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What is this talk about?

Motivation

Behaviour of a function of independent random variables ξ1, . . . , ξN :

X = F (ξ1, . . . , ξN)

The random variable X often counts the number of certain objects

Tail estimates

Want exponential bounds for the lower/upper tail:

P(X ≤ (1− ε)EX ) and P(X ≥ (1 + ε)EX )

Allow us to show that whp X ≈ EX
Exponential decay useful in union bound arguments

Topic of his talk

Some best possible upper tail estimates (exponentially small)



Upper tail is more interesting

Lower tail: P(X ≤ (1− ε)EX )

Janson’s + Suen’s inequality give good upper bounds

Janson’s inequality often best possible (lower bounds of Janson–W.)

Upper tail: P(X ≥ (1 + ε)EX )

Best methods often leave logarithmic gap factors in the exponent, e.g.,

exp
(
−CΨ log(1/p)

)
≤ P(X ≥ 2EX ) ≤ exp

(
−cΨ

)
,

Moment based method of Janson–Oleszkiewicz–Ruciński

Closing the gap is technical challenge (‘infamous upper tail problem’)



Upper tail is more interesting

Upper tail: P(X ≥ (1 + ε)EX )

Best methods often leave logarithmic gap factors in the exponent, e.g.,

exp
(
−CΨ log(1/p)

)
≤ P(X ≥ 2EX ) ≤ exp

(
−cΨ

)
,

Moment based method of Janson–Oleszkiewicz–Ruciński

Closing the gap is technical challenge (‘infamous upper tail problem’)

Why should we care?

Natural probability question in concentration of measure

Requires deeper understanding of the problem (how X ≥ 2EX arises)

Extra log(1/p) might help in removing log-factors from other results

Test / develop methods for proving concentration inequalities



Case study: Arithmetic progressions

[n]p = random subset: j ∈ [n] included independently with probability p
X = number of k-term arithmetic progressions in [n]p

Lower tail: exponential decay

Janson’s inequality + Janson–W. result (lower bound) gives

P(X ≤ (1− ε)EX ) = exp
(
−Θ(ε2) min

{
EX , E|[n]p|

})

Upper tail: logarithmic gap

Janson–Ruciński obtained via a moment-based method

exp
(
−Cε
√
EX log(1/p)

)
≤ P(X ≥ (1 + ε)EX ) ≤ exp

(
−cε
√
EX
)



Case study: Arithmetic progressions

[n]p = random subset: j ∈ [n] included independently with probability p
X = number of k-term arithmetic progressions in [n]p

Upper tail: logarithmic gap

Janson–Ruciński obtained via a moment-based method

exp
(
−Cε
√
EX log(1/p)

)
≤ P(X ≥ (1 + ε)EX ) ≤ exp

(
−cε
√
EX
)

Resolving the tail behavior of k-term APs (W. 2013+)

We establish the missing logarithm using new techniques:

P(X ≥ (1 + ε)EX ) = exp
(
−Θ(1) min

{
EX ,

√
EX log(1/p)

})
,

and can also recover the ‘correct’ dependence on ε



Why are lower and upper tails so different?

Lower and upper tails are quite different (for k-term APs)

Ignoring polylogarithmic factors:

− logP(X ≤ 0.5EX ) ∼= min
{
EX , E|[n]p|

} ∼= min
{
n2pk , np

}
− logP(X ≥ 2EX ) ∼=

√
EX ∼= npk/2

One conceptual key difference

Can create many APs by adding small interval [m] = {1, . . . ,m}
Can not significantly reduce number of APs by removing few elements
(extreme case: all/most numbers contained in only O(1) APs)

Take-home message
Lower tail mainly governed by ‘global behaviour’

Upper tail mainly governed by ‘local behaviour’



Flavour of our results

Intuitive punchline of our results (W. 2015+)

Assume that basic application of Kim–Vu gives

P(X ≥ 2EX ) ≤ exp
(
−c(EX )1/q

)
.

Then under some additional ‘strictly-balanced-like condition’ we obtain

P(X ≥ 2EX ) ≤ exp
(
−c min

{
EX , (EX )1/q log(1/p)

})
.

