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Context of this talk: Ramsey theory

A mysterious phenomenon

No matter how to partition a sufficiently large structure, there will always
be a well-behaved substructure in one of the parts

Some examples:

Large structure Substructure Verified by
Edges of Kn Fixed graphs Ramsey’s theorem

[N] = {1, . . . ,N} Arithmetic progressions Van der Waerden’s theorem

More examples: Schur’s, Erdős–Szekeres, Hales–Jewett theorem...

In this talk

Present new lower bound on van der Warnden numbers

Partition [N] into two parts avoiding specific APs

Obtain such partition by a natural random greedy algorithm

Improve previous results that take all randomness at once



Van der Waerden number (Focus on 3-AP case)

Van der Waerden number W (3, k)

W (3, k) := minimum N such that every red/blue coloring of numbers in
[N] = {1, . . . ,N} contains red 3-term arithmetic progression or blue k-AP

W (3, k) > N: existence of a red/blue coloring of [N] such that
there is no red 3-AP or blue k-AP

Theorem (Brown–Landman–Robertson, 2007)

We have W (3, k) = Ω(k2/k1/ log log k).

Theorem (Li–Shu, 2008)

We have W (3, k) = Ω(k2/(log k)2).

Theorem (Guo–Warnke, 2020+)

We have W (3, k) = Ω(k2/ log k).



Proof strategy of previous results

Lower bound on van der Waerden number W (3, k)

W (3, k) > N: existence of a red/blue coloring of [N] such that
there is no red 3-AP or blue k-AP

Theorem (Brown–Landman–Robertson, 2007)

We have W (3, k) = Ω(k2/k1/ log log k).

Theorem (Li–Shu, 2008)

We have W (3, k) = Ω(k2/(log k)2).

Their proof strategy: Take all randomness at once

Color each number in [N] by red & blue with prob. p & 1− p, resp.

Lovász Local Lemma: P(no red 3-AP or blue k-AP) > 0

Li (2009): improve the log factor by 3-AP free process?



Proof strategy of our result

Van der Waerden number W (3, k)

W (3, k) := minimum N such that every red/blue coloring of numbers in
[N] = {1, . . . ,N} contains red 3-term arithmetic progression or blue k-AP

W (3, k) > N: existence of a set I ⊆ [N] such that
(i) I is 3-AP free, and (ii) |I ∩ K | ≥ 1 for all k-APs K

Theorem (Guo–Warnke, 2020+)

We have W (3, k) = Ω(k2/ log k).

We construct such set I ⊆ [N] by 3-AP free process

Start with an empty set

At each step, add one number uniformly at random, subject to the
constraint that no 3-AP is created

N = 9 for example:

1, 2, 3, 4, 5, 6, 7, 8, 9
(Open numbers can be added. Closed numbers cannot.) I = ∅



Proof strategy of our result

Van der Waerden number W (3, k)

W (3, k) := minimum N such that every red/blue coloring of numbers in
[N] = {1, . . . ,N} contains red 3-term arithmetic progression or blue k-AP

W (3, k) > N: existence of a set I ⊆ [N] such that
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We construct such set I ⊆ [N] by 3-AP free process

Start with an empty set

At each step, add one number uniformly at random, subject to the
constraint that no 3-AP is created

N = 9 for example:

1, 2, 3, 4, 5, 6, 7, 8, 9
(Open numbers can be added. Closed numbers cannot.) I = {2}



Proof strategy of our result

Van der Waerden number W (3, k)

W (3, k) := minimum N such that every red/blue coloring of numbers in
[N] = {1, . . . ,N} contains red 3-term arithmetic progression or blue k-AP

W (3, k) > N: existence of a set I ⊆ [N] such that
(i) I is 3-AP free, and (ii) |I ∩ K | ≥ 1 for all k-APs K

Theorem (Guo–Warnke, 2020+)

We have W (3, k) = Ω(k2/ log k).

We construct such set I ⊆ [N] by 3-AP free process

Start with an empty set

At each step, add one number uniformly at random, subject to the
constraint that no 3-AP is created

N = 9 for example:

1, 2, 3, 4, 5, 6, 7, 8, 9
(Open numbers can be added. Closed numbers cannot.) I = {2, 3}



Proof strategy of our result

Van der Waerden number W (3, k)

W (3, k) := minimum N such that every red/blue coloring of numbers in
[N] = {1, . . . ,N} contains red 3-term arithmetic progression or blue k-AP

W (3, k) > N: existence of a set I ⊆ [N] such that
(i) I is 3-AP free, and (ii) |I ∩ K | ≥ 1 for all k-APs K

Theorem (Guo–Warnke, 2020+)

We have W (3, k) = Ω(k2/ log k).

We construct such set I ⊆ [N] by 3-AP free process

Start with an empty set

At each step, add one number uniformly at random, subject to the
constraint that no 3-AP is created

N = 9 for example:

�
�S
S1, 2, 3, ��SS4, 5, 6, 7, 8, 9

(Open numbers can be added. Closed numbers cannot.) I = {2, 3}



Proof strategy of our result

Van der Waerden number W (3, k)

W (3, k) := minimum N such that every red/blue coloring of numbers in
[N] = {1, . . . ,N} contains red 3-term arithmetic progression or blue k-AP

W (3, k) > N: existence of a set I ⊆ [N] such that
(i) I is 3-AP free, and (ii) |I ∩ K | ≥ 1 for all k-APs K

Theorem (Guo–Warnke, 2020+)

We have W (3, k) = Ω(k2/ log k).

