A Counterexample to the DeMarco-Kahn Upper Tail Conjecture

Lutz Warnke Georgia Tech

Joint work with Matas Šileikis, Czech Academy of Sciences (who created most of these slides)

Random Structures & Algorithms 2019, Zürich

Subgraph counts: concentration

- ▶ Fixed ("small") graph H: v_H vertices, e_H edges
- X_H = number of copies of H in $\mathbb{G}(n, p)$

• Expected number of copies:

$$\mu_H := \mathbb{E}X_H = \Theta(n^{v_H} p^{e_H}), \quad n \to \infty.$$

▶ Basic concentration result (Bollobás 1981): $\min_{G \subseteq H} \mu_G \to \infty$ implies $X_H \sim \mu_H$ with high probability Subgraph counts: large deviations

• How fast
$$\mathbb{P}(|X_H - \mu_H| \ge \varepsilon \mu_H) \to 0$$
 for a fixed $\varepsilon > 0$?

Lower tail problem: asymptotics of

 $-\log \mathbb{P}\left(X_H \le (1-\varepsilon)\mu_H\right)$

▶ Upper tail problem: asymptotics of

 $-\log \mathbb{P}\left(X_H \ge (1+\varepsilon)\mu_H\right)$

Symmetric special case edge $H = K_2$: X_H binomial \rightarrow each tail $\Theta(\varepsilon^2 \binom{n}{2}p)$ by Chernoff bounds

The asymmetry of tails: triangle example

▶ Triangle lower tail (Janson–Łuczak–Ruciński 1988):

$$\mathbb{P}\left(X_{K_3} \le \frac{1}{2}\mu_{K_3}\right) = \exp\left(-\Theta(\min\{n^3p^3, n^2p\})\right)$$

▶ Vu 2004: if $K_m \subseteq \mathbb{G}(n,p)$ with m = Cnp (large enough C),

$$X_{K_3} \ge \binom{m}{3} \ge 2\binom{n}{3}p^3$$

► Since K_m has $\binom{m}{2} = \Theta(n^2 p^2)$ edges, triangle upper tail: $\mathbb{P}(X_{K_3} \ge 2\mu_{K_3}) \ge \mathbb{P}(K_m \subseteq \mathbb{G}(n, p))$ $= p^{\binom{m}{2}} = \exp\left(-\Theta(n^2 p^2 \log(1/p))\right)$

• Asymmetry of both tails when $np \gg \log n$ and $p \to 0$:

$$(np)^2 \log(1/p) = o(\min\{(np)^3, n^2p\})$$

Upper tail: clustered-type bounds

Theorem (Janson–Oleszkiewicz–Ruciński 2004) There is a function $M_H^* = M_H^*(n, p)$ such that

$$\exp\left(-O(M_H^*\log(1/p))\right) \le \mathbb{P}\left(X_H \ge 2\mu_H\right) \le \exp\left(-\Omega(M_H^*)\right)$$

- ► Lower bound: boost expectation of X_H by planting graph F which contains $100\mu_G$ copies of some subgraph $G \subseteq H$.
- Lower bound is essentially $p^{e(F)}$, hence the $\log(1/p)$
- ▶ Upper bound: careful moment calculation + optimization
- ▶ If H is k-regular (e.g., clique, cycle), then $M_H^* \asymp n^2 p^k$

Another lower bound for upper tail: disjoint copies

▶ Recall: for triangle K_3 , a 'clustered' construction gives

$$\mathbb{P}\left(X_{K_3} \ge 2\mu_{K_3}\right) \ge \exp\left(-O(n^2 p^2 \log(1/p))\right)$$

▶ DeMarco and Kahn 2011: for p not too big

$$\mathbb{P}(X_{K_3} \ge 2\mu_{K_3}) \ge \mathbb{P}(2\mu_{K_3} \text{ vertex-disjoint triangles})$$
$$= \exp\left(-\Theta(n^3 p^3)\right)$$

Disjoint bound better than *clustered bound* when p ≤ log n/n.
 In general: counting disjoint copies of some *subgraph* gives

$$\mathbb{P}\left(X_H \ge 2\mu_H\right) \ge \exp\left(-\Theta(\min_{G \subseteq H} \mu_G)\right)$$

DeMarco–Kahn Upper Tail Conjecture

 $\begin{array}{l} \text{Conjecture (DeMarco-Kahn 2011)} \\ & -\log \mathbb{P}\left(\mathbf{X}_{\mathbf{H}} \geq \mathbf{2}\mu_{\mathbf{H}}\right) \asymp \min \Big\{ \min_{\mathbf{G} \subseteq \mathbf{H}} \mu_{\mathbf{G}}, \ \mathbf{M}_{\mathbf{H}}^* \log(1/p) \Big\} \end{array}$

- Sparse mechanism: many disjoint copies of some G ⊆ H
 Dense mechanism: many clustered copies of some G ⊆ H
- Consistent with key principle of Large deviation theory:
 "Deviation happens in most likely of all unlikely ways"

DeMarco–Kahn Upper Tail Conjecture: known cases

Conjecture (DeMarco–Kahn 2011)

 $-\log \mathbb{P}\left(X_H \ge 2\mu_H\right) \asymp \min\left\{\min_{G \subseteq H} \mu_G, \ M_H^* \log(1/p)\right\}$

•
$$H = K_k$$
 (DeMarco–Kahn 2012)

- $H = K_{1,k}$ (Šileikis–Warnke 2019+)
- $\blacktriangleright H = C_k \text{ (Raz 2019+)}$
- ► Numerous tremendous results for $p \ge n^{-\alpha_H}$ (Chatterjee–Dembo, Lubetzky-Zhao, Dembo–Cook, ...)

Disproof of DeMarco–Kahn Upper Tail Conjecture

Conjecture (DeMarco–Kahn 2012) For every H there is $H_0 \subseteq H$ such that

 $-\log \mathbb{P}\left(X_H \ge 2\mu_H\right) \asymp \min\left\{\mu_{H_0}, \ M_H^* \log(1/p)\right\}$

Theorem (Sileikis–Warnke 2019+) For infinitely many connected H there is $c = c(H) \in (0, 1)$ s.t.

 $-\log \mathbb{P}(X_H \ge 2\mu_H) \le C \min\{(\mu_{H_0})^c \log \mu_{H_0}, \ M_H^* \log(1/p)\}$

▶ DeMarco–Kahn conjecture fails when $\mu_{H_0} \to \infty$ slowly

The smallest counterexample (that we have)

▶ Close to the threshold the DeMarco–Kahn conjecture says

$$-\log \mathbb{P}\left(X_H \ge 2\mu_H\right) \asymp \mu_{K_3} \asymp (np)^3$$

- (i) Expose edges on small subset of vertices, choose some vertex v in some triangle
- (ii) Expose remaining edges; suppose v has $> (np)^{5/2}$ neighbours
 - This gives $> {\binom{(np)^{5/2}}{2}} \ge 2\mu_H$ copies of H
 - ▶ Since $(np)^{5/2} \gg np$, Stirlings' formula implies:

$$\mathbb{P}\left(\operatorname{Bin}(n,p) \ge (np)^{5/2}\right) \ge \exp\left(-\Theta\left((np)^{5/2}\log(np)\right)\right)$$

DeMarco-Kahn Conjecture: zoo of counterexamples

p. 11 of 12

DeMarco–Kahn Conjecture: tricky counterexamples

 \boldsymbol{p} just above threshold

Slightly higher p