The typical structure of sparse K_{r+1}-free graphs

Lutz Warnke
University of Cambridge

(joint work with József Balogh, Robert Morris, and Wojciech Samotij)

H-free graphs / Turán's theorem

Definition

Let H be a (small) fixed graph. A graph G is called H-free if it does not contain H as a (not necessarily induced) subgraph.

Definition

Given an integer n, we let the Turán number for H, denoted ex (n, H), be the maximum number of edges in an n-vertex H-free graph.

Theorem (Turán [1941])

For every $n \geqslant r \geqslant 2$, the unique largest K_{r+1}-free graph on n vertices is the complete r-partite graph whose each color class has $\lfloor n / r\rfloor$ or $\lceil n / r\rceil$ elements, denoted $T_{r}(n)$. In particular,

$$
e x\left(n, K_{r+1}\right)=e\left(T_{r}(n)\right)=\left(1-\frac{1}{r}\right) \frac{n^{2}}{2} \pm O(n)
$$

The Erdős-Kleitman-Rothschild theorem

Turán's theorem says something about the extremal H-free graphs. In this talk, we are interested in the properties of a typical H-free graph, as in the following classical result. Let $[n]=\{1, \ldots, n\}$ and let

$$
\begin{aligned}
\mathcal{F}_{n}(H) & =\{H \text {-free graphs with the vertex set }[n]\}, \\
\mathcal{G}_{n}(r) & =\{r \text {-colorable graphs with the vertex set }[n]\} .
\end{aligned}
$$

Theorem (Erdős, Kleitman, Rothschild [1976])

Almost all (a.a.) triangle-free (K_{3}-free) graphs are bipartite. More precisely,

$$
\lim _{n \rightarrow \infty} \frac{\left|\mathcal{F}_{n}\left(K_{3}\right) \cap \mathcal{G}_{n}(2)\right|}{\left|\mathcal{F}_{n}\left(K_{3}\right)\right|}=1
$$

In other words, if $F_{n} \in \mathcal{F}_{n}\left(K_{3}\right)$ is chosen uniformly at random (u.a.r.), then

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(F_{n} \text { is bipartite }\right)=1 .
$$

The typical structure of H-free graphs

Theorem (Erdős, Frankl, Rödl [1986])

If $\chi(H) \geqslant 3$, then

$$
2^{\operatorname{ex}(n, H)} \leqslant\left|\mathcal{F}_{n}(H)\right| \leqslant 2^{(1+o(1)) \cdot \operatorname{ex}(n, H)} .
$$

Theorem (Kolaitis, Prömel, Rothschild [1987])

For every $r \geqslant 2$, a.a. K_{r+1}-free graphs are r-colorable. That is,

$$
\lim _{n \rightarrow \infty} \frac{\left|\mathcal{F}_{n}\left(K_{r+1}\right) \cap \mathcal{G}_{n}(r)\right|}{\left|\mathcal{F}_{n}\left(K_{r+1}\right)\right|}=1
$$

Theorem (Prömel, Steger [1992])

If H has a color-critical edge, then a.a. H-free graphs are $(\chi(H)-1)$-col.
Several improvements and extensions of these results due to Balogh, Bollobás, and Simonovits [2004, 2009, 2011].

Motivation: Evolution of random graphs

The Erdős-Rényi random graph $G_{n, m}$ is the uniformly chosen random element of the family

$$
\mathcal{G}_{n, m}=\{\text { graphs with the vertex set }[n] \text { and exactly } m \text { edges }\} .
$$

The random graph $G_{n, m}$ shares a lot of properties with its better known "cousin" - the binomial random graph $G(n, p)$ - when $m=p\binom{n}{2}$.
A major part of the theory of random graph is concerned with:

Meta-question (Evolution of random graphs)

Let f be some graph parameter (e.g., f is the chromatic number or f is the characteristic function of some graph property, such as being connected, containing a Hamilton cycle, etc.).
"How does $f\left(G_{n, m}\right)$ change as m increases from 0 to $\binom{n}{2}$?"

Evolution of H-free graphs

$\mathcal{F}_{n, m}(H)=\{H$-free graphs with the vertex set $[n]$ and exactly m edges $\}$.

