound on Ramsey number R(H, k)

R(H, k) > n: need to show there exists an *n*-vertex graph G that is (i) H-free, and (ii) each k-vertex set contains at least one edge

High-level idea of Krivelevich (1995) for $n = \Theta((k/\log k)^{(e_H-1)/(v_H-2)})$

Get $G \subseteq G_{n,p}$: remove edges of a maximal family of edge-disjoint H-copies

- (i) G is H-free (otherwise the family can be increased)
- (ii) Each k-vertex set K of G still contains ≥ 1 edge (main difficulty)

Drawback: not applicable to design online algorithms

In online Ramsey games, players cannot foresee whether or not an existing edge will be contained in an H-copy in the future

 \longrightarrow We develop a variant that applies to online Ramsey settings

Our new approach: removing edges of ALL H-copies

High-level idea of Krivelevich

Get $G \subseteq G_{n,p}$: remove edges of a maximal family of edge-disjoint *H*-copies

- (i) G is H-free (otherwise the family can be increased)
- (ii) Each k-vertex set K of G still contains ≥ 1 edge

High-level idea of our new approach: removing ALL H-copies

Get $G \subseteq G_{n,p}$: remove edges of ALL *H*-copies

(i) G is H-free (all H-copies have been removed)

(ii) Each k-vertex set K of G still contains ≥ 1 edge (main difficulty)

Our new approach: what we need to show

- Idea: remove edges of all *H*-copies in $G_{n,p}$ to get *G*
- Aim: show G satisfies
 - (i) *n*-vertex *H*-free (\checkmark)
 - (ii) each k-vertex set K contains ≥ 1 edge

Need to show

 $|\{\text{edges of } G_{n,p} \text{ inside } K\}| > |\{\text{removed edges inside } K\}|$ By construction of G:

{removed edges inside K} = {edges in *H*-copies of $G_{n,p}$ inside *K*}

Main technical result

- Idea: remove edges of all *H*-copies in $G_{n,p}$ to get *G* for $n = \Theta((\frac{k}{\log k})^{m_2(H)})$
- Aim: show G satisfies
 - (i) *n*-vertex *H*-free (\checkmark)
 - (ii) each k-vertex set K contains ≥ 1 edge

Need to show

 $|\{\text{edges of } G_{n,p} \text{ inside } K\}| > |\{\text{removed edges inside } K\}|$

By construction of G:

{removed edges inside K} = {edges in H-copies of $G_{n,p}$ inside K}

Theorem (Guo–Warnke 2019+)

For any well-behaved H and $\delta > 0$, for all large $C_{\delta,H}$ and small $c_{\delta,H,C} > 0$, if $n := \lfloor c(k/\log k)^{m_2(H)} \rfloor$ and $p := C(\log k)/k$, then in $G_{n,p}$ whp (with high probability) for all k-vertex sets K: $|\{edges \text{ of } G_{n,p} \text{ inside } K\}| \geq (1 - \delta) \cdot {k \choose 2}p$, $|\{edges \text{ in } H\text{-copies of } G_{n,p} \text{ inside } K\}| \leq \delta \cdot {k \choose 2}p$.

Main technical result

- Idea: remove edges of all *H*-copies in $G_{n,p}$ to get *G* for $n = \Theta((\frac{k}{\log k})^{m_2(H)})$
- Aim: show G satisfies
 - (i) *n*-vertex *H*-free (\checkmark)
 - (ii) each k-vertex set K contains ≥ 1 edge (\checkmark)

Theorem (Guo–Warnke 2019+)

For any well-behaved H and $\delta > 0$, for all large $C_{\delta,H}$ and small $c_{\delta,H,C} > 0$,

if
$$n := \lfloor c(k/\log k)^{m_2(H)} \rfloor$$
 and $p := C(\log k)/k$,

then in $G_{n,p}$ whp (with high probability) for all k-vertex sets K:

$$\begin{split} X_{\mathcal{K}} &:= |\{ \text{edges of } G_{n,p} \text{ inside } \mathcal{K} \}| &\geq (1-\delta) \cdot {\binom{k}{2}}p, \\ Y_{\mathcal{K}} &:= |\{ \text{edges in } H\text{-copies of } G_{n,p} \text{ inside } \mathcal{K} \}| &\leq \delta \cdot {\binom{k}{2}}p. \end{split}$$

How to verify (ii)?

