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WHAT IS THIS TALK ABOUT?

Behaviour of a function of independent random variables &1, ..., &pn:

X = F(gla'-')gN)

@ The random variable X often counts the number of certain objects

Tail estimates

Want exponential bounds for the lower/upper tail:

P(X < (1-€)EX) and P(X > (1+¢)EX)

@ Allow us to show that whp X ~ EX
@ Exponential decay useful in union bound arguments

Topic of his talk

Some best possible upper tail estimates (exponentially small)




UPPER TAIL IS MORE INTERESTING

Lower tail: P(X < (1 —¢)EX)

Janson's + Suen's inequality give good upper bounds

@ Janson’s inequality often best possible (lower bounds of Janson-W.)

Upper tail: P(X > (1 + ¢)EX)

Best methods often leave logarithmic gap factors in the exponent, e.g.,

exp(—C\U Iog(l/p)) <P(X > 2EX) < exp(—clll),

@ Moment based method of Janson—Oleszkiewicz—Rucirski
e Closing the gap is technical challenge (‘infamous upper tail problem’)



UPPER TAIL IS MORE INTERESTING

Upper tail: P(X > (1 + ¢)EX)

Best methods often leave logarithmic gap factors in the exponent, e.g.,

exp(—cw |og(1/p)) < P(X > 2EX) < exp(—c\u),

@ Moment based method of Janson—Oleszkiewicz—Ruciriski
e Closing the gap is technical challenge (‘infamous upper tail problem’)

Why should we care?

@ Natural probability question in concentration of measure

@ Requires deeper understanding of the problem (how X > 2EX arises)
e Extra log(1/p) might help in removing log-factors from other results
@ Test /develop methods for proving concentration inequalities




CASE STUDY: ARITHMETIC PROGRESSIONS

[n], = random subset: j € [n] included independently with probability p
X = number of k-term arithmetic progressions in [n],

Lower tail: exponential decay
Janson'’s inequality + Janson-W. result (lower bound) gives

P(X < (1 - 2)EX) = exp(—@(sz) min{EX, E|[n]p|})

Upper tail: logarithmic gap
Janson—Rucinski obtained via a moment-based method

exp(—C@/ﬁlog(l/p)) <P(X > (1+¢)EX) < exp(—cax/ﬁ)




CASE STUDY: ARITHMETIC PROGRESSIONS

[n], = random subset: j € [n] included independently with probability p
X = number of k-term arithmetic progressions in [n],

Upper tail: logarithmic gap
Janson—Rucinski obtained via a moment-based method

exp(—C.VEX log(1/p)) < B(X > (1+€)EX) < exp(—c.VEX)

Resolving the tail behavior of k-term APs (W. 2013+ )

We establish the missing logarithm using new techniques:
P(X > (1+¢)EX) = exp(—@(l) min{EX, VEX Iog(l/p)}),

and can also recover the ‘correct’ dependence on ¢




WHY ARE LOWER AND UPPER TAILS SO DIFFERENT?

Lower and upper tails are quite different (for k-term APs)

Ignoring polylogarithmic factors:
—log P(X < 0.5EX) = min{EX, E|[n],|} = min{n?p*, np}
—log P(X > 2EX) = VEX = npk/?

One conceptual key difference

@ Can create many APs by adding small interval [m] = {1,..., m}

@ Can not significantly reduce number of APs by removing few elements
(extreme case: all/most numbers contained in only O(1) APs)

Take-home message
@ Lower tail mainly governed by ‘global behaviour’
@ Upper tail mainly governed by ‘local behaviour’



FLAVOUR OF OUR RESULTS

Intuitive punchline of our results (W. 2015+)

Assume that basic application of Kim—Vu gives
P(X > 2EX) < exp (—C(EX)l/q) .
Then under some additional ‘strictly-balanced-like condition’ we obtain

P(X > 2EX) < exp (—c min{EX, (EX)!/9 |og(1/p)}) .

Improvement conceptually important

@ Exponential decay best possible for additive combinatorics examples
@ The ‘strictly-balanced’ condition can not be dropped

@ Proof develops new tools/ideas for obtaining extra logarithmic factor



FLAVOUR OF OUR RESULTS

Intuitive punchline of our results (W. 2015+)

Assume that basic application of Kim—Vu gives
P(X > 2EX) < exp (—C(EX)l/q) .
Then under some additional ‘strictly-balanced-like condition’ we obtain

P(X > 2EX) < exp (—c min{EX, (EX)Y/9 Iog(l/p)}) .

Best possible for examples in additive combinatorics:
@ k-term arithmetic progressions

@ Schur triples (x1 + x2 = x3)

e Additive quadruples (x1 + x2 = y1 + y2)

o (r,s)-sums (xg+ -+ X, =y1+ -+ Ys)



FLAVOUR OF OUR RESULTS

Intuitive punchline of our results (W. 2015+)

Assume that basic application of Kim—Vu gives
P(X > 2EX) < exp (—C(EX)l/q) .
Then under some additional ‘strictly-balanced-like condition’ we obtain

P(X > 2EX) < exp (—c min{EX, (EX)!/9 |og(1/p)}) .

The ‘strictly-balanced’ condition can not be dropped:

@ There are families of examples where exponent is of order (EX)'/9,
i.e., we do not have an extra logarithmic factor



FLAVOUR OF OUR RESULTS

Intuitive punchline of our results (W. 2015+)

Assume that basic application of Kim—Vu gives
P(X > 2EX) < exp (—C(EX)l/q) .
Then under some additional ‘strictly-balanced-like condition’ we obtain

P(X > 2EX) < exp (—c min{EX, (EX)Y/q Iog(l/p)}) .

