On the method of typical bounded differences

Lutz Warnke Georgia Tech

WHAT IS THIS TALK ABOUT?

Motivation

Behaviour of a function of independent random variables ξ_1, \ldots, ξ_n :

$$X = F(\xi_1, \ldots, \xi_n)$$

• the random variable X often counts certain objects or events

Sharp concentration: $X \approx \mathbb{E}X$

In applications we usually aim at estimates of form $\mathbb{P}(X \not\in (1\pm \varepsilon)\mathbb{E}X) \leq N^{-\omega(1)}$

• Replacing $N^{-\omega(1)}$ with o(1) is frequently not good enough

Topic of his talk

Easy-to-check conditions which guarantee concentration

TOY-EXAMPLE: SUMS OF IID INDICATORS

Chernoff-Bernstein type inequality (1952 and 1924)

Let $X = (X_1, \dots, X_N)$ be independent 0/1 variables: $\mathbb{P}(X_i = 1) = 1/2$. For

$$f(X) = \sum_{1 \le i \le N} X_i$$

we have

$$\mathbb{P}(|f(X) - \mathbb{E}f(X)| \geq t) \leq 2e^{-t^2/N}$$

Concentration follows:

•
$$|X-\mathbb{E}X| \leq \mathsf{N}^{1/2+o(1)}$$
 with probability $1-\mathsf{N}^{-\omega(1)}$

Setting of this talk

Similar result when f(X) is a more complicated function of the X_i

Bounded differences inequality (McDiarmid, 1989)

Lipschitz-condition: whenever x, \tilde{x} differ in one coordinate,

$$|f(x)-f(\tilde{x})|\leq c$$

If $X = (X_1, \ldots, X_N)$ are independent random variables, then $\mathbb{P}(|f(X) - \mathbb{E}f(X)| \ge t) \le 2e^{-t^2/2Nc^2}$

Concentration follows:

• $|f(X) - \mathbb{E}f(X)| \le c N^{1/2 + o(1)}$ with probability $1 - N^{-\omega(1)}$

Intuitively: this bound can't be sharp???

- Large 'worst case' changes should be irrelevant
- Smaller 'typical' changes should matter

Typical bounded differences inequality (simplified, W.)

Typical event Γ:

$$\mathbb{P}(X \in \Gamma) \geq 1 - N^{-\omega(1)}$$

Typical Lipschitz-condition: if $x \in \Gamma$ and \tilde{x} differ in one coordinate,

$$|f(x) - f(\tilde{x})| \leq c$$

If $|f(X)| \leq N^{O(1)}$, then for independent $X = (X_1, \dots, X_N)$ we have $\mathbb{P}(|f(X) - \mathbb{E}f(X)| \geq t) \leq 2e^{-t^2/3Nc^2} + N^{-\omega(1)}$

Punchline for concentration:

• can replace worst case changes by typical changes (which makes heuristic considerations rigorous)

Typical bounded differences inequality (simplified, W.)

Typical event Γ:

$$\mathbb{P}(X \in \Gamma) \geq 1 - N^{-\omega(1)}$$

Typical Lipschitz-condition: if $x \in \Gamma$ and \tilde{x} differ in one coordinate,

$$|f(x)-f(\tilde{x})|\leq c$$

If $|f(X)| \leq N^{O(1)}$, then for independent $X = (X_1, \dots, X_N)$ we have $\mathbb{P}(|f(X) - \mathbb{E}f(X)| \geq t) \leq 2e^{-t^2/3Nc^2} + N^{-\omega(1)}$

Remarks:

- $|f(X) \mathbb{E}f(X)| \leq c N^{1/2+o(1)}$ with probability $1 N^{-\omega(1)}$
- Matches heuristics: c is now the 'typical change'
- Conditions fairly intuitive and easy-to-check

Typical bounded differences inequality (simplified, W.)

