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H-free graphs / Turdn's theorem

Definition

Let H be a (small) fixed graph. A graph G is called H-free if it does not
contain H as a (not necessarily induced) subgraph.

Definition

| A

Given an integer n, we let the Turdn number for H, denoted ex(n, H), be
the maximum number of edges in an n-vertex H-free graph.

Theorem (Turan [1941])

For every n > r > 2, the unique largest K,1-free graph on n vertices is
the complete r-partite graph whose each color class has [n/r] or [n/r]
elements, denoted T,(n). In particular,
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ex(n, Ky41) = e(T,(n)) = <1 - 1) 1Y o(n).




The Erdos—Kleitman—Rothschild theorem

Turadn's theorem says something about the extremal H-free graphs. In this
talk, we are interested in the properties of a typical H-free graph, as in the
following classical result. Let [n] = {1,...,n} and let

Fn(H) = {H-free graphs with the vertex set [n]},
Gn(r) = {r-colorable graphs with the vertex set [n]}.

Theorem (Erdés, Kleitman, Rothschild [1976])

Almost all (a.a.) triangle-free (K3-free) graphs are bipartite. More
precisely,

i FalK9) 1G,(2)
(= | Fn(K3)|

In other words, if F, € F,(K3) is chosen uniformly at random (u.a.r.), then
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lim Pr(F, is bipartite) = 1.
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The typical structure of H-free graphs

Theorem (Erdés, Frankl, Rodl [1986])

If x(H) > 3, then
2e><(n,H) < ‘Fn(H)’ < 2(1+o(1))‘e><(n,H)‘

Theorem (Kolaitis, Promel, Rothschild [1987])

For every r > 2, a.a. K,;1-free graphs are r-colorable. That is,

lim | Fn(Kri1) N Ga(r)] —1

=69 | Fn(Krs1)|

Theorem (Promel, Steger [1992])

If H has a color-critical edge, then a.a. H-free graphs are (x(H) — 1)-col.

Several improvements and extensions of these results due to Balogh, Bollobds,
and Simonovits [2004, 2009, 2011].



Motivation: Evolution of random graphs

The Erdds-Rényi random graph G, », is the uniformly chosen random
element of the family

Gn.m = {graphs with the vertex set [n] and exactly m edges}.

The random graph G, n, shares a lot of properties with its better known
“cousin” — the binomial random graph G(n, p) — when m = p('z’)

A major part of the theory of random graph is concerned with:

Meta-question (Evolution of random graphs)

Let £ be some graph parameter (e.g., f is the chromatic number or f is
the characteristic function of some graph property, such as being
connected, containing a Hamilton cycle, etc.).

“How does f(Gp,m) change as m increases from 0 to (5)?"




Evolution of H-free graphs

Fnm(H) = {H-free graphs with the vertex set [n] and exactly m edges}.

Theorem (Osthus, Promel, Taraz [2003])

Let m = m(n) and Fp, , € Fn m(K3) be chosen u.a.r. For every € > 0,

1 if m=o(n),
Ii_)m Pr(Fn,m is bipartite) = ¢ 0 if n/2 < m< (1 —¢)my,
n—o0

1 itm>(14¢e)my,

where

my = my(n) = ?n‘o’p\/log n.

An analogous result holds for odd cycles, where
1
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Main result

Theorem (Balogh, Morris, S., Warnke [2013+])

For every r >

3 and € > 0, the following is true. Let m = m(n) and let
Fn.m € Fnm(Kr11) be chosen u.a.r. Then

1 ifm<(1-e)d,
Ii_)m Pr(Fp,m is r-colorable) = < 0 if (1+¢)d, < m< (1 —¢)m,,
n—o0

1 ifm>(14¢e)m,,
where d; = d,(n) = ©(n) and
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m, = m,(n) = r2r . [r- ( ::2 ) ] 2 - (log n)( -1

@ The case r = 3 was proved earlier by Steger and Warnke [2009].
@ The first threshold is essentially due to Achlioptas and Friedgut [1999].




Related work: Turdn's theorem in G(n, p)

Question (Babai, Simonovits, Spencer [1990])

For what p is the largest K, 1-free subgraph of G(n, p) (a.a.s.)
r-colorable?