Exponent resembles two different behaviours:
@ Poisson behaviour: exp(—CIEX)
o ‘Clustered behaviour': exp(—c(EX)Y9log(1/p)) = peEX)!/



PROOF SETUP

We take a combinatorial point of view to concentration (no induction)

Random induced subhypergraph
Given a k-uniform hypergraph # with vertex set V' = [n], let

HP:H[VP]’

i.e., hypergraph induced by random subset V), := [n], of the vertices

| A

Counting the number of edges
Many counting problems can be written as

X =e(Hp)

Example: k-term arithmetic progressions

Edge set: k-element subsets of [n] corresponding to arithm. progressions




PROOF STRATEGY (1/2)

Our approach relies on a blend of combinatorial + probabilistic arguments

High-level proof strategy
1. Define good events G; which imply that X = e(#,) is small:

all G hold = X < (1+¢)EX

2. Show that these ‘good’ events G; are very unlikely to fail:
P(some G; fails) < exp(—---)

3. Via 142 we then have
P(X > (1+¢)EX) < P(some G; fails) < exp(—---)




PROOF STRATEGY (2/2)

One exemplary ‘good event' (proof uses several)
For ALL F C H,, with small max-degree we have e(F) < (1 +¢/2)EX

@ In words: ALL subhypergraphs with small max-degree have few edges

Sparsification idea (simplified)

1. Use combinatorial arguments to gradually decrease the max-degree
/Hp:FIQFZQ"'Q-Fq—IQFq

2. '‘Good events' then ensure that the number of edges satisfies

X=eMp)= e(Fq) + D elFi\Fir1) < (1+€)EX

<
<(1+4e/2)EX \1*'<q

<eEX/2

A\




A SURPRISING INEQUALITY

One exemplary ‘good event' (proof uses several)
For all 7 C H, with small max-degree we have e(F) < (1+¢/2)EX

@ Statement for all subhypergraphs might seem too ambitious, but

A useful insight (W. 2013+)

We get Chernoff-like tail estimate for

P(there is F C Hp with A(F) < C and e(F) > p+t)

WITHOUT taking a union bound over all subhypergraphs 7 C H,

o Estimates for all 7 C H, enable additional combinatorial arguments



A SURPRISING+USEFUL INEQUALITY

One exemplary ‘good event' (proof uses several)
For all 7 C H,, with small max-degree we have e(F) < (1 +¢/2)EX

@ Statement for all subhypergraphs might seem too ambitious, but

Chernoff-like estimate for all subhypergraphs (W. 2013+)
If H is a k-uniform with u = Ee(#,), then for C,t > 0 we have

P(there is F C Hp with A1(F) < C and e(F) > p+t)

< exp (-%) < exp <_W2+t/3)> 7

where p(x) = (1 + x)log(1+ x) — x

A\

@ NO union bound over all subhypergraphs 7 C H, needed
@ Estimates for all 7 C H, enable additional combinatorial arguments



SUMMARY

Informal summary

Can often improve estimates for P(X > (1 + ¢)EX) by logarithmic factor:

< exp(_cs Ml/q) — = eXp(_dE min{y pta |og(1/p)}>,

where =X and p is as in random subset [n], or random graph G,

Remarks

@ Sharp for several additive combinatorics examples (incl. arithm. progr.)
@ More combinatorial approach + new tail inequalities
@ Estimates for all 7 C H, enable additional combinatorial arguments

Open problem

Obtain ‘missing log’ for subgraph counts in G, , (only special cases known)




RELATIVE ESTIMATES: MORE GOOD EVENTS

Aj(H) = sVl {fen: Scr}

= upper bound for # edges containing any j vertices of H

Relative degree events (Q; < R))

forall F C Hp: Aj1(F) < Rjp1 implies Aj(F) < R;
forall F C Hp: Ajr1(F) < Qjy1 implies Aj(F) < Q;

>
> f>

Sparsification event (by deleting edges)

& £ A1(Hp) < Ry implies existence of subhypergraph J C F
with Ak_l(j) < Rk_1 and e(?—tp \ j) < EEX/2

Remarks

@ Sparsification in spirit of RodI-Rucinski ‘deletion lemma’, which focuses
mainly on (i) the removal of vertices and (ii) global object counts

e New approach: combinatorics + BK-inequality (‘disjoint occurrence’)



RELATIVE ESTIMATES: MORE GOOD EVENTS

Aj(H) = sVl {fen: Scr}

= upper bound for # edges containing any j vertices of H

Relative degree events (Q; < R))

forall 7 C Hp: Ajy1(F) < Rjpa implies A;(F) < R;
forall F C Hp: Ajya(F) < Qj41 implies Aj(F) < Q;

—~
> [>

Sparsification event (by deleting edges)

& £ A1(Hp) < Ry implies existence of subhypergraph J C F
with Akfl(j) < Q-1 and G(HP \ .,7) < €EX/2

First good event revisited
G £ forall FC Hpy: A1(F) < Qp implies e(F) < (1+¢/2)EX

| A

N,




NEW CONCENTRATION INEQUALITY (SIMPLIFIED)

(&i)ica: independent random variables
(Ya)aez: indicator random variables with Y, = F(& : i € a) € {0,1}

Well-behaved variant of the sum X := ZQEZ Ya

Restriction to subsum where each Y3 depends on < C variables

Xc = Y ¢ Y, < C
{5 T )

7 a€J:anNp#D

e aN B =0 implies that Y, and Y are independent

Chernoff-type upper tail estimate, simplified (W. 2013+)
If w=EX, then for all C,t > 0 we have

2
P(Xc2p+t) < <exp <‘m)




