On the Power of Random Greedy Algorithms

Lutz Warnke

Georgia Tech

Joint work with He Guo (who created most of these slides)

October 10, 2020 AMS Southeastern Sectional Meeting

A mysterious phenomenon

No matter how to partition a sufficiently large structure, there will always be a well-behaved substructure in one of the parts

• Some examples:

Large structure	Substructure	Verified by				
Edges of K_n	Fixed graphs	Ramsey's theorem				
$[N] = \{1, \ldots, N\}$	Arithmetic progressions	Van der Waerden's theorem				

• More examples: Schur's, Erdős–Szekeres, Hales–Jewett theorem...

In this talk

- Present new lower bound on van der Warnden numbers
 - Partition [N] into two parts avoiding specific APs
- Obtain such partition by a natural random greedy algorithm
 - Improve previous results that take all randomness at once

Van der Waerden number (Focus on 3-AP case)

Van der Waerden number W(3, k)

W(3, k) := minimum N such that every red/blue coloring of numbers in $[N] = \{1, ..., N\}$ contains red 3-term arithmetic progression or blue k-AP

 W(3, k) > N: existence of a red/blue coloring of [N] such that there is no red 3-AP or blue k-AP

Theorem (Brown–Landman–Robertson, 2007)

We have $W(3, k) = \Omega(k^2/k^{1/\log \log k})$.

Theorem (Li-Shu, 2008)

We have $W(3, k) = \Omega(k^2/(\log k)^2)$.

Theorem (Guo–Warnke, 2020+)

We have $W(3, k) = \Omega(k^2 / \log k)$.

Proof strategy of previous results

Lower bound on van der Waerden number W(3, k)

W(3, k) > N: existence of a red/blue coloring of [N] such that there is no red 3-AP or blue k-AP

Theorem (Brown–Landman–Robertson, 2007)

We have $W(3, k) = \Omega(k^2/k^{1/\log \log k})$.

Theorem (Li-Shu, 2008)

We have $W(3, k) = \Omega(k^2/(\log k)^2)$.

Their proof strategy: Take all randomness at once

• Color each number in [N] by red & blue with prob. p & 1 - p, resp.

• Lovász Local Lemma: $\mathbb{P}(\text{no red } 3\text{-AP or blue } k\text{-AP}) > 0$

• Li (2009): improve the log factor by 3-AP free process?

Van der Waerden number W(3, k)

W(3, k) := minimum N such that every red/blue coloring of numbers in $[N] = \{1, ..., N\}$ contains red 3-term arithmetic progression or blue k-AP

W(3, k) > N: existence of a set I ⊆ [N] such that
 (i) I is 3-AP free, and (ii) |I ∩ K| ≥ 1 for all k-APs K

Theorem (Guo–Warnke, 2020+)

We have $W(3, k) = \Omega(k^2 / \log k)$.

We construct such set $I \subseteq [N]$ by 3-AP free process

- Start with an empty set
- At each step, add one number uniformly at random, subject to the constraint that no 3-AP is created

N = 9 for example:

1, 2, 3, 4, 5, 6, 7, 8, 9 (Open numbers can be added. Closed numbers cannot.) $I = \emptyset$

Van der Waerden number W(3, k)

W(3, k) := minimum N such that every red/blue coloring of numbers in $[N] = \{1, ..., N\}$ contains red 3-term arithmetic progression or blue k-AP

W(3, k) > N: existence of a set I ⊆ [N] such that
 (i) I is 3-AP free, and (ii) |I ∩ K| ≥ 1 for all k-APs K

Theorem (Guo–Warnke, 2020+)

We have $W(3, k) = \Omega(k^2 / \log k)$.

We construct such set $I \subseteq [N]$ by 3-AP free process

- Start with an empty set
- At each step, add one number uniformly at random, subject to the constraint that no 3-AP is created

N = 9 for example:

1, 2, 3, 4, 5, 6, 7, 8, 9 (Open numbers can be added. Closed numbers cannot.) $I = \{2\}$

Van der Waerden number W(3, k)

W(3, k) := minimum N such that every red/blue coloring of numbers in $[N] = \{1, ..., N\}$ contains red 3-term arithmetic progression or blue k-AP

W(3, k) > N: existence of a set I ⊆ [N] such that
 (i) I is 3-AP free, and (ii) |I ∩ K| ≥ 1 for all k-APs K

Theorem (Guo–Warnke, 2020+)

We have $W(3, k) = \Omega(k^2 / \log k)$.

