On the Power of Random Greedy Algorithms

Lutz Warnke
Georgia Tech

Joint work with He Guo
(who created most of these slides)

October 10, 2020
AMS Southeastern Sectional Meeting

Context of this talk: Ramsey theory

A mysterious phenomenon

No matter how to partition a sufficiently large structure, there will always be a well-behaved substructure in one of the parts

- Some examples:

Large structure
Edges of $K_{n} \quad$ Fixed graphs

Verified by

Ramsey's theorem

- More examples: Schur's, Erdős-Szekeres, Hales-Jewett theorem...

In this talk

- Present new lower bound on van der Warnden numbers
- Partition [N] into two parts avoiding specific APs
- Obtain such partition by a natural random greedy algorithm
- Improve previous results that take all randomness at once

Van der Waerden number (Focus on 3-AP case)

Van der Waerden number $W(3, k)$

$W(3, k):=$ minimum N such that every red/blue coloring of numbers in $[N]=\{1, \ldots, N\}$ contains red 3-term arithmetic progression or blue k-AP

- $W(3, k)>N$: existence of a red/blue coloring of $[N]$ such that there is no red $3-\mathrm{AP}$ or blue k-AP

Theorem (Brown-Landman-Robertson, 2007)
We have $W(3, k)=\Omega\left(k^{2} / k^{1 / \log \log k}\right)$.

Theorem (Li-Shu, 2008)
We have $W(3, k)=\Omega\left(k^{2} /(\log k)^{2}\right)$.

Theorem (Guo-Warnke, 2020+)
We have $W(3, k)=\Omega\left(k^{2} / \log k\right)$.

Proof strategy of previous results

Lower bound on van der Waerden number $W(3, k)$
$W(3, k)>N$: existence of a red/blue coloring of $[N]$ such that there is no red $3-\mathrm{AP}$ or blue $k-\mathrm{AP}$

Theorem (Brown-Landman-Robertson, 2007)
We have $W(3, k)=\Omega\left(k^{2} / k^{1 / \log \log k}\right)$.

Theorem (Li-Shu, 2008)
We have $W(3, k)=\Omega\left(k^{2} /(\log k)^{2}\right)$.

Their proof strategy: Take all randomness at once

- Color each number in $[N]$ by red \& blue with prob. $p \& 1-p$, resp.
- Lovász Local Lemma: $\mathbb{P}($ no red $3-A P$ or blue $k-A P)>0$
- Li (2009): improve the log factor by 3-AP free process?

Proof strategy of our result

Van der Waerden number $W(3, k)$

$W(3, k):=$ minimum N such that every red/blue coloring of numbers in $[N]=\{1, \ldots, N\}$ contains red 3-term arithmetic progression or blue k-AP

- $W(3, k)>N$: existence of a set $I \subseteq[N]$ such that (i) I is 3 -AP free, and (ii) $|I \cap K| \geq 1$ for all k-APs K

Theorem (Guo-Warnke, 2020+)

We have $W(3, k)=\Omega\left(k^{2} / \log k\right)$.
We construct such set $I \subseteq[N]$ by 3-AP free process

- Start with an empty set
- At each step, add one number uniformly at random, subject to the constraint that no 3-AP is created
$N=9$ for example:

$$
1,2,3,4,5,6,7,8,9
$$

(Open numbers can be added. Closed numbers cannot.) $I=\varnothing$

Proof strategy of our result

Van der Waerden number $W(3, k)$

$W(3, k):=$ minimum N such that every red/blue coloring of numbers in $[N]=\{1, \ldots, N\}$ contains red 3-term arithmetic progression or blue k-AP

- $W(3, k)>N$: existence of a set $I \subseteq[N]$ such that (i) I is 3 -AP free, and (ii) $|I \cap K| \geq 1$ for all k-APs K

Theorem (Guo-Warnke, 2020+)

We have $W(3, k)=\Omega\left(k^{2} / \log k\right)$.
We construct such set $I \subseteq[N]$ by 3-AP free process

- Start with an empty set
- At each step, add one number uniformly at random, subject to the constraint that no 3-AP is created
$N=9$ for example:

$$
1,2,3,4,5,6,7,8,9
$$

(Open numbers can be added. Closed numbers cannot.) $I=\{2\}$

Proof strategy of our result

Van der Waerden number $W(3, k)$

$W(3, k):=$ minimum N such that every red/blue coloring of numbers in $[N]=\{1, \ldots, N\}$ contains red 3-term arithmetic progression or blue k-AP

