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WHAT IS THIS TALK ABOUT?

Behaviour of a function of independent random variables &1, ..., &,:

X =F(,...,&n)

@ the random variable X often counts certain objects or events

Sharp concentration: X ~ EX

In applications we usually aim at estimates of form

P(X & (1+¢e)EX) < N~

o Replacing N=“() with o(1) is frequently not good enough

Topic of his talk
Easy-to-check conditions which guarantee concentration




Tovy-EXAMPLE: SUMS OF IID INDICATORS

Chernoff-Bernstein type inequality (1952 and 1924)
Let X = (Xi,...Xn) be independent 0/1 variables: P(X; = 1) = 1/2. For

f(X)= ZlgigNXi

we have ,
P(|f(X) — Ef(X)| > t) < 2e"t/N

Concentration follows:
o |[X —EX| < NY/2+°() with probability 1 — N—«(1)

Setting of this talk

Similar result when f(X) is a more complicated function of the X;




CLASSICAL INEQUALITY

Bounded differences inequality (McDiarmid, 1989)
Lipschitz-condition: whenever x, X differ in one coordinate,

[f(x) —f(X)| < ¢
If X = (Xi,...,Xn) are independent random variables, then
P(|f(X) — Ef(X)| > t) < 2¢7/2N¢

Concentration follows:
o |f(X)—Ef(X)| < cNV/2+o(1) with probability 1 — N~«(1)

Intuitively: this bound can’t be sharp???
o Large ‘worst case’ changes should be irrelevant
@ Smaller ‘typical’ changes should matter



NEW INEQUALITY

Typical bounded differences inequality (simplified, W.)

Typical event I:
P(X el)>1—- N
Typical Lipschitz-condition: if x € [ and X differ in one coordinate,
[f(x) = f(X)| < c
If |F(X)| < N9, then for independent X = (Xi, ..., Xy) we have
P(|F(X) — EF(X)| > t) < 2~ /3Ne* 4 y—()

Punchline for concentration:

@ can replace worst case changes by typical changes
(which makes heuristic considerations rigorous)



NEW INEQUALITY

Typical bounded differences inequality (simplified, W.)

Typical event I:
P(Xel)>1- N0
Typical Lipschitz-condition: if x € [ and X differ in one coordinate,
F(x) — F(R)] <
If |F(X)| < N, then for independent X = (X, ..., Xy) we have
P(|f(X) — Ef(X)| > t) < 2e~t/3Ne* 4 (1)

Remarks:
o |f(X) —Ef(X)| < cN¥/?t°(1) with probability 1 — N—«(1)
@ Matches heuristics: ¢ is now the ‘typical change’
o Conditions fairly intuitive and easy-to-check



NEW INEQUALITY

Typical bounded differences inequality (simplified, W.)
Typical event I:

P(X el)>1—- N
Typical Lipschitz-condition: if x € [ and X differ in one coordinate,
[f(x) —f(X) < c
If |F(X)| < N9, then for independent X = (X1, ..., Xy) we have
P(|f(X) — Ef(X)| > t) < 2e~t/3Ne* 4 (1)

‘Naive guesses’ are wrong (in general):
o P(If(X)—EF(X)| >t | X €l) < e OF/N?)
o P(|f(X) —EF(X)| > t) < e ®E/N) L p(X ¢T)
o P(|f(X) —Ef(X)| >t and X €T) < e O(/Ne?)



APPLICATIONS

It seems to be a convenient tool (e.g., to simplify/shorten proofs)

Some applications of the typical bounded differences inequality

o Additive combinatorics
Sum-free subsets in abelian groups (Morris et. al)

o Probabilistic combinatorics

Phase transition in random graph coloring (Coja-Oghlan et. al)
@ Theoretical computer science

Average case analysis of eucledian functions (de Graaf-Manthey)
o Random graph processes

H-free graphs (W.)
e Applied mathematics/Electrical engineering

Error-correcting codes (Hager et. al)
° 77?7

Please try your favourite problem...




APPLICATION: H-FREE GRAPHS

Reverse H-free process (ends with H-free graph)

@ Start with a complete graph K, on n vertices

@ In each step: a random edge is removed, chosen uniformly from
all edges that are contained in a copy of H

e Motivation: applications to Ramsey/Turén theory

Question of Bollobas—Erdds (1990)

What is the typical final number of edges M = M(n, H)?

Some answers: the final number of edges is

o Makai: whp M ~ cyn? /%) for strictly 2-balanced H
o Warnke: whp M ~ EM = ©(n?>~/%(H)) for 2-balanced H




RESULTS FOR THE BOLLOBAS—ERDOS QUESTION

Reverse H-free process: the final number of edges is

o Makai: whp M ~ cyn® Y/ %) for strictly 2-balanced H
o Warnke: whp M ~ EM = ©(n?~/%(H)) for 2-balanced H

@ Surprise: can analyze process without differential equation method!

Proof approaches

@ Makai: delicate first and second moment arguments
(using FKG, Janson+Suen inequalities to evaluate EM?)

@ Warnke: using TBD-inequality it is enough to calculate EM
(we can routinely ‘override’ the weak dependencies)




SMALL TYPICAL CHANGES (1/2)

Reverse H-free process (alternative definition)

Order edges of complete graph K, uniformly at random (e1, ey, .. .).
Start with complete graph K|, and process edges sequentially (e(n), )
2

remove edge if and only if it currently lies in a copy of H

Key observation (due to Makai + Erdés—Suen—Winkler)

The decision whether e; is removed depends only on (ej)1<i<;j

@ Proof sketch: if ¢; lies in a copy of H that contains edges e; with
i > j, then one of these would have been removed by the process

Surprising consequence

ej in final graph iff it closes no copy of H together with (e;)1<i<;

o Note: {e1,...,em} = Gp m, i.e., the uniform random graph



SMALL TYPICAL CHANGES (2/2)

Sketch of the argument for H = K3 (triangle)

ej in final graph iff it closes no copy of K3 together with (e,-)1<,.<j

Standard facts for G, ,,- with m* = n3/%(log n)?
@ Wvhp every edge of G, = lies in at least one copy of K3
e Wvhp every pair of vertices has codegree at most < (log n)®

Simple proof: concentration of the final number of edges

@ Enough to study (e,-) i.e., first m* edges

1<i<m*’

e Small typical changes: each edge influences O((log n)®) other edges

@ Typical bounded differences inequality routinely shows concentration
(it also applies to Gp, , or random permutations)




SUMMARY

Typical bounded differences inequality (punchline)

For establishing concentration via the bounded-differences approach,
we can often replace the worst case changes by the typical changes

Remarks:
e Typical changes coincide with heuristics (whether concentration holds)
o Conditions fairly intuitive and easy-to-check
e Paper contains more power/flexible version of the inequality

Open Problem

More applications?