Improvement conceptually important

Exponential decay best possible for additive combinatorics examples

The ‘strictly-balanced’ condition can not be dropped

Proof develops new tools/ideas for obtaining extra logarithmic factor



Flavour of our results

Intuitive punchline of our results (W. 2015+)

Assume that basic application of Kim–Vu gives

P(X ≥ 2EX ) ≤ exp
(
−c(EX )1/q

)
.

Then under some additional ‘strictly-balanced-like condition’ we obtain

P(X ≥ 2EX ) ≤ exp
(
−c min

{
EX , (EX )1/q log(1/p)

})
.

Best possible for examples in additive combinatorics:

k-term arithmetic progressions

Schur triples (x1 + x2 = x3)

Additive quadruples (x1 + x2 = y1 + y2)

(r , s)-sums (x1 + · · ·+ xr = y1 + · · ·+ ys)



Flavour of our results

Intuitive punchline of our results (W. 2015+)

Assume that basic application of Kim–Vu gives

P(X ≥ 2EX ) ≤ exp
(
−c(EX )1/q

)
.

Then under some additional ‘strictly-balanced-like condition’ we obtain

P(X ≥ 2EX ) ≤ exp
(
−c min

{
EX , (EX )1/q log(1/p)

})
.

The ‘strictly-balanced’ condition can not be dropped:

There are families of examples where exponent is of order (EX )1/q,
i.e., we do not have an extra logarithmic factor



Flavour of our results

Intuitive punchline of our results (W. 2015+)

Assume that basic application of Kim–Vu gives

P(X ≥ 2EX ) ≤ exp
(
−c(EX )1/q

)
.

Then under some additional ‘strictly-balanced-like condition’ we obtain

P(X ≥ 2EX ) ≤ exp
(
−c min

{
EX , (EX )1/q log(1/p)

})
.

Exponent resembles two different behaviours:

Poisson behaviour: exp
(
−cEX

)
‘Clustered behaviour’: exp

(
−c(EX )1/q log(1/p)

)
= pc(EX )1/q



Proof setup

We take a combinatorial point of view to concentration (no induction)

Random induced subhypergraph

Given a k-uniform hypergraph H with vertex set V = [n], let

Hp = H
[
Vp

]
,

i.e., hypergraph induced by random subset Vp := [n]p of the vertices

Counting the number of edges

Many counting problems can be written as

X = e(Hp)

Example: k-term arithmetic progressions

Edge set: k-element subsets of [n] corresponding to arithm. progressions



Proof strategy (1/2)

Our approach relies on a blend of combinatorial + probabilistic arguments

High-level proof strategy

1. Define good events Gi which imply that X = e(Hp) is small:

all Gi hold =⇒ X < (1 + ε)EX

2. Show that these ‘good’ events Gi are very unlikely to fail:

P(some Gi fails) ≤ exp
(
− · · ·

)
3. Via 1+2 we then have

P(X ≥ (1 + ε)EX ) ≤ P(some Gi fails) ≤ exp
(
− · · ·

)



Proof strategy (2/2)

One exemplary ‘good event’ (proof uses several)

For ALL F ⊆ Hp with small max-degree we have e(F) < (1 + ε/2)EX

In words: ALL subhypergraphs with small max-degree have few edges

Sparsification idea (simplified)

1. Use combinatorial arguments to gradually decrease the max-degree

Hp = F1 ⊇ F2 ⊇ · · · ⊇ Fq−1 ⊇ Fq

2. ‘Good events’ then ensure that the number of edges satisfies

X = e(Hp) = e(Fq)︸ ︷︷ ︸
<(1+ε/2)EX

+
∑

1≤i<q

e(Fi \ Fi+1)︸ ︷︷ ︸
≤εEX/2

< (1 + ε)EX



A surprising inequality

One exemplary ‘good event’ (proof uses several)

For all F ⊆ Hp with small max-degree we have e(F) < (1 + ε/2)EX

Statement for all subhypergraphs might seem too ambitious, but

A useful insight (W. 2013+)

We get Chernoff-like tail estimate for

P(there is F ⊆ Hp with ∆1(F) ≤ C and e(F) ≥ µ+ t)

