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What is this talk about?

Motivation

Behaviour of a function of independent random variables ξ1, . . . , ξn:

X = F (ξ1, . . . , ξn)

the random variable X often counts certain objects or events

Sharp concentration: X ≈ EX
In applications we usually aim at estimates of form

P(X 6∈ (1± ε)EX ) ≤ N−ω(1)

Replacing N−ω(1) with o(1) is frequently not good enough

Topic of his talk

Easy-to-check conditions which guarantee concentration



Toy-Example: Sums of iid Indicators

Chernoff–Bernstein type inequality (1952 and 1924)

Let X = (X1, . . .XN) be independent 0/1 variables: P(Xi = 1) = 1/2. For

f (X ) =
∑

1≤i≤NXi

we have
P(|f (X )− Ef (X )| ≥ t) ≤ 2e−t2/N

Concentration follows:

|X − EX | ≤ N1/2+o(1) with probability 1− N−ω(1)

Setting of this talk

Similar result when f (X ) is a more complicated function of the Xi



Classical inequality

Bounded differences inequality (McDiarmid, 1989)

Lipschitz-condition: whenever x , x̃ differ in one coordinate,

|f (x)− f (x̃)| ≤ c

If X = (X1, . . . ,XN) are independent random variables, then

P(|f (X )− Ef (X )| ≥ t) ≤ 2e−t2/2Nc2

Concentration follows:

|f (X )− Ef (X )| ≤ cN1/2+o(1) with probability 1− N−ω(1)

Intuitively: this bound can’t be sharp???

Large ‘worst case’ changes should be irrelevant

Smaller ‘typical’ changes should matter



New inequality

Typical bounded differences inequality (simplified, W.)

Typical event Γ:

P(X ∈ Γ) ≥ 1− N−ω(1)

Typical Lipschitz-condition: if x ∈ Γ and x̃ differ in one coordinate,

|f (x)− f (x̃)| ≤ c

If |f (X )| ≤ NO(1), then for independent X = (X1, . . . ,XN) we have

P(|f (X )− Ef (X )| ≥ t) ≤ 2e−t2/3Nc2
+ N−ω(1)

Punchline for concentration:

can replace worst case changes by typical changes
(which makes heuristic considerations rigorous)



New inequality

Typical bounded differences inequality (simplified, W.)

Typical event Γ:

P(X ∈ Γ) ≥ 1− N−ω(1)

Typical Lipschitz-condition: if x ∈ Γ and x̃ differ in one coordinate,

|f (x)− f (x̃)| ≤ c

If |f (X )| ≤ NO(1), then for independent X = (X1, . . . ,XN) we have

P(|f (X )− Ef (X )| ≥ t) ≤ 2e−t2/3Nc2
+ N−ω(1)

Remarks:

|f (X )− Ef (X )| ≤ cN1/2+o(1) with probability 1− N−ω(1)

Matches heuristics: c is now the ‘typical change’

Conditions fairly intuitive and easy-to-check



New inequality

Typical bounded differences inequality (simplified, W.)

Typical event Γ:

P(X ∈ Γ) ≥ 1− N−ω(1)

Typical Lipschitz-condition: if x ∈ Γ and x̃ differ in one coordinate,

|f (x)− f (x̃)| ≤ c

If |f (X )| ≤ NO(1), then for independent X = (X1, . . . ,XN) we have

P(|f (X )− Ef (X )| ≥ t) ≤ 2e−t2/3Nc2
+ N−ω(1)

‘Naive guesses’ are wrong (in general):

P(|f (X )− Ef (X )| ≥ t | X ∈ Γ) ≤ e−Θ(t2/Nc2)

P(|f (X )− Ef (X )| ≥ t) ≤ e−Θ(t2/Nc2) + P(X 6∈ Γ)

P(|f (X )− Ef (X )| ≥ t and X ∈ Γ) ≤ e−Θ(t2/Nc2)



Applications

It seems to be a convenient tool (e.g., to simplify/shorten proofs)

Some applications of the typical bounded differences inequality

Additive combinatorics
Sum-free subsets in abelian groups (Morris et. al)

Probabilistic combinatorics
Phase transition in random graph coloring (Coja-Oghlan et. al)

Theoretical computer science
Average case analysis of eucledian functions (de Graaf–Manthey)

Random graph processes
H-free graphs (W.)

Applied mathematics/Electrical engineering
Error-correcting codes (Häger et. al)

???
Please try your favourite problem...



Application: H-free graphs

Reverse H-free process (ends with H-free graph)

Start with a complete graph Kn on n vertices

In each step: a random edge is removed, chosen uniformly from
all edges that are contained in a copy of H

Motivation: applications to Ramsey/Turán theory

Question of Bollobás–Erdős (1990)

What is the typical final number of edges M = M(n,H)?

Some answers: the final number of edges is

Makai: whp M ∼ cHn
2−1/d2(H) for strictly 2-balanced H

Warnke: whp M ∼ EM = Θ(n2−1/d2(H)) for 2-balanced H



Results for the Bollobás–Erdős Question

Reverse H-free process: the final number of edges is

Makai: whp M ∼ cHn
2−1/d2(H) for strictly 2-balanced H

Warnke: whp M ∼ EM = Θ(n2−1/d2(H)) for 2-balanced H

Surprise: can analyze process without differential equation method!

Proof approaches

Makai: delicate first and second moment arguments
(using FKG, Janson+Suen inequalities to evaluate EM2)

Warnke: using TBD-inequality it is enough to calculate EM
(we can routinely ‘override’ the weak dependencies)



Small typical changes (1/2)

Reverse H-free process (alternative definition)

Order edges of complete graph Kn uniformly at random (e1, e2, . . .).
Start with complete graph Kn and process edges sequentially (e(n2)

, . . .):

remove edge if and only if it currently lies in a copy of H

Key observation (due to Makai + Erdős–Suen–Winkler)

The decision whether ej is removed depends only on (ei )1≤i≤j

Proof sketch: if ej lies in a copy of H that contains edges ei with
i > j , then one of these would have been removed by the process

Surprising consequence

ej in final graph iff it closes no copy of H together with (ei )1≤i<j

Note: {e1, . . . , em} ≡ Gn,m, i.e., the uniform random graph



Small typical changes (2/2)

Sketch of the argument for H = K3 (triangle)

Gn,m ≡ {e1, . . . , em}

ej in final graph iff it closes no copy of K3 together with
(
ei
)

1≤i<j

Standard facts for Gn,m∗ with m∗ = n3/2(log n)2

Wvhp every edge of Gn,m∗ lies in at least one copy of K3

Wvhp every pair of vertices has codegree at most ≤ (log n)5

Simple proof: concentration of the final number of edges

Enough to study
(
ei
)

1≤i≤m∗ , i.e., first m∗ edges

Small typical changes: each edge influences O((log n)5) other edges

Typical bounded differences inequality routinely shows concentration
(it also applies to Gn,m or random permutations)



Summary

Typical bounded differences inequality (punchline)

For establishing concentration via the bounded-differences approach,
we can often replace the worst case changes by the typical changes

Remarks:

Typical changes coincide with heuristics (whether concentration holds)

Conditions fairly intuitive and easy-to-check

Paper contains more power/flexible version of the inequality

Open Problem

More applications?


