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H-free graphs / Turán’s theorem

Definition

Let H be a (small) fixed graph. A graph G is called H-free if it does not
contain H as a (not necessarily induced) subgraph.

Definition

Given an integer n, we let the Turán number for H, denoted ex(n,H), be
the maximum number of edges in an n-vertex H-free graph.

Theorem (Turán [1941])

For every n > r > 2, the unique largest Kr+1-free graph on n vertices is
the complete r -partite graph whose each color class has bn/rc or dn/re
elements, denoted Tr (n). In particular,

ex(n,Kr+1) = e(Tr (n)) =

(
1− 1

r

)
n2

2
± O(n).



The Erdős–Kleitman–Rothschild theorem

Turán’s theorem says something about the extremal H-free graphs. In this
talk, we are interested in the properties of a typical H-free graph, as in the
following classical result. Let [n] = {1, . . . , n} and let

Fn(H) = {H-free graphs with the vertex set [n]},
Gn(r) = {r -colorable graphs with the vertex set [n]}.

Theorem (Erdős, Kleitman, Rothschild [1976])

Almost all (a.a.) triangle-free (K3-free) graphs are bipartite. More
precisely,

lim
n→∞

|Fn(K3) ∩ Gn(2)|
|Fn(K3)|

= 1.

In other words, if Fn ∈ Fn(K3) is chosen uniformly at random (u.a.r.), then

lim
n→∞

Pr(Fn is bipartite) = 1.



The typical structure of H-free graphs

Theorem (Erdős, Frankl, Rödl [1986])

If χ(H) > 3, then

2ex(n,H) 6 |Fn(H)| 6 2(1+o(1))·ex(n,H).

Theorem (Kolaitis, Prömel, Rothschild [1987])

For every r > 2, a.a. Kr+1-free graphs are r -colorable. That is,

lim
n→∞

|Fn(Kr+1) ∩ Gn(r)|
|Fn(Kr+1)|

= 1.

Theorem (Prömel, Steger [1992])

If H has a color-critical edge, then a.a. H-free graphs are (χ(H)− 1)-col.

Several improvements and extensions of these results due to Balogh, Bollobás,

and Simonovits [2004, 2009, 2011].



Motivation: Evolution of random graphs

The Erdős-Rényi random graph Gn,m is the uniformly chosen random
element of the family

Gn,m = {graphs with the vertex set [n] and exactly m edges}.

The random graph Gn,m shares a lot of properties with its better known
“cousin” – the binomial random graph G (n, p) – when m = p

(n
2

)
.

A major part of the theory of random graph is concerned with:

Meta-question (Evolution of random graphs)

Let f be some graph parameter (e.g., f is the chromatic number or f is
the characteristic function of some graph property, such as being
connected, containing a Hamilton cycle, etc.).

“How does f (Gn,m) change as m increases from 0 to
(n
2

)
?”



Evolution of H-free graphs

Fn,m(H) = {H-free graphs with the vertex set [n] and exactly m edges}.

Theorem (Osthus, Prömel, Taraz [2003])

Let m = m(n) and Fn,m ∈ Fn,m(K3) be chosen u.a.r. For every ε > 0,

lim
n→∞

Pr(Fn,m is bipartite) =


1 if m = o(n),

0 if n/2 6 m 6 (1− ε)m2,

1 if m > (1 + ε)m2,

where
m2 = m2(n) =

√
3

4
n3/2

√
log n.

An analogous result holds for odd cycles, where

m(C2`+1) =

(
2`+ 1

2`
·
(n

2

)2`+1
· log n

) 1
2`

.



Main result

Theorem (Balogh, Morris, S., Warnke [2013+])

For every r > 3 and ε > 0, the following is true. Let m = m(n) and let
Fn,m ∈ Fn,m(Kr+1) be chosen u.a.r. Then

lim
n→∞

Pr(Fn,m is r -colorable) =


1 if m 6 (1− ε)dr ,

0 if (1 + ε)dr 6 m 6 (1− ε)mr ,

1 if m > (1 + ε)mr ,

where dr = dr (n) = Θ(n) and

mr = mr (n) =
r − 1

2r
·

[
r ·
(

2r + 2

r + 2

) 1
r−1

] 2
r+2

· n2− 2
r+2 · (log n)

1

(r+1
2 )−1 .

The case r = 3 was proved earlier by Steger and Warnke [2009].

The first threshold is essentially due to Achlioptas and Friedgut [1999].



Related work: Turán’s theorem in G (n, p)

Question (Babai, Simonovits, Spencer [1990])

For what p is the largest Kr+1-free subgraph of G (n, p) (a.a.s.)
r -colorable?