We construct such set $I \subseteq [N]$ by 3-AP free process

- Start with an empty set
- At each step, add one number uniformly at random, subject to the constraint that no 3-AP is created

N = 9 for example:

1, 2, 3, 4, 5, 6, 7, 8, 9 (Open numbers can be added. Closed numbers cannot.) $I = \{2, 3\}$

Van der Waerden number W(3, k)

W(3, k) := minimum N such that every red/blue coloring of numbers in $[N] = \{1, ..., N\}$ contains red 3-term arithmetic progression or blue k-AP

W(3, k) > N: existence of a set I ⊆ [N] such that
 (i) I is 3-AP free, and (ii) |I ∩ K| ≥ 1 for all k-APs K

Theorem (Guo–Warnke, 2020+)

We have $W(3, k) = \Omega(k^2 / \log k)$.

We construct such set $I \subseteq [N]$ by 3-AP free process

- Start with an empty set
- At each step, add one number uniformly at random, subject to the constraint that no 3-AP is created
- N = 9 for example:

(Open numbers can be added. Closed numbers cannot.) $I = \{2, 3\}$

Van der Waerden number W(3, k)

W(3, k) := minimum N such that every red/blue coloring of numbers in $[N] = \{1, ..., N\}$ contains red 3-term arithmetic progression or blue k-AP

W(3, k) > N: existence of a set I ⊆ [N] such that
 (i) I is 3-AP free, and (ii) |I ∩ K| ≥ 1 for all k-APs K

Theorem (Guo–Warnke, 2020+)

We have $W(3, k) = \Omega(k^2 / \log k)$.

We construct such set $I \subseteq [N]$ by 3-AP free process

- Start with an empty set
- At each step, add one number uniformly at random, subject to the constraint that no 3-AP is created
- N = 9 for example:

(Open numbers can be added. Closed numbers cannot.) $I = \{2, 3, 5\}$

Van der Waerden number W(3, k)

W(3, k) := minimum N such that every red/blue coloring of numbers in $[N] = \{1, ..., N\}$ contains red 3-term arithmetic progression or blue k-AP

W(3, k) > N: existence of a set I ⊆ [N] such that
 (i) I is 3-AP free, and (ii) |I ∩ K| ≥ 1 for all k-APs K

Theorem (Guo–Warnke, 2020+)

We have $W(3, k) = \Omega(k^2 / \log k)$.

We construct such set $I \subseteq [N]$ by 3-AP free process

- Start with an empty set
- At each step, add one number uniformly at random, subject to the constraint that no 3-AP is created
- N = 9 for example:

(Open numbers can be added. Closed numbers cannot.) $I = \{2, 3, 5, 9\}$

Feature 1: Only polynomially many k-APs in [N]

Van der Waerden number W(3, k)

W(3, k) := minimum N such that every red/blue coloring of numbers in $[N] = \{1, ..., N\}$ contains red 3-term arithmetic progression or blue k-AP

- W(3, k) > N: existence of a set I ⊆ [N] such that
 (i) I is 3-AP free, and (ii) |I ∩ K| ≥ 1 for all k-APs K
- The set I ⊆ [N] constructed by the 3-AP free process satisfies that
 (i) I is 3-AP free (by the definition of the process)
 (ii) w.h.p. |I ∩ K| ≥ 1 for all k-APs K

The first feature: only polynomially many *k*-APs (for the union bound)

• The 3-AP free $I \subseteq [N]$ constructed by 3-AP free process has to satisfy

 $|I \cap K| \ge 1$

for all k-APs K in [N], which are only $\Theta(N^2)$ many

• Exponentially many substructures in other Ramsey type problems

Feature 2: Only O(1) many 3-APs containing two numbers

Van der Waerden number W(3, k)