- $W(3, k)>N$: existence of a set $I \subseteq[N]$ such that (i) I is 3 -AP free, and (ii) $|I \cap K| \geq 1$ for all k-APs K

Theorem (Guo-Warnke, 2020+)
We have $W(3, k)=\Omega\left(k^{2} / \log k\right)$.
We construct such set $I \subseteq[N]$ by 3-AP free process

- Start with an empty set
- At each step, add one number uniformly at random, subject to the constraint that no 3-AP is created
$N=9$ for example:

$$
1,2,3,4,5,6,7,8,9
$$

(Open numbers can be added. Closed numbers cannot.) $I=\{2,3\}$

Proof strategy of our result

Van der Waerden number $W(3, k)$

$W(3, k):=$ minimum N such that every red/blue coloring of numbers in $[N]=\{1, \ldots, N\}$ contains red 3-term arithmetic progression or blue k-AP

- $W(3, k)>N$: existence of a set $I \subseteq[N]$ such that (i) I is 3 -AP free, and (ii) $|I \cap K| \geq 1$ for all k-APs K

Theorem (Guo-Warnke, 2020+)

We have $W(3, k)=\Omega\left(k^{2} / \log k\right)$.
We construct such set $I \subseteq[N]$ by 3-AP free process

- Start with an empty set
- At each step, add one number uniformly at random, subject to the constraint that no 3-AP is created
$N=9$ for example:

$$
\mathbb{1}, 2,3,4,5,6,7,8,9
$$

(Open numbers can be added. Closed numbers cannot.) $I=\{2,3\}$

Proof strategy of our result

Van der Waerden number $W(3, k)$

$W(3, k):=$ minimum N such that every red/blue coloring of numbers in $[N]=\{1, \ldots, N\}$ contains red 3-term arithmetic progression or blue k-AP

- $W(3, k)>N$: existence of a set $I \subseteq[N]$ such that (i) I is 3 -AP free, and (ii) $|I \cap K| \geq 1$ for all k-APs K

Theorem (Guo-Warnke, 2020+)

We have $W(3, k)=\Omega\left(k^{2} / \log k\right)$.
We construct such set $I \subseteq[N]$ by 3-AP free process

- Start with an empty set
- At each step, add one number uniformly at random, subject to the constraint that no 3-AP is created
$N=9$ for example:

$$
\mathbb{1}, 2,3,4,5,6,7,8,9
$$

(Open numbers can be added. Closed numbers cannot.) $I=\{2,3,5\}$

Proof strategy of our result

Van der Waerden number $W(3, k)$

$W(3, k):=$ minimum N such that every red/blue coloring of numbers in $[N]=\{1, \ldots, N\}$ contains red 3-term arithmetic progression or blue k-AP

- $W(3, k)>N$: existence of a set $I \subseteq[N]$ such that (i) I is 3 -AP free, and (ii) $|I \cap K| \geq 1$ for all k-APs K

Theorem (Guo-Warnke, 2020+)

We have $W(3, k)=\Omega\left(k^{2} / \log k\right)$.
We construct such set $I \subseteq[N]$ by 3-AP free process

- Start with an empty set
- At each step, add one number uniformly at random, subject to the constraint that no 3-AP is created
$N=9$ for example:

$$
\not{1}, 2,3,4,5,6,7,8,9
$$

(Open numbers can be added. Closed numbers cannot.) $I=\{2,3,5,9\}$

Feature 1: Only polynomially many k-APs in $[N]$

Van der Waerden number $W(3, k)$

$W(3, k):=$ minimum N such that every red/blue coloring of numbers in $[N]=\{1, \ldots, N\}$ contains red 3-term arithmetic progression or blue k-AP

- $W(3, k)>N$: existence of a set $I \subseteq[N]$ such that (i) I is 3 -AP free, and (ii) $|I \cap K| \geq 1$ for all k-APs K
- The set $I \subseteq[N]$ constructed by the 3-AP free process satisfies that
(i) I is $3-\mathrm{AP}$ free (by the definition of the process)
(ii) w.h.p. $|I \cap K| \geq 1$ for all k-APs K

The first feature: only polynomially many k-APs (for the union bound)

- The 3-AP free $I \subseteq[N]$ constructed by 3-AP free process has to satisfy

$$
|I \cap K| \geq 1
$$

for all k-APs K in $[N]$, which are only $\Theta\left(N^{2}\right)$ many

- Exponentially many substructures in other Ramsey type problems

Feature 2: Only $O(1)$ many 3-APs containing two numbers

Van der Waerden number $W(3, k)$

$W(3, k):=$ minimum N such that every red/blue coloring of numbers in $[N]=\{1, \ldots, N\}$ contains red 3-term arithmetic progression or blue k-AP