Theorem (Babai, Simonovits, Spencer [1990])

If p > 1/2, then a.a.s. the largest triangle-free subgraph of G (n, p) is
bipartite.

Theorem (Brightwell, Panagiotou, Steger [2012])

For every r > 2, there exists cr > 0 such that if p > n−cr , then a.a.s. the
largest Kr+1-free subgraph of G (n, p) is r -colorable.



Related work: Turán’s theorem in G (n, p)

Theorem (DeMarco, Kahn [2013+])

There exists a constant C such that if

p > C

√
log n

n
,

then a.a.s. the largest triangle-free subgraph of G (n, p) is bipartite.

Note that E[e(G (n, p))] >
√

log n/n ·
(n
2

)
= Θ(m2(n)).

Theorem (DeMarco, Kahn [in preparation])

For every r > 3, there exists a cosntant Cr such that if

p > Crmr

(
n

2

)−1
,

then a.a.s. the largest Kr+1-free subgraph of G (n, p) is r -colorable.



The first threshold

If Gn,m ∈ Gn,m is chosen u.a.r., then

Pr(Gn,m ⊇ Kr+1) 6 E[#copies of Kr+1 in Gn,m] ≈
(

n

r + 1

)(
2m

n2

)(r+1
2 )
.

A simple calculation shows that if m� n2−2/r , then the above is o(1) and
consequently a.a. graphs in Gn,m are Kr+1-free.

Therefore, if m� n2−2/r and Fn,m ∈ Fn,m(Kr+1) is chosen u.a.r., then

Pr(Fn,m is r -colorable) = Pr(Gn,m is r -colorable) + o(1).

The existence of the first threshold now follows from the following result:

Theorem (Achlioptas, Friedgut [1999])

For every r > 3, the property of (not) being r -colorable has a sharp
threshold in Gn,m at m = dr for some dr = dr (n) = Θ(n).



About the second threshold

We expect that above the threshold a.a. Kr+1-free graphs are r -colorable.

If m� n log n, then a.a. graphs in Gn,m(r) have a unique r -coloring whose
all color classes have size about n/r .

Fix one such balanced coloring Π ≈ K (n/r , . . . , n/r) and note that

#graphs properly colored by Π =

(
e(Π)

m

)
.

We compare this with the number of graphs in Fn,m(Kr+1) that are not
r -colorable but are “almost” properly colored by Π.

We start with graphs with exactly one monochromatic edge. Fix an edge
uv ∈ Πc and let P be the probability that, when we randomly choose
m − 1 edges of Π, the edge uv does not lie in a copy of Kr+1.

P ≈

(
1−

(
m

e(Π)

)(r+1
2 )−1

)( n
r )r−1

≈ exp

−(n

r

)r−1

·

(
m(

1− 1
r

)
n2

2

)(r+1
2 )
 .



About the second threshold

Observe that

#graphs in Fn,m(Kr+1) with exactly one monochromatic edge in Π

=

(
e(Πc)

1

)
·
(

e(Π)

m − 1

)
· P = Θ(m) · P ·

(
e(Π)

m

)
Calculation shows that P = Θ(1/m) exactly when m = mr .

If m 6 (1− ε)mr , then P > m−1+δ.

If m > (1 + ε)mr , then P 6 m−1−δ.

A rigorous version of the above heuristic establishes the 0-statement below
the second threshold.

the FKG inequality for the hypergeometric distribution,

careful counting (employing some ideas of Prömel and Steger [1992]).



About the second threshold

One of the main tools in the proof of the 1-statement is the following:

Theorem (Balogh, Morris, S. / Saxton, Thomason [2012+])

For every r > 2 and δ > 0, there exists a C such that if m > Cn2− 2
r+2 ,

then a.e. graph in Fn,m(Kr+1) can be made r -colorable by removing from
it at most δm edges.

This was previously derived by  Luczak [2000] from the (then unproven)
K LR conjecture (proved by BMS and ST).

It follows that one only needs to estimate the number of graphs in
G ∈ Fn,m(Kr+1) with o(m) monochromatic edges.

This is more difficult than counting graphs with one monochromatic edge.

Our two main tools are:

A version of Janson’s inequality for the hypergeometric distribution.

A new concentration inequality for the number of edges induced by
a random subset in sparse uniform hypergraphs.



Open problem(s)

We finish with a (natural) conjecture:

Conjecture

For every strictly 2-balanced graph H that contains a color-critical edge,
there exists a constant C such that the following holds. If

m > Cn2−1/m2(H)(log n)
1

e(H)−1 ,

then a.a. graphs in Fn,m(H) are (χ(H)− 1)-partite.

Thank you for your attention!


