On the method of typical bounded differences

Lutz Warnke
Georgia Tech

WHAT IS THIS TALK ABOUT?

Motivation

Behaviour of a function of independent random variables ξ_{1}, \ldots, ξ_{n} :

$$
X=F\left(\xi_{1}, \ldots, \xi_{n}\right)
$$

- the random variable X often counts certain objects or events

Sharp concentration: $X \approx \mathbb{E} X$

In applications we usually aim at estimates of form

$$
\mathbb{P}(X \notin(1 \pm \varepsilon) \mathbb{E} X) \leq N^{-\omega(1)}
$$

- Replacing $N^{-\omega(1)}$ with $o(1)$ is frequently not good enough

Topic of his talk

Easy-to-check conditions which guarantee concentration

Chernoff-Bernstein type inequality (1952 and 1924)

Let $X=\left(X_{1}, \ldots X_{N}\right)$ be independent $0 / 1$ variables: $\mathbb{P}\left(X_{i}=1\right)=1 / 2$. For

$$
f(X)=\sum_{1 \leq i \leq N} X_{i}
$$

we have

$$
\mathbb{P}(|f(X)-\mathbb{E} f(X)| \geq t) \leq 2 e^{-t^{2} / N}
$$

Concentration follows:

- $|X-\mathbb{E} X| \leq N^{1 / 2+o(1)}$ with probability $1-N^{-\omega(1)}$

Setting of this talk

Similar result when $f(X)$ is a more complicated function of the X_{i}

CLASSICAL INEQUALITY

Bounded differences inequality (McDiarmid, 1989)

Lipschitz-condition: whenever x, \tilde{x} differ in one coordinate,

$$
|f(x)-f(\tilde{x})| \leq c
$$

If $X=\left(X_{1}, \ldots, X_{N}\right)$ are independent random variables, then

$$
\mathbb{P}(|f(X)-\mathbb{E} f(X)| \geq t) \leq 2 e^{-t^{2} / 2 N c^{2}}
$$

Concentration follows:

- $|f(X)-\mathbb{E} f(X)| \leq c N^{1 / 2+o(1)}$ with probability $1-N^{-\omega(1)}$

Intuitively: this bound can't be sharp???

- Large 'worst case' changes should be irrelevant
- Smaller 'typical' changes should matter

NEW INEQUALITY

Typical bounded differences inequality (simplified, W.)

Typical event Γ :

$$
\mathbb{P}(X \in \Gamma) \geq 1-N^{-\omega(1)}
$$

Typical Lipschitz-condition: if $x \in \Gamma$ and \tilde{x} differ in one coordinate,

$$
|f(x)-f(\tilde{x})| \leq c
$$

If $|f(X)| \leq N^{O(1)}$, then for independent $X=\left(X_{1}, \ldots, X_{N}\right)$ we have

$$
\mathbb{P}(|f(X)-\mathbb{E} f(X)| \geq t) \leq 2 e^{-t^{2} / 3 N c^{2}}+N^{-\omega(1)}
$$

Punchline for concentration:

- can replace worst case changes by typical changes (which makes heuristic considerations rigorous)

NEW INEQUALITY

Typical bounded differences inequality (simplified, W.)

Typical event Γ :

$$
\mathbb{P}(X \in \Gamma) \geq 1-N^{-\omega(1)}
$$

Typical Lipschitz-condition: if $x \in \Gamma$ and \tilde{x} differ in one coordinate,

$$
|f(x)-f(\tilde{x})| \leq c
$$

If $|f(X)| \leq N^{O(1)}$, then for independent $X=\left(X_{1}, \ldots, X_{N}\right)$ we have

$$
\mathbb{P}(|f(X)-\mathbb{E} f(X)| \geq t) \leq 2 e^{-t^{2} / 3 N c^{2}}+N^{-\omega(1)}
$$

Remarks:

- $|f(X)-\mathbb{E} f(X)| \leq c N^{1 / 2+o(1)}$ with probability $1-N^{-\omega(1)}$
- Matches heuristics: c is now the 'typical change'
- Conditions fairly intuitive and easy-to-check

NEW INEQUALITY

Typical bounded differences inequality (simplified, W.)