•
$$|E(G[K])| = X_K - Y_K \ge (1 - 2\delta) \cdot {k \choose 2} p \ge 1$$
 for $\delta < 1/2$ (\checkmark)

Task: $Y_{K} = \#$ edges in *H*-copies of $G_{n,p}$ inside $K \leq \delta\binom{k}{2}p$

- Aim: *n*-vertex *H*-free graph *G* without independent set of size *k*
- Strategy: Remove all edges of all *H*-copies in $G_{n,p}$ to get *G*, where $n \sim c(\frac{k}{\log k})^{m_2(H)}$ and $p = C \frac{\log k}{k}$

Simple bound fails, where $\mathcal{H}_{\mathcal{K}} := \{H \text{-copies in } G_{n,p} \text{ with } \geq 1 \text{ edge inside } \mathcal{K}\}$

Trivial bound: $Y_{\mathcal{K}} \leq e_{\mathcal{H}} |\mathcal{H}_{\mathcal{K}}|$, but $\mathbb{P}(|\mathcal{H}_{\mathcal{K}}| \geq \varepsilon {k \choose 2} p) \gg {n \choose k}^{-1}$

• Rules out naive union bound over all k-vertex sets K in $G_{n,p}$

"Infamous" upper tail behavior: example $H = K_s$

For t := Θ((ε(^k₂)p)^{1/s}), one K_t contains Θ(t^s) ≥ ε(^k₂)p many K_s-copies
 As t ≪ k, one K_t fits inside K. Then

 𝔅(|ℋ_K| ≥ ε(^k₂)p) ≥ ℙ(one K_t occurs in G_{n,p}[K]) ≥ p^(^t₂)≫ (ⁿ_k)⁻¹

Main message

Must handle H-copies that share a common edge inside K more carefully

Task: $Y_{\mathcal{K}} = \#$ edges in *H*-copies of $G_{n,p}$ inside $\mathcal{K} \leq \delta\binom{k}{2}p$

- Aim: *n*-vertex *H*-free graph *G* without independent set of size *k*
- Strategy: Remove all edges of all *H*-copies in $G_{n,p}$ to get *G*, where

$$n \sim c(\frac{k}{\log k})^{m_2(H)}$$
 and $p = C \frac{\log k}{k}$

Probabilistic & Combinatorial Observations

- **(**P) Main contribution to Y_K : H-copies with exact 2 vertices inside K
 - "good" copies; # "bad" copies is negligible (as $n \gg k$)
- **2** (C) Multiple good copies on one edge contribute 1 to Y_K
 - Select one representative H-copy for each such edge
- ${\small \textcircled{\ }} ({\small \textbf{P}}) \ |\{ \text{representative good copies} \}| \approx |\text{max. edge-disjoint subfamily}|$
 - $\bullet~\#$ pairs of intersecting representative good copies is negligible

Task: $Y_{\mathcal{K}} = \#$ edges in *H*-copies of $G_{n,p}$ inside $\mathcal{K} \leq \delta\binom{k}{2}p$

- Aim: *n*-vertex *H*-free graph *G* without independent set of size *k*
- Strategy: Remove all edges of all *H*-copies in $G_{n,p}$ to get *G*, where

 $n \sim c(\frac{k}{\log k})^{m_2(H)}$ and $p = C \frac{\log k}{k}$

Probabilistic & Combinatorial Observations

- **(**P) Main contribution to Y_K : H-copies with exact 2 vertices inside K
 - "good" copies; # "bad" copies is negligible (as $n \gg k$)
- **2** (C) Multiple good copies on one edge contribute 1 to Y_K
 - Select one representative *H*-copy for each such edge
- $\textcircled{O} (\textbf{P}) |\{ \text{representative good copies} \}| \approx |\text{max. edge-disjoint subfamily}|$
 - $\bullet~\#$ pairs of intersecting representative good copies is negligible

Task: $Y_{\mathcal{K}} = \#$ edges in *H*-copies of $G_{n,p}$ inside $\mathcal{K} \leq \delta\binom{k}{2}p$

- Aim: *n*-vertex *H*-free graph *G* without independent set of size *k*
- Strategy: Remove all edges of all *H*-copies in $G_{n,p}$ to get *G*, where

 $n \sim c(\frac{k}{\log k})^{m_2(H)}$ and $p = C \frac{\log k}{k}$

Probabilistic & Combinatorial Observations

- **(**P) Main contribution to Y_K : H-copies with exact 2 vertices inside K
 - "good" copies; # "bad" copies is negligible (as $n \gg k$)
- **2** (C) Multiple good copies on one edge contribute 1 to Y_K
 - Select one representative H-copy for each such edge
- ${\small \textcircled{\ }} ({\small \textbf{P}}) \ |\{ \text{representative good copies} \}| \approx |\text{max. edge-disjoint subfamily}|$
 - $\bullet~\#$ pairs of intersecting representative good copies is negligible