We construct such set I ⊆ [N] by 3-AP free process

Start with an empty set

At each step, add one number uniformly at random, subject to the
constraint that no 3-AP is created

N = 9 for example:

�
�S
S1, 2, 3, ��SS4, 5, 6, ��SS7, ��SS8, 9

(Open numbers can be added. Closed numbers cannot.) I = {2, 3, 5}



Proof strategy of our result

Van der Waerden number W (3, k)

W (3, k) := minimum N such that every red/blue coloring of numbers in
[N] = {1, . . . ,N} contains red 3-term arithmetic progression or blue k-AP

W (3, k) > N: existence of a set I ⊆ [N] such that
(i) I is 3-AP free, and (ii) |I ∩ K | ≥ 1 for all k-APs K

Theorem (Guo–Warnke, 2020+)

We have W (3, k) = Ω(k2/ log k).

We construct such set I ⊆ [N] by 3-AP free process

Start with an empty set

At each step, add one number uniformly at random, subject to the
constraint that no 3-AP is created

N = 9 for example:

�
�S
S1, 2, 3, ��SS4, 5, ��SS6, ��SS7, ��SS8, 9

(Open numbers can be added. Closed numbers cannot.) I = {2, 3, 5, 9}



Feature 1: Only polynomially many k-APs in [N]

Van der Waerden number W (3, k)

W (3, k) := minimum N such that every red/blue coloring of numbers in
[N] = {1, . . . ,N} contains red 3-term arithmetic progression or blue k-AP

W (3, k) > N: existence of a set I ⊆ [N] such that
(i) I is 3-AP free, and (ii) |I ∩ K | ≥ 1 for all k-APs K

The set I ⊆ [N] constructed by the 3-AP free process satisfies that

(i) I is 3-AP free (by the definition of the process)

(ii) w.h.p. |I ∩ K | ≥ 1 for all k-APs K

The first feature: only polynomially many k-APs (for the union bound)

The 3-AP free I ⊆ [N] constructed by 3-AP free process has to satisfy

|I ∩ K | ≥ 1

for all k-APs K in [N], which are only Θ(N2) many

Exponentially many substructures in other Ramsey type problems



Feature 2: Only O(1) many 3-APs containing two numbers

Van der Waerden number W (3, k)

W (3, k) := minimum N such that every red/blue coloring of numbers in
[N] = {1, . . . ,N} contains red 3-term arithmetic progression or blue k-AP

W (3, k) > N: existence of a set I ⊆ [N] such that
(i) I is 3-AP free, and (ii) |I ∩ K | ≥ 1 for all k-APs K

The set I ⊆ [N] constructed by the 3-AP free process satisfies that

(i) I is 3-AP free (by the definition of the process)

(ii) w.h.p. |I ∩ K | ≥ 1 for all k-APs K

The second feature: only O(1) many 3-APs containing two numbers

One-step change of # open numbers in K is small

Track it by concentration inequalities

K

z

Adding z can close some open numbers in K
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Van der Waerden number W (3, k)

W (3, k) := minimum N such that every red/blue coloring of numbers in
[N] = {1, . . . ,N} contains red 3-term arithmetic progression or blue k-AP

W (3, k) > N: existence of a set I ⊆ [N] such that
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The set I ⊆ [N] constructed by the 3-AP free process satisfies that
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K
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Sketch of the proof

Theorem (Guo–Warnke, 2020+)

We have W (3, k) = Ω(k2/ log k).

The set I ⊆ [N] constructed by the 3-AP free process satisfies that

(i) I is 3-AP free (by the definition of the process)

(ii) w.h.p. |I ∩ K | ≥ 1 for all k-APs K

Two features in 3-AP free process setting

Only Θ(N2) many k-APs in [N]

We can track # open numbers in K throughout the process

Sketch of the proof

At each step
# open numbers in K

# open numbers in [N]
≈ k

N
(Pseudo-randomness)

After m steps, where km/N > 9 logN

P(I ∩ K = ∅) ≈
(

1− k

N

)m
≤ exp(−km/N)� N−2



A more general result: for all fixed r ≥ 2

Van der Waerden number W (r , k)

W (r , k) := minimum N such that every red/blue coloring of numbers in
[N] = {1, . . . ,N} contains red r -term arithmetic progression or blue k-AP

W (r , k) > N: existence of a set I ⊆ [N] such that
(i) I is r -AP free, and (ii) |I ∩ K | ≥ 1 for all k-APs K

Theorem (Guo–Warnke, 2020+)

We have W (r , k) = Ω(k r−1/(log k)r−2) for fixed r ≥ 2.

Proof idea: analyzing r -AP free process

Features in 3-AP free case carry over. Similar pseudo-random properties

Improve Brown–Landman–Robertson (2007) & Li–Shu (2008) (LLL)

Answer a question of Li from 2009



Open problems

Van der Waerden number W (r , k)

W (r , k) := minimum N such that every red/blue coloring of numbers in
[N] = {1, . . . ,N} contains red r -term arithmetic progression or blue k-AP

Theorem (Guo–Warnke, 2020+)

W (r , k) = Ω(k r−1/(log k)r−2) for fixed r ≥ 2.

W (3, k) ≤ exp(k1/(1+Ω(1))) Bloom–Sisask (2020)
Fact: W (3, k) grows like quadratically for k = 1, 2, . . . , 19.

3 3 4 5 6 7 8 9 10 11 12 13 14

W (3, k) 9 18 22 32 46 58 77 97 114 135 160 186

k2 9 16 25 36 49 64 81 100 121 144 169 196

Conjecture by Ahmeda–Kullmann–Snevily (2014)

W (3, k) = O(k2).

$250 Conjecture by Graham

W (3, k) = O(f (k)) for some polynomial function f .