Typical event Γ :

$$
\mathbb{P}(X \in \Gamma) \geq 1-N^{-\omega(1)}
$$

Typical Lipschitz-condition: if $x \in \Gamma$ and \tilde{x} differ in one coordinate,

$$
|f(x)-f(\tilde{x})| \leq c
$$

If $|f(X)| \leq N^{O(1)}$, then for independent $X=\left(X_{1}, \ldots, X_{N}\right)$ we have

$$
\mathbb{P}(|f(X)-\mathbb{E} f(X)| \geq t) \leq 2 e^{-t^{2} / 3 N c^{2}}+N^{-\omega(1)}
$$

'Naive guesses’ are wrong (in general):

- $\mathbb{P}(|f(X)-\mathbb{E} f(X)| \geq t \mid X \in \Gamma) \leq e^{-\Theta\left(t^{2} / N c^{2}\right)}$
- $\mathbb{P}(|f(X)-\mathbb{E} f(X)| \geq t) \leq e^{-\Theta\left(t^{2} / N c^{2}\right)}+\mathbb{P}(X \notin \Gamma)$
- $\mathbb{P}(|f(X)-\mathbb{E} f(X)| \geq t$ and $X \in \Gamma) \leq e^{-\Theta\left(t^{2} / N c^{2}\right)}$

Applications

It seems to be a convenient tool (e.g., to simplify/shorten proofs)
Some applications of the typical bounded differences inequality

- Additive combinatorics

Sum-free subsets in abelian groups (Morris et. al)

- Probabilistic combinatorics

Phase transition in random graph coloring (Coja-Oghlan et. al)

- Theoretical computer science

Average case analysis of eucledian functions (de Graaf-Manthey)

- Random graph processes
H-free graphs (W.)
- Applied mathematics/Electrical engineering Error-correcting codes (Häger et. al)
- ???

Please try your favourite problem...

APPLICATION: H-FREE GRAPHS

Reverse H-free process (ends with H-free graph)

- Start with a complete graph K_{n} on n vertices
- In each step: a random edge is removed, chosen uniformly from all edges that are contained in a copy of H
- Motivation: applications to Ramsey/Turán theory

Question of Bollobás-Erdős (1990)

What is the typical final number of edges $M=M(n, H)$?

Some answers: the final number of edges is

- Makai: whp $M \sim C_{H} n^{2-1 / d_{2}(H)}$ for strictly 2-balanced H
- Warnke: whp $M \sim \mathbb{E} M=\Theta\left(n^{2-1 / d_{2}(H)}\right)$ for 2-balanced H

Results for the Bollobás-Erdős Question

Reverse H-free process: the final number of edges is

- Makai: whp $M \sim c_{H} n^{2-1 / d_{2}(H)}$ for strictly 2-balanced H
- Warnke: whp $M \sim \mathbb{E} M=\Theta\left(n^{2-1 / d_{2}(H)}\right)$ for 2-balanced H
- Surprise: can analyze process without differential equation method!

Proof approaches

- Makai: delicate first and second moment arguments (using FKG, Janson+Suen inequalities to evaluate $\mathbb{E} M^{2}$)
- Warnke: using TBD-inequality it is enough to calculate $\mathbb{E M}$ (we can routinely 'override' the weak dependencies)

Reverse H-free process (alternative definition)

Order edges of complete graph K_{n} uniformly at random $\left(e_{1}, e_{2}, \ldots\right)$. Start with complete graph K_{n} and process edges sequentially $\left(\begin{array}{c}\binom{n}{2}\end{array}, \ldots\right)$: remove edge if and only if it currently lies in a copy of H

Key observation (due to Makai + Erdős-Suen-Winkler)

The decision whether e_{j} is removed depends only on $\left(e_{i}\right)_{1 \leq i \leq j}$

- Proof sketch: if e_{j} lies in a copy of H that contains edges e_{i} with $i>j$, then one of these would have been removed by the process

Surprising consequence

e_{j} in final graph iff it closes no copy of H together with $\left(e_{i}\right)_{1 \leq i<j}$

- Note: $\left\{e_{1}, \ldots, e_{m}\right\} \equiv G_{n, m}$, i.e., the uniform random graph

SMALL TYPICAL CHANGES (2/2)

Sketch of the argument for $H=K_{3}$ (triangle)

$$
G_{n, m} \equiv\left\{e_{1}, \ldots, e_{m}\right\}
$$

e_{j} in final graph iff it closes no copy of K_{3} together with $\left(e_{i}\right)_{1 \leq i<j}$
Standard facts for $G_{n, m^{*}}$ with $m^{*}=n^{3 / 2}(\log n)^{2}$

- Wvhp every edge of $G_{n, m^{*}}$ lies in at least one copy of K_{3}
- Wvhp every pair of vertices has codegree at most $\leq(\log n)^{5}$

Simple proof: concentration of the final number of edges

- Enough to study $\left(e_{i}\right)_{1 \leq i \leq m^{*}}$, i.e., first m^{*} edges
- Small typical changes: each edge influences $O\left((\log n)^{5}\right)$ other edges
- Typical bounded differences inequality routinely shows concentration (it also applies to $G_{n, m}$ or random permutations)

SUMMARY

Typical bounded differences inequality (punchline)

For establishing concentration via the bounded-differences approach, we can often replace the worst case changes by the typical changes

Remarks:

- Typical changes coincide with heuristics (whether concentration holds)
- Conditions fairly intuitive and easy-to-check
- Paper contains more power/flexible version of the inequality

Open Problem

More applications?