Theorem (Osthus, Prömel, Taraz [2003])

Let $m=m(n)$ and $F_{n, m} \in \mathcal{F}_{n, m}\left(K_{3}\right)$ be chosen u.a.r. For every $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(F_{n, m} \text { is bipartite }\right)= \begin{cases}1 & \text { if } m=o(n) \\ 0 & \text { if } n / 2 \leqslant m \leqslant(1-\varepsilon) m_{2} \\ 1 & \text { if } m \geqslant(1+\varepsilon) m_{2}\end{cases}
$$

where

$$
m_{2}=m_{2}(n)=\frac{\sqrt{3}}{4} n^{3 / 2} \sqrt{\log n}
$$

An analogous result holds for odd cycles, where

$$
m\left(C_{2 \ell+1}\right)=\left(\frac{2 \ell+1}{2 \ell} \cdot\left(\frac{n}{2}\right)^{2 \ell+1} \cdot \log n\right)^{\frac{1}{2 \ell}}
$$

Main result

Theorem (Balogh, Morris, S., Warnke [2013+])

For every $r \geqslant 3$ and $\varepsilon>0$, the following is true. Let $m=m(n)$ and let $F_{n, m} \in \mathcal{F}_{n, m}\left(K_{r+1}\right)$ be chosen u.a.r. Then

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(F_{n, m} \text { is } r \text {-colorable }\right)= \begin{cases}1 & \text { if } m \leqslant(1-\varepsilon) d_{r} \\ 0 & \text { if }(1+\varepsilon) d_{r} \leqslant m \leqslant(1-\varepsilon) m_{r} \\ 1 & \text { if } m \geqslant(1+\varepsilon) m_{r}\end{cases}
$$

where $d_{r}=d_{r}(n)=\Theta(n)$ and

$$
m_{r}=m_{r}(n)=\frac{r-1}{2 r} \cdot\left[r \cdot\left(\frac{2 r+2}{r+2}\right)^{\frac{1}{r-1}}\right]^{\frac{2}{r+2}} \cdot n^{2-\frac{2}{r+2}} \cdot(\log n)^{\frac{1}{\binom{+1}{2}-1}}
$$

- The case $r=3$ was proved earlier by Steger and Warnke [2009].
- The first threshold is essentially due to Achlioptas and Friedgut [1999].

Related work: Turán's theorem in $G(n, p)$

Question (Babai, Simonovits, Spencer [1990])

For what p is the largest K_{r+1}-free subgraph of $G(n, p)$ (a.a.s.) r-colorable?

Theorem (Babai, Simonovits, Spencer [1990])

If $p>1 / 2$, then a.a.s. the largest triangle-free subgraph of $G(n, p)$ is bipartite.

Theorem (Brightwell, Panagiotou, Steger [2012])

For every $r \geqslant 2$, there exists $c_{r}>0$ such that if $p \geqslant n^{-c_{r}}$, then a.a.s. the largest K_{r+1}-free subgraph of $G(n, p)$ is r-colorable.

Related work: Turán's theorem in $G(n, p)$

Theorem (DeMarco, Kahn [2013+])

There exists a constant C such that if

$$
p \geqslant C \sqrt{\frac{\log n}{n}}
$$

then a.a.s. the largest triangle-free subgraph of $G(n, p)$ is bipartite.
Note that $\mathbb{E}[e(G(n, p))] \geqslant \sqrt{\log n / n} \cdot\binom{n}{2}=\Theta\left(m_{2}(n)\right)$.

Theorem (DeMarco, Kahn [in preparation])

For every $r \geqslant 3$, there exists a cosntant C_{r} such that if

$$
p \geqslant C_{r} m_{r}\binom{n}{2}^{-1}
$$

then a.a.s. the largest K_{r+1}-free subgraph of $G(n, p)$ is r-colorable.

The first threshold

If $G_{n, m} \in \mathcal{G}_{n, m}$ is chosen u.a.r., then

$$
\operatorname{Pr}\left(G_{n, m} \supseteq K_{r+1}\right) \leqslant \mathbb{E}\left[\# \text { copies of } K_{r+1} \text { in } G_{n, m}\right] \approx\binom{n}{r+1}\left(\frac{2 m}{n^{2}}\right)^{\binom{r+1}{2}}
$$