Task: $Y_K = \#$ edges in *H*-copies of $G_{n,p}$ inside $K \leq \delta\binom{k}{2}p$

- Aim: *n*-vertex *H*-free graph *G* without independent set of size *k*
- Strategy: Remove all edges of all *H*-copies in $G_{n,p}$ to get *G*, where

 $n \sim c(\frac{k}{\log k})^{m_2(H)}$ and $p = C \frac{\log k}{k}$

Probabilistic & Combinatorial Observations

- **(**P) Main contribution to Y_K : H-copies with exact 2 vertices inside K
 - "good" copies; #"bad" copies is negligible (as $n \gg k$)
- **2** (C) Multiple good copies on one edge contribute 1 to Y_K
 - Select one representative H-copy for each such edge
- ${\small \textcircled{\ }} ({\small \textbf{P}}) \ |\{ \text{representative good copies} \}| \approx |\text{max. edge-disjoint subfamily}|$
 - $\bullet~\#$ pairs of intersecting representative good copies is negligible
 - $\mathcal{I}_{\mathcal{K}}$:= this subfamily of edge-disjoint good *H*-copies

Combining these three observations, we have

$$Y_K \approx |\mathcal{I}_K|.$$

Intuitively, $|\mathcal{I}_{K}|$ behaves like sum of independent random variables:

$$\mathbb{P}\Big(|\mathcal{I}_{\mathcal{K}}| \geq \delta\binom{k}{2}p/2\Big) \leq \exp\Big(-\Theta(\delta\binom{k}{2}p)\Big) \ll n^{-k}, \text{ by } C \geq C_0(\delta, H)$$

A brief summery

H is well-behaved: strictly 2-balanced graph with $m_2(H) > 1$

Theorem (Guo–Warnke 2019+)

For any well-behaved H and $\delta > 0$, for all large $C_{\delta,H}$ and small $c_{\delta,H,C} > 0$,

if $n := \lfloor c(k/\log k)^{m_2(H)} \rfloor$ and $p := C(\log k)/k$,

then in $G_{n,p}$ whp for all k-vertex sets K:

edges in H-copies of $G_{n,p}$ inside $K \leq \delta \cdot {\binom{k}{2}}p$.

Corollary (Random-like *n*-vertex *H*-free graph *G* without ISET of size k)

Remove all edges of all H-copies in $G_{n,p}$ (as above) to get G. Whp for all k-vertex sets K:

$$|E(G[K])| = (1 \pm \varepsilon) \cdot {\binom{k}{2}}p.$$

• G is random-like, e.g., $\deg_G(v) = (1 \pm \varepsilon) \cdot np$, $|E(G)| = (1 \pm \varepsilon) \cdot {n \choose 2}p$

Lower bound on Ramsey number R(H, k)

R(H, k) > n: need to show there exists an *n*-vertex graph G that is (i) H-free, and (ii) each k-vertex set contains at least one edge

• Polynomial gaps from best upper bounds, despite long history

What kind of H	? Authors	Methods
<i>K</i> ₃	Erdős (1961)	Alteration method
K_s or C_ℓ	Spencer (1975/77)	Lovász local lemma
Any graph <i>H</i>	Krivelevich (1995)	Alteration method
K ₃	Kim (1995)	Semi-random
K_s or C_ℓ	Bohman–Keevash (2010)	H-free process
Many C_ℓ	Mubayi–Verstraëte (2019+)	Pseudo-random

Motivation for Online Ramsey settings

• Development of new proof techniques

Application 1: Ramsey, Paper, Scissors (RPS)

Ramsey, Paper, Scissors game

- Board: *n* initially isolated vertices; Two players: **Proposer**, **Decider**
- In each turn, *simultaneously*:
 - **Proposer** proposes a new pair in $\binom{[n]}{2}$ that does not form an *H*-copy with edges of current graph
 - Decider decides it to be an edge or not (without knowing the pair)
- **Proposer** wins if in the final graph \exists ISET of size k

Ramsey, Paper, Scissors number RPS(H, n)

RPS(H, n) = maximum k: **Proposer** has a strategy to win with prob. $\geq \frac{1}{2}$

Theorem (Fox–He–Wigderson 2019+)

 $RPS(K_3, n) = \Theta(n^{1/2} \log n).$

• Their upper bound is based on Erdős (1961) construction for $R(K_3, k)$

Theorem (Guo–Warnke 2019+)

 $RPS(H, n) = O(n^{1/m_2(H)} \log n)$ for any well-behaved H.