WITHOUT taking a union bound over all subhypergraphs F ⊆ Hp

Estimates for all F ⊆ Hp enable additional combinatorial arguments



A surprising+useful inequality

One exemplary ‘good event’ (proof uses several)

For all F ⊆ Hp with small max-degree we have e(F) < (1 + ε/2)EX

Statement for all subhypergraphs might seem too ambitious, but

Chernoff-like estimate for all subhypergraphs (W. 2013+)

If H is a k-uniform with µ = Ee(Hp), then for C , t > 0 we have

P(there is F ⊆ Hp with ∆1(F) ≤ C and e(F) ≥ µ+ t)

≤ exp

(
−ϕ(t/µ)µ

kC

)
≤ exp

(
− t2

2kC (µ+ t/3)

)
,

where ϕ(x) = (1 + x) log(1 + x)− x

NO union bound over all subhypergraphs F ⊆ Hp needed

Estimates for all F ⊆ Hp enable additional combinatorial arguments



Summary

Informal summary

Can often improve estimates for P(X ≥ (1 + ε)EX ) by logarithmic factor:

≤ exp
(
−cε µ1/q

)
−→ ≤ exp

(
−dε min

{
µ, µ1/q log(1/p)

})
,

where µ = EX and p is as in random subset [n]p or random graph Gn,p

Remarks

Sharp for several additive combinatorics examples (incl. arithm. progr.)

More combinatorial approach + new tail inequalities

Estimates for all F ⊆ Hp enable additional combinatorial arguments

Open problem

Obtain ‘missing log’ for subgraph counts in Gn,p (only special cases known)



Relative Estimates: more good events

∆j(H) = max
S⊆V (H):|S |=j

∣∣{f ∈ H : S ⊆ f
}∣∣

= upper bound for # edges containing any j vertices of H

Relative degree events (Qj < Rj)

Dj , for all F ⊆ Hp: ∆j+1(F) ≤ Rj+1 implies ∆j(F) ≤ Rj

D+
j , for all F ⊆ Hp: ∆j+1(F) ≤ Qj+1 implies ∆j(F) ≤ Qj

Sparsification event (by deleting edges)

E , ∆1(Hp) ≤ R1 implies existence of subhypergraph J ⊆ F
with ∆k−1(J ) ≤ Qk−1 and e(Hp \ J ) < εEX/2

Remarks

Sparsification in spirit of Rödl–Ruciński ‘deletion lemma’, which focuses
mainly on (i) the removal of vertices and (ii) global object counts

New approach: combinatorics + BK-inequality (‘disjoint occurrence’)



Relative Estimates: more good events

∆j(H) = max
S⊆V (H):|S |=j

∣∣{f ∈ H : S ⊆ f
}∣∣

= upper bound for # edges containing any j vertices of H

Relative degree events (Qj < Rj)

Dj , for all F ⊆ Hp: ∆j+1(F) ≤ Rj+1 implies ∆j(F) ≤ Rj

D+
j , for all F ⊆ Hp: ∆j+1(F) ≤ Qj+1 implies ∆j(F) ≤ Qj

Sparsification event (by deleting edges)

E , ∆1(Hp) ≤ R1 implies existence of subhypergraph J ⊆ F
with ∆k−1(J ) ≤ Qk−1 and e(Hp \ J ) < εEX/2

First good event revisited

G , for all F ⊆ Hp: ∆1(F) ≤ Q1 implies e(F) ≤ (1 + ε/2)EX



New concentration inequality (simplified)

(ξi )i∈A: independent random variables
(Yα)α∈I : indicator random variables with Yα = F (ξi : i ∈ α) ∈ {0, 1}

Well-behaved variant of the sum X :=
∑

α∈I Yα

Restriction to subsum where each Yβ depends on ≤ C variables

XC := max
J⊆I

{ ∑
α∈J

Yα : max
β∈J

∑
α∈J :α∩β 6=∅

Yα ≤ C

}

α ∩ β = ∅ implies that Yα and Yβ are independent

Chernoff-type upper tail estimate, simplified (W. 2013+)

If µ = EX , then for all C , t > 0 we have

P(XC ≥ µ+ t) ≤ · · · ≤ exp

(
− t2

2C (µ+ t/3)

)


