Note on Sunflowers

Tolson Bell

Suchakree Chueluecha

Lutz Warnke

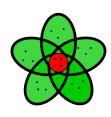
Georgia Tech Lehigh University

Georgia Tech

Based on 2020 REU at Georgia Tech: https://arxiv.org/abs/2009.09327

Sunflowers in Combinatorics

- Let $\mathcal F$ be a k-uniform family of subsets of X, i.e., |S|=k and $S\subseteq X$ for all $S\in \mathcal F$
- \mathcal{F} is a sunflower with \mathbf{p} petals if $|\mathcal{F}| = p$ and there exists $Y \subseteq X$ with $Y = S_i \cap S_j$ for all distinct $S_i, S_j \in \mathcal{F}$
- Y is the **core** and $S_i \setminus Y$ are the **petals**
- Note that p disjoint sets forms a sunflower with p petals and empty core.



Sunflower with k = 7 and p = 5

Applications

Sunflowers have many uses in computer science:

- Fast algorithms for matrix multiplication
- Cryptography
- Pseudorandomness

- Lower bounds on circuitry
- Data structure efficiency
- Random approximations

Basic Results

Research Question

What is the smallest r = r(p, k) such that every k-uniform family with at least r^k sets must contain a sunflower with p petals?

Erdős-Rado (1960)

- (a) r = pk is **sufficient** to guarantee a sunflower: every family with more than $(pk)^k > k!(p-1)^k$ sets contains a sunflower
- (b) r > p-1 is **necessary** to guarantee a sunflower: there is a family of $(p-1)^k$ sets without a sunflower
 - Erdős conjectured r = r(p) is sufficient (no k dependency), offered \$1000 reward
 - Until 2018, best known upper bound on r was still $k^{1-o(1)}$ with respect to k

"[The sunflower problem] has fascinated me greatly – I really do not see why this question is so difficult."

—Paul Erdős (1981)

Recent Exciting Developments

- Erdős conjectured r = r(p) is sufficient (no k dependency)
- Until 2018, best known upper bound on r was still $k^{1-o(1)}$ with respect to k

Alweiss-Lovett-Wu-Zhang (Breakthrough Aug 2019)

 $r = p^3 (\log k)^{1+o(1)}$ is sufficient to guarantee a sunflower

New papers built off their breakthrough ideas:

- Sep 2019: Rao used Shannon's coding theorem for a cleaner proof and slightly better bound
- Oct 2019: Frankston-Kahn-Narayanan-Park improved a key lemma of ALWZ, enabling them to prove a conjecture of Talagrand regarding thresholds functions
- Jan 2020: Rao improved to $r = O(p \log(pk))$ by incorporating ideas from FKNP
- July 2020: Tao matched Rao's bound with shorter proof using Shannon entropy

Note on Sunflowers

Our Results (REU 2020)

Rao (Jan 2020)

 $r = O(p \log(pk))$ is sufficient to guarantee a sunflower

Bell-Chueluecha-Warnke (September 2020)

 $r = O(p \log k)$ is sufficient to guarantee a sunflower

Further REU 2020 results:

- Rao/Tao methods not needed for this result:
 2019 Frankston-Kahn-Narayanan-Park result suffices with our proof variant
- Main Technical Lemma is asymptotically sharp:
 Bound cannot be improved further without change of proof strategy

Strategy: Reduction to r-spread Families

• Key Definition: $\mathcal F$ is **r-spread** if $|\mathcal F| \ge r^k$ and for every nonempty $S \subseteq X$ the number of sets in $\mathcal F$ which contain S is at most $r^{k-|S|}$

The Inductive Reduction

If every r-spread family contains p disjoint sets, then r^k sets guarantees a sunflower.

Proof. Induction on k.

Question: How to *find p* disjoint sets in an *r*-spread family?

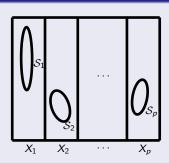
• We now review the common proof framework of previous work.

Strategy: Reduction to Main Technical Lemma

Question: How to find p disjoint sets?

The Probabilistic Method

- Consider a random partition of X to X_1, X_2, \ldots, X_n $(x \in X \text{ goes in random } X_i)$
- Use probabilistic method
 - Show $\mathbb{P}(\nexists S_i \in \mathcal{F} \text{ such that } S_i \subseteq X_i) < \frac{1}{2}$
 - Union bound: $\mathbb{P}(\exists i \text{ where } X_i \text{ has no } S_i)$
 - There is partition where each X_i has S_i
 - Then S_1, \ldots, S_p are disjoint sets in \mathcal{F}



Main Technical Lemma (Rao 2020)

Let X_p be set where $\forall x \in X$, $x \in X_p$ w.p. $\frac{1}{p}$ independently. $\exists C > 1$ s.t. for $r \geq Cp \log(pk)$, $\mathbb{P}(\text{There } \underline{\text{does not}} \text{ exist } S_i \in \mathcal{F} \text{ such that } S_i \subseteq X_p) < \frac{1}{p}$

> Note on Sunflowers REII 2020

Our Probabilistic Improvement

Main Technical Lemma (Rao 2020)

Let X_a be set where $\forall x \in X$, $x \in X_a$ w.p. $\frac{1}{a}$ independently. $\exists C > 1$ s.t. for $r \geq Ca \log(bk)$, $\mathbb{P}(\text{There } \underline{\text{does not}} \text{ exist } S_i \in \mathcal{F} \text{ such that } S_i \subseteq X_a) < \frac{1}{b}$

Bell-Chueluecha-Warnke (September 2020)

 $r = O(p \log k)$ is sufficient to guarantee a sunflower

Proof Sketch (improve union bound via linearity of expectation):

- Partition X_1, \dots, X_{2p} instead of X_1, \dots, X_p .
- ullet To get p disjoint sets, half of our sets need to contain a set in ${\mathcal F}$
- Linearity of expectation: if each X_i has less than half chance of failure, there is some partition where at least half succeed
- Apply main lemma with a = 2p, b = 2.
- $r = 2Cp \log(2k) = O(p \log k)$ suffices!