Theorem (Babai, Simonovits, Spencer [1990])

If p> 1/2, then a.a.s. the largest triangle-free subgraph of G(n, p) is
bipartite.

\

Theorem (Brightwell, Panagiotou, Steger [2012])

For every r > 2, there exists ¢, > 0 such that if p > n=, then a.a.s. the
largest K, 1-free subgraph of G(n,p) is r-colorable.




Related work: Turdn's theorem in G(n, p)

Theorem (DeMarco, Kahn [2013+])
There exists a constant C such that if

log n

)

p=C

n

then a.a.s. the largest triangle-free subgraph of G(n, p) is bipartite.

Note that E[e(G(n, p))] = \/logn/n- (5) = ©(ma2(n)).
Theorem (DeMarco, Kahn [in preparation])

For every r > 3, there exists a cosntant C, such that if

-1
n
p=Cm, <2> )

then a.a.s. the largest K, 1-free subgraph of G(n, p) is r-colorable.
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The first threshold

If Gp,m € Gnm is chosen u.a.r., then

Pr(Gnm 2 Kr41) < E[#copies of Kr11 in Gy m] = (r N 1> <r72> .

A simple calculation shows that if m < n?~2/", then the above is o(1) and
consequently a.a. graphs in G, ,, are K, 1-free.

Therefore, if m < n?~2/" and Fom € Fnm(Kri1) is chosen u.a.r., then
Pr(Fn,m is r-colorable) = Pr( Gy, n is r-colorable) + o(1).

The existence of the first threshold now follows from the following result:

Theorem (Achlioptas, Friedgut [1999])

For every r > 3, the property of (not) being r-colorable has a sharp
threshold in G, ,, at m = d, for some d, = d,(n) = ©(n).




About the second threshold

We expect that above the threshold a.a. K, 1-free graphs are r-colorable.

If m > nlogn, then a.a. graphs in G, m(r) have a unique r-coloring whose
all color classes have size about n/r.

Fix one such balanced coloring N ~ K(n/r,...,n/r) and note that
Mn
#graphs properly colored by N = (e(m )>

We compare this with the number of graphs in 7, m(Kr41) that are not
r-colorable but are “almost” properly colored by 1.

We start with graphs with exactly one monochromatic edge. Fix an edge
uv € € and let P be the probability that, when we randomly choose
m — 1 edges of I, the edge uv does not lie in a copy of K,y1.

oy ()7 - N €Y
(@) (e () )



About the second threshold

Observe that

#graphs in ]-",,,m(K,H) with exactly one monochromatic edge in 1

(D)) 2ot ()

Calculation shows that P = ©(1/m) exactly when m = m;.

o If m< (1—¢)m,, then P> m™179,

o If m=>(1+¢€)m,, then P < m~1-9,
A rigorous version of the above heuristic establishes the 0-statement below
the second threshold.

o the FKG inequality for the hypergeometric distribution,

o careful counting (employing some ideas of Promel and Steger [1992]).



About the second threshold

One of the main tools in the proof of the 1-statement is the following:

Theorem (Balogh, Morris, S. / Saxton, Thomason [2012+])

For every r > 2 and § > 0, there exists a C such that if m > an_r%?,
then a.e. graph in Fj, m(Kr+1) can be made r-colorable by removing from
it at most dm edges.

This was previously derived by tuczak [2000] from the (then unproven)
KLR conjecture (proved by BMS and ST).

It follows that one only needs to estimate the number of graphs in
G € Fpm(Kr41) with o(m) monochromatic edges.

This is more difficult than counting graphs with one monochromatic edge.
Our two main tools are:

@ A version of Janson's inequality for the hypergeometric distribution.
@ A new concentration inequality for the number of edges induced by
a random subset in sparse uniform hypergraphs.



Open problem(s)

We finish with a (natural) conjecture:

Conjecture

For every strictly 2-balanced graph H that contains a color-critical edge,
there exists a constant C such that the following holds. If

m > Cn?~Y/m(H)(jog p) e(Hl)—l7

then a.a. graphs in Fp, m(H) are (x(H) — 1)-partite.

Thank you for your attention!