A simple calculation shows that if $m \ll n^{2-2 / r}$, then the above is $o(1)$ and consequently a.a. graphs in $\mathcal{G}_{n, m}$ are K_{r+1}-free.
Therefore, if $m \ll n^{2-2 / r}$ and $F_{n, m} \in \mathcal{F}_{n, m}\left(K_{r+1}\right)$ is chosen u.a.r., then

$$
\operatorname{Pr}\left(F_{n, m} \text { is } r \text {-colorable }\right)=\operatorname{Pr}\left(G_{n, m} \text { is } r \text {-colorable }\right)+o(1) .
$$

The existence of the first threshold now follows from the following result:

Theorem (Achlioptas, Friedgut [1999])

For every $r \geqslant 3$, the property of (not) being r-colorable has a sharp threshold in $G_{n, m}$ at $m=d_{r}$ for some $d_{r}=d_{r}(n)=\Theta(n)$.

About the second threshold

We expect that above the threshold a.a. K_{r+1} free graphs are r-colorable.
If $m \gg n \log n$, then a.a. graphs in $\mathcal{G}_{n, m}(r)$ have a unique r-coloring whose all color classes have size about n / r.
Fix one such balanced coloring $\Pi \approx K(n / r, \ldots, n / r)$ and note that

$$
\text { \#graphs properly colored by } \Pi=\binom{e(\Pi)}{m} \text {. }
$$

We compare this with the number of graphs in $\mathcal{F}_{n, m}\left(K_{r+1}\right)$ that are not r-colorable but are "almost" properly colored by Π.
We start with graphs with exactly one monochromatic edge. Fix an edge $u v \in \Pi^{c}$ and let P be the probability that, when we randomly choose $m-1$ edges of Π, the edge $u v$ does not lie in a copy of K_{r+1}.

$$
P \approx\left(1-\left(\frac{m}{e(\Pi)}\right)^{\binom{r+1}{2}-1}\right)^{\left(\frac{n}{r}\right)^{r-1}} \approx \exp \left(-\left(\frac{n}{r}\right)^{r-1} \cdot\left(\frac{m}{\left(1-\frac{1}{r}\right) \frac{n^{2}}{2}}\right)^{\binom{r+1}{2}}\right)
$$

About the second threshold

Observe that
\#graphs in $\mathcal{F}_{n, m}\left(K_{r+1}\right)$ with exactly one monochromatic edge in Π

$$
=\binom{e\left(\Pi^{c}\right)}{1} \cdot\binom{e(\Pi)}{m-1} \cdot P=\Theta(m) \cdot P \cdot\binom{e(\Pi)}{m}
$$

Calculation shows that $P=\Theta(1 / m)$ exactly when $m=m_{r}$.

- If $m \leqslant(1-\varepsilon) m_{r}$, then $P \geqslant m^{-1+\delta}$.
- If $m \geqslant(1+\varepsilon) m_{r}$, then $P \leqslant m^{-1-\delta}$.

A rigorous version of the above heuristic establishes the 0-statement below the second threshold.

- the FKG inequality for the hypergeometric distribution,
- careful counting (employing some ideas of Prömel and Steger [1992]).

About the second threshold

One of the main tools in the proof of the 1-statement is the following:

Theorem (Balogh, Morris, S. / Saxton, Thomason [2012+])

For every $r \geqslant 2$ and $\delta>0$, there exists a C such that if $m \geqslant \mathrm{Cn}^{2-\frac{2}{r+2} \text {, }}$ then a.e. graph in $\mathcal{F}_{n, m}\left(K_{r+1}\right)$ can be made r-colorable by removing from it at most δm edges.

This was previously derived by Łuczak [2000] from the (then unproven) $K Ł R$ conjecture (proved by BMS and ST).

It follows that one only needs to estimate the number of graphs in $G \in \mathcal{F}_{n, m}\left(K_{r+1}\right)$ with $o(m)$ monochromatic edges.
This is more difficult than counting graphs with one monochromatic edge.
Our two main tools are:

- A version of Janson's inequality for the hypergeometric distribution.
- A new concentration inequality for the number of edges induced by a random subset in sparse uniform hypergraphs.

Open problem(s)

We finish with a (natural) conjecture:

Conjecture

For every strictly 2-balanced graph H that contains a color-critical edge, there exists a constant C such that the following holds. If

$$
m \geqslant C n^{2-1 / m_{2}(H)}(\log n)^{\frac{1}{e(H)-1}}
$$

then a.a. graphs in $\mathcal{F}_{n, m}(H)$ are $(\chi(H)-1)$-partite.

Thank you for your attention!