Summary

 \mathcal{F} , a k-uniform family of subsets of X, is a **sunflower with p petals** if $|\mathcal{F}| = p$ and there exists $Y \subseteq X$ with $Y = S_i \cap S_j$ for all distinct $S_i, S_j \in \mathcal{F}$.

Research Question

What is the smallest r = r(p, k) such that every k-uniform family with at least r^k sets must contain a sunflower with p petals?

- Erdős–Rado (1960): r = pk is sufficient and r > p 1 is necessary
- Erdős (1981): Conjectured r = r(p) sufficient
- Alweiss–Lovett–Wu–Zhang (2019): Breakthrough that $r = p^3 (\log k)^{1+o(1)}$ suffices
- Rao (2020): By Shannon's Coding Theorem, $r = O(p \log(pk))$ suffices

Bell-Chueluecha-Warnke (2020)

- $r = O(p \log k)$ suffices by minor variant of existing probabilistic arguments
- This bound cannot be improved without change of strategy

REII 2020

Note on Sunflowers

References

- Alweiss-Lovett-Wu-Zhang (2020). Improved bounds for the sunflower lemma.
 Proceedings of STOC 2020. Extended preprint at arXiv:1908.08483
- Erdős (1981). On the combinatorial problems which I would most like to see solved.
 Combinatorica.
- Erdős-Rado (1960). Intersection theorems for systems of sets. Journal of the London Mathematical Society.
- Frankston-Kahn-Narayanan-Park (2019). Thresholds versus fractional expectation-thresholds. Preprint at arXiv:1910.13433.
- Rao (2020). Coding for sunflowers. Discrete Analysis. Preprint at arXiv:1909.04774
- Tao (2020). The sunflower lemma via Shannon entropy. terrytao.wordpress.com.
- Bell-Chueluecha-Warnke (2020). Note on Sunflowers. Discrete Mathematics. Preprint at arXiv:2009.09327

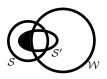
Strategy: Proving the Main Lemma

Main Technical Lemma

 $\mathbb{P}(\mathsf{There}\ \underline{\mathsf{does}\ \mathsf{not}}\ \mathsf{exist}\ S_i\in\mathcal{F}\ \mathsf{such\ that}\ S_i\subseteq X_{\mathsf{a}})<rac{1}{b}$

<u>Proof.</u> Partition X_i to V_1, V_2 with equal size, so $|V_1| = |V_2| = |X|/(2a)$.

• Key Definition: Given $S \in \mathcal{F}$ and $W \subseteq X$, (S, W) is **m-good** if there exists $S' \in \mathcal{F}$ such that $S' \subseteq W \cup S$ and $|S' \setminus W| \leqslant m$



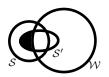
<u>Iteration</u>: $\mathbb{P}(\text{Less than half of sets in }\mathcal{F} \text{ are } m\text{-good with respect to } V_1) \leqslant \frac{1}{2b}$

 $\underline{\mathsf{Final Step}} \colon \mathbb{P}(V_1 \cup V_2 \mathsf{ does not contain a set in } \mathcal{F} \mid \mathsf{successful iteration}) < \frac{1}{2b}$

Note on Sunflowers REU 2020

Strategy: Iteration + Janson

• Key Definition: Given $S \in \mathcal{F}$ and $W \subseteq X$, (S, W) is **m-good** if there exists $S' \in \mathcal{F}$ such that $S' \subseteq W \cup S$ and $|S' \setminus W| \leqslant m$



<u>Iteration</u>: $\mathbb{P}(\text{Less than half of sets in } \mathcal{F} \text{ are } m\text{-good with respect to } V_1) \leqslant \frac{1}{2b}$

- Partition V_1 to W_1, W_2, \ldots, W_x with equal size
- Iteratively replace each good $(S, \bigcup_{1 < i < j} W_i)$ pair with the guaranteed S'
- Bound the number of bad pairs by a key counting lemma & Markov's inequality
- Moving from S to S' reduces the set sizes at each step as $\bigcup_{1 < i < j} W_i$ expands

Final Step: $\mathbb{P}(V_1 \cup V_2 \text{ does not contain a set in } \mathcal{F} \mid \text{successful iteration}) < \frac{1}{2b}$

- ullet Construct an m-uniform \mathcal{F}' from sets in \mathcal{F} which are m-good with respect to V_1
- Apply Janson's Inequality with V_2 and \mathcal{F}' to bound $\mathbb{P}(\exists \ S \in \mathcal{F}' \ \text{s.t.} \ S \subseteq V_2)$

Note on Sunflowers