W(3, k) := minimum N such that every red/blue coloring of numbers in $[N] = \{1, ..., N\}$ contains red 3-term arithmetic progression or blue k-AP

- W(3, k) > N: existence of a set I ⊆ [N] such that
 (i) I is 3-AP free, and (ii) |I ∩ K| ≥ 1 for all k-APs K
- The set I ⊆ [N] constructed by the 3-AP free process satisfies that
 (i) I is 3-AP free (by the definition of the process)
 (ii) w.h.p. |I ∩ K| ≥ 1 for all k-APs K

The second feature: only O(1) many 3-APs containing two numbers

- One-step change of # open numbers in K is small
- Track it by concentration inequalities

Feature 2: Only O(1) many 3-APs containing two numbers

Van der Waerden number W(3, k)

W(3, k) := minimum N such that every red/blue coloring of numbers in $[N] = \{1, ..., N\}$ contains red 3-term arithmetic progression or blue k-AP

- W(3, k) > N: existence of a set I ⊆ [N] such that
 (i) I is 3-AP free, and (ii) |I ∩ K| ≥ 1 for all k-APs K
- The set I ⊆ [N] constructed by the 3-AP free process satisfies that
 (i) I is 3-AP free (by the definition of the process)
 (ii) w.h.p. |I ∩ K| ≥ 1 for all k-APs K

The second feature: only O(1) many 3-APs containing two numbers

- One-step change of # open numbers in K is small
- Track it by concentration inequalities

•K •

Adding z can close some open numbers in K

Sketch of the proof

Theorem (Guo–Warnke, 2020+)

We have $W(3, k) = \Omega(k^2 / \log k)$.

- The set $I \subseteq [N]$ constructed by the 3-AP free process satisfies that
 - (i) *I* is 3-AP free (by the definition of the process)
 - (ii) w.h.p. $|I \cap K| \ge 1$ for all k-APs K

Two features in 3-AP free process setting

- Only $\Theta(N^2)$ many k-APs in [N]
- We can track # open numbers in K throughout the process

Sketch of the proof

• At each step

$$\frac{\# \text{ open numbers in } K}{\# \text{ open numbers in } [N]} \approx \frac{k}{N} \quad (\text{Pseudo-randomness})$$

• After *m* steps, where
$$km/N > 9 \log N$$

$$\mathbb{P}(I \cap K = \varnothing) \approx \left(1 - \frac{k}{N}\right)^m \leq \exp(-km/N) \ll N^{-2}$$

A more general result: for all fixed $r \ge 2$

Van der Waerden number W(r, k)

W(r, k) := minimum N such that every red/blue coloring of numbers in $[N] = \{1, ..., N\}$ contains red r-term arithmetic progression or blue k-AP

Theorem (Guo–Warnke, 2020+)

We have
$$W(r, k) = \Omega(k^{r-1}/(\log k)^{r-2})$$
 for fixed $r \ge 2$.

Proof idea: analyzing r-AP free process

Features in 3-AP free case carry over. Similar pseudo-random properties

- Improve Brown–Landman–Robertson (2007) & Li–Shu (2008) (LLL)
- Answer a question of Li from 2009

Open problems

Van der Waerden number W(r, k)

W(r, k) := minimum N such that every red/blue coloring of numbers in $[N] = \{1, ..., N\}$ contains red r-term arithmetic progression or blue k-AP

Theorem (Guo–Warnke, 2020+)

$$W(r,k) = \Omega(k^{r-1}/(\log k)^{r-2})$$
 for fixed $r \ge 2$.

- $W(3,k) \leq \exp(k^{1/(1+\Omega(1))})$ Bloom–Sisask (2020)
- Fact: W(3, k) grows like quadratically for k = 1, 2, ..., 19.

3	3	4	5	6	7	8	9	10	11	12	13	14
W(3,k)	9	18	22	32	46	58	77	97	114	135	160	186
k ²	9	16	25	36	49	64	81	100	121	144	169	196

Conjecture by Ahmeda-Kullmann-Snevily (2014)

 $W(3,k)=O(k^2).$

\$250 Conjecture by Graham

W(3, k) = O(f(k)) for some polynomial function f.