- $W(3, k)>N$: existence of a set $I \subseteq[N]$ such that (i) I is 3 -AP free, and (ii) $|I \cap K| \geq 1$ for all k-APs K
- The set $I \subseteq[N]$ constructed by the 3-AP free process satisfies that
(i) I is $3-\mathrm{AP}$ free (by the definition of the process)
(ii) w.h.p. $|I \cap K| \geq 1$ for all k-APs K

The second feature: only $O(1)$ many 3-APs containing two numbers

- One-step change of \# open numbers in K is small
- Track it by concentration inequalities

Adding z can close some open numbers in K

Feature 2: Only $O(1)$ many 3-APs containing two numbers

Van der Waerden number $W(3, k)$

$W(3, k):=$ minimum N such that every red/blue coloring of numbers in $[N]=\{1, \ldots, N\}$ contains red 3-term arithmetic progression or blue k-AP

- $W(3, k)>N$: existence of a set $I \subseteq[N]$ such that (i) I is 3 -AP free, and (ii) $|I \cap K| \geq 1$ for all k-APs K
- The set $I \subseteq[N]$ constructed by the 3-AP free process satisfies that
(i) I is $3-\mathrm{AP}$ free (by the definition of the process)
(ii) w.h.p. $|I \cap K| \geq 1$ for all k-APs K

The second feature: only $O(1)$ many 3-APs containing two numbers

- One-step change of \# open numbers in K is small
- Track it by concentration inequalities

Adding z can close some open numbers in K

Sketch of the proof

Theorem (Guo-Warnke, 2020+)

We have $W(3, k)=\Omega\left(k^{2} / \log k\right)$.
The set $I \subseteq[N]$ constructed by the 3 -AP free process satisfies that
(i) I is $3-\mathrm{AP}$ free (by the definition of the process)
(ii) w.h.p. $|I \cap K| \geq 1$ for all k-APs K

Two features in 3-AP free process setting

- Only $\Theta\left(N^{2}\right)$ many k-APs in [N]
- We can track \# open numbers in K throughout the process

Sketch of the proof

- At each step

$$
\frac{\# \text { open numbers in } K}{\# \text { open numbers in }[N]} \approx \frac{k}{N} \quad \text { (Pseudo-randomness) }
$$

- After m steps, where $k m / N>9 \log N$

$$
\mathbb{P}(I \cap K=\varnothing) \approx\left(1-\frac{k}{N}\right)^{m} \leq \exp (-k m / N) \ll N^{-2}
$$

A more general result: for all fixed $r \geq 2$

Van der Waerden number $W(r, k)$

$W(r, k):=$ minimum N such that every red/blue coloring of numbers in $[N]=\{1, \ldots, N\}$ contains red r-term arithmetic progression or blue k-AP

- $W(r, k)>N$: existence of a set $I \subseteq[N]$ such that (i) I is r-AP free, and (ii) $|I \cap K| \geq 1$ for all k-APs K

Theorem (Guo-Warnke, 2020+)

We have $W(r, k)=\Omega\left(k^{r-1} /(\log k)^{r-2}\right)$ for fixed $r \geq 2$.

Proof idea: analyzing r-AP free process

Features in 3-AP free case carry over. Similar pseudo-random properties

- Improve Brown-Landman-Robertson (2007) \& Li-Shu (2008) (LLL)
- Answer a question of Li from 2009

Open problems

Van der Waerden number $W(r, k)$

$W(r, k):=$ minimum N such that every red/blue coloring of numbers in $[N]=\{1, \ldots, N\}$ contains red r-term arithmetic progression or blue k-AP

Theorem (Guo-Warnke, 2020+)
$W(r, k)=\Omega\left(k^{r-1} /(\log k)^{r-2}\right)$ for fixed $r \geq 2$.

- $W(3, k) \leq \exp \left(k^{1 /(1+\Omega(1))}\right)$ Bloom-Sisask (2020)
- Fact: $W(3, k)$ grows like quadratically for $k=1,2, \ldots, 19$.

3	3	4	5	6	7	8	9	10	11	12	13	14
$W(3, k)$	9	18	22	32	46	58	77	97	114	135	160	186
k^{2}	9	16	25	36	49	64	81	100	121	144	169	196

Conjecture by Ahmeda-Kullmann-Snevily (2014)

$$
W(3, k)=O\left(k^{2}\right)
$$

\$250 Conjecture by Graham
$W(3, k)=O(f(k))$ for some polynomial function f.