Application 1: Ramsey, Paper, Scissors (RPS)

Ramsey, Paper, Scissors game

- Board: *n* initially isolated vertices; Two players: **Proposer**, **Decider**
- In each turn, *simultaneously*:
 - **Proposer** proposes a new pair in $\binom{[n]}{2}$ that does not form an *H*-copy with edges of current graph
 - Decider decides it to be an edge or not (without knowing the pair)
- **Proposer** wins if in the final graph \exists ISET of size k

Theorem (Guo–Warnke 2019+: Ramsey, Paper, Scissors)

No matter how Proposer plays, Decider has a randomized strategy so that whp there is no ISET of size $k = \Theta(n^{1/m_2(H)} \log n)$ in the final graph.

Analysis: Decider adds each pair as edge independently with probability p

- $\binom{[n]}{2} = \{\text{proposed pairs}\} \sqcup \{\text{pairs not proposed}\}\ \text{at the end of the game}$
- **3** Final graph $G \subseteq G_{n,p}$: E(G) = p-random subset of proposed pairs
- **3** Not proposed pair forms *H*-copy with $E(G) \Rightarrow |E(G[K])| \ge X_K Y_K \ge 1$

Application 2: Online Ramsey numbers

(H, k)-online Ramsey game

- Board: infinite initially isolated vertices; Two players: Builder, Painter
- Each turn: Builder builds a new edge, then Painter paints it red/blue
- **Builder** wins if a red H or blue K_k shows up

Online Ramsey number $\tilde{r}(H, k)$

 $\tilde{r}(H, k) = \text{minimum } N$: **Builder** has a strategy to win for sure in N turns

Theorem (Conlon–Fox–Grinshpun–He 2018)

$$ilde{r}(K_3,k) = \Omegaig(k\cdot (rac{k}{\log k})^2ig) + m$$
any further results.

Their lower bound is based on Erdős (1961) construction for R(K₃, k)
Erdős (1961) really uses special structure of K₃

Theorem (Guo–Warnke 2019+)

$$ilde{r}(H,k) = \Omegaig(k \cdot (rac{k}{\log k})^{m_2(H)}ig)$$
 for any graph H.

Application 2: Online Ramsey numbers

(H, k)-online Ramsey game

- Board: infinite initially isolated vertices; Two players: Builder, Painter
- Each turn: Builder builds a new edge, then Painter paints it red/blue
- **Builder** wins if a red H or blue K_k shows up

Online Ramsey number $\tilde{r}(H, k)$

 $\tilde{r}(H, k) = \text{minimum } N$: **Builder** has a strategy to win for sure in N turns

Theorem (Guo–Warnke 2019+)

$$ilde{r}(H,k) = \Omegaig(k \cdot (rac{k}{\log k})^{m_2(H)}ig)$$
 for any graph H.

Theorem (Guo–Warnke 2019+: Online Ramsey numbers)

No matter how Builder builds an edge in each turn, Painter has a strategy to paint it red/blue to avoid red H or blue K_k in $\Omega\left(k \cdot \left(\frac{k}{\log k}\right)^{m_2(H)}\right)$ turns.

• Infinite vertex-set board causes difficulties for taking union bound

Theorem (Guo–Warnke 2019+: Ramsey, Paper, Scissors)

No matter how Proposer plays, Decider has a randomized strategy so that whp there is no ISET of size $k = \Theta(n^{1/m_2(H)} \log n)$ in the final graph.

Theorem (Guo–Warnke 2019+: Online Ramsey numbers)

No matter how Builder builds an edge in each turn, Painter has a strategy to paint it red/blue to avoid red H or blue K_k in $\Omega\left(k \cdot \left(\frac{k}{\log k}\right)^{m_2(H)}\right)$ turns.

- Resultside F(296E) and F(296E) and $F(K_3, k)$
- Krivelevich's approach is not applicable to design online algorithms
 - players cannot foresee creation of *H*-copies on existing edges
- We have randomized algorithms for Painter/Decider
 - Based on our approach to R(H, k); Benefit from deleting all H-copies

Main point of our new approach

After removing all *H*-copies from $G_{n,p}$, the remaining *G* is still random-like

Remarks:

- Previous approaches only remove some H-copies
- Advantage of our refined approach: works in online settings

Two applications:

- Ramsey, Paper, Scissors (extending Fox et al. 2019+)
- 2 Online Ramsey numbers (extending Conlon et al. 2018)