Typical event Γ:

$$\mathbb{P}(X \in \Gamma) \geq 1 - N^{-\omega(1)}$$

Typical Lipschitz-condition: if $x \in \Gamma$ and \tilde{x} differ in one coordinate,

$$|f(x)-f(\tilde{x})|\leq c$$

If $|f(X)| \leq N^{O(1)}$, then for independent $X = (X_1, \dots, X_N)$ we have $\mathbb{P}(|f(X) - \mathbb{E}f(X)| \geq t) \leq 2e^{-t^2/3Nc^2} + N^{-\omega(1)}$

'Naive guesses' are wrong (in general):

•
$$\mathbb{P}(|f(X) - \mathbb{E}f(X)| \ge t \mid X \in \Gamma) \le e^{-\Theta(t^2/Nc^2)}$$

•
$$\mathbb{P}(|f(X) - \mathbb{E}f(X)| \ge t) \le e^{-\Theta(t^2/Nc^2)} + \mathbb{P}(X \not\in \Gamma)$$

•
$$\mathbb{P}(|f(X) - \mathbb{E}f(X)| \ge t \text{ and } X \in \Gamma) \le e^{-\Theta(t^2/Nc^2)}$$

It seems to be a convenient tool (e.g., to simplify/shorten proofs)

Some applications of the typical bounded differences inequality

• Additive combinatorics

Sum-free subsets in abelian groups (Morris et. al)

- **Probabilistic combinatorics** Phase transition in random graph coloring (Coja-Oghlan et. al)
- Theoretical computer science Average case analysis of eucledian functions (de Graaf-Manthey)
- Random graph processes *H*-free graphs (W.)
- Applied mathematics/Electrical engineering Error-correcting codes (Häger et. al)
- ???

Please try your favourite problem...

Application: H-free graphs

Reverse *H*-free process (ends with *H*-free graph)

- Start with a complete graph K_n on n vertices
- In each step: a random edge is *removed*, chosen uniformly from all edges that are *contained* in a copy of *H*
 - Motivation: applications to Ramsey/Turán theory

Question of Bollobás-Erdős (1990)

What is the typical final number of edges M = M(n, H)?

Some answers: the final number of edges is

- Makai: whp $M \sim c_H n^{2-1/d_2(H)}$ for strictly 2-balanced H
- Warnke: whp $M \sim \mathbb{E}M = \Theta(n^{2-1/d_2(H)})$ for 2-balanced H

Reverse *H*-free process: the final number of edges is

- Makai: whp $M \sim c_H n^{2-1/d_2(H)}$ for strictly 2-balanced H
- Warnke: whp $M \sim \mathbb{E}M = \Theta(n^{2-1/d_2(H)})$ for 2-balanced H
 - Surprise: can analyze process without differential equation method!

Proof approaches

 Makai: delicate first and second moment arguments (using FKG, Janson+Suen inequalities to evaluate EM²)
Warnke: using TBD-inequality it is enough to calculate EM (we can routinely 'override' the weak dependencies)

Reverse *H*-free process (alternative definition)

Order edges of complete graph K_n uniformly at random $(e_1, e_2, ...)$. Start with complete graph K_n and process edges sequentially $(e_{\binom{n}{2}}, ...)$: remove edge if and only if it currently lies in a copy of H

Key observation (due to Makai + Erdős–Suen–Winkler)

The decision whether e_j is removed depends only on $(e_i)_{1 \le i \le j}$

• Proof sketch: if e_j lies in a copy of H that contains edges e_i with i > j, then one of these would have been removed by the process

Surprising consequence

 e_j in final graph iff it closes *no* copy of *H* together with $(e_i)_{1 \le i < j}$

• Note: $\{e_1, \ldots, e_m\} \equiv G_{n,m}$, i.e., the uniform random graph

Small typical changes (2/2)

Sketch of the argument for $H = K_3$ (triangle)

$G_{n,m} \equiv \{e_1,\ldots,e_m\}$

 e_j in final graph iff it closes *no* copy of K_3 together with $\left(e_i\right)_{1 < i < j}$

Standard facts for G_{n,m^*} with $m^* = n^{3/2} (\log n)^2$

- Wvhp every edge of G_{n,m^*} lies in at least one copy of K_3
- Wvhp every pair of vertices has codegree at most $\leq (\log n)^5$

Simple proof: concentration of the final number of edges

- Enough to study $(e_i)_{1 \le i \le m^*}$, i.e., first m^* edges
- Small typical changes: each edge influences $O((\log n)^5)$ other edges
- Typical bounded differences inequality *routinely* shows concentration (it also applies to $G_{n,m}$ or random permutations)

Typical bounded differences inequality (punchline)

For establishing *concentration* via the bounded-differences approach, we can often replace the worst case changes by the typical changes

Remarks:

- Typical changes coincide with heuristics (whether concentration holds)
- Conditions fairly intuitive and easy-to-check
- Paper contains more power/flexible version of the inequality

Open Problem

More applications?