Upper tail estimates:
 Arithmetic progressions and the missing log

Lutz Warnke

Georgia Tech

WHAT IS THIS TALK ABOUT?

Motivation

Behaviour of a function of independent random variables ξ_{1}, \ldots, ξ_{N} :

$$
X=F\left(\xi_{1}, \ldots, \xi_{N}\right)
$$

- The random variable X often counts the number of certain objects

Tail estimates

Want exponential bounds for the lower/upper tail:

$$
\mathbb{P}(X \leq(1-\varepsilon) \mathbb{E} X) \quad \text { and } \quad \mathbb{P}(X \geq(1+\varepsilon) \mathbb{E} X)
$$

- Allow us to show that whp $X \approx \mathbb{E} X$
- Exponential decay useful in union bound arguments

Topic of his talk

Some best possible upper tail estimates (exponentially small)

Lower tail: $\mathbb{P}(X \leq(1-\varepsilon) \mathbb{E} X)$

Janson's + Suen's inequality give good upper bounds

- Janson's inequality often best possible (lower bounds of Janson-W.)

Upper tail: $\mathbb{P}(X \geq(1+\varepsilon) \mathbb{E} X)$

Best methods often leave logarithmic gap factors in the exponent, e.g.,

$$
\exp (-C \psi \log (1 / p)) \leq \mathbb{P}(X \geq 2 \mathbb{E} X) \leq \exp (-c \psi)
$$

- Moment based method of Janson-Oleszkiewicz-Ruciński
- Closing the gap is technical challenge ('infamous upper tail problem')

UPPER TAIL IS MORE INTERESTING

Upper tail: $\mathbb{P}(X \geq(1+\varepsilon) \mathbb{E} X)$

Best methods often leave logarithmic gap factors in the exponent, e.g.,

$$
\exp (-C \Psi \log (1 / p)) \leq \mathbb{P}(X \geq 2 \mathbb{E} X) \leq \exp (-c \psi)
$$

- Moment based method of Janson-Oleszkiewicz-Ruciński
- Closing the gap is technical challenge ('infamous upper tail problem')

Why should we care?

- Natural probability question in concentration of measure
- Requires deeper understanding of the problem (how $X \geq 2 \mathbb{E} X$ arises)
- Extra $\log (1 / p)$ might help in removing log-factors from other results
- Test / develop methods for proving concentration inequalities

Case study: Arithmetic progressions

$[n]_{p}=$ random subset: $j \in[n]$ included independently with probability p $X=$ number of k-term arithmetic progressions in $[n]_{p}$

Lower tail: exponential decay
Janson's inequality + Janson-W. result (lower bound) gives

$$
\mathbb{P}(X \leq(1-\varepsilon) \mathbb{E} X)=\exp \left(-\Theta\left(\varepsilon^{2}\right) \min \left\{\mathbb{E} X, \mathbb{E}\left|[n]_{p}\right|\right\}\right)
$$

Upper tail: logarithmic gap

Janson-Ruciński obtained via a moment-based method

$$
\exp \left(-C_{\varepsilon} \sqrt{\mathbb{E} X} \log (1 / p)\right) \leq \mathbb{P}(X \geq(1+\varepsilon) \mathbb{E} X) \leq \exp \left(-c_{\varepsilon} \sqrt{\mathbb{E} X}\right)
$$

Case study: Arithmetic progressions

$[n]_{p}=$ random subset: $j \in[n]$ included independently with probability p $X=$ number of k-term arithmetic progressions in $[n]_{p}$

Upper tail: logarithmic gap

Janson-Ruciński obtained via a moment-based method

$$
\exp \left(-C_{\varepsilon} \sqrt{\mathbb{E} X} \log (1 / p)\right) \leq \mathbb{P}(X \geq(1+\varepsilon) \mathbb{E} X) \leq \exp \left(-c_{\varepsilon} \sqrt{\mathbb{E} X}\right)
$$

Resolving the tail behavior of k-term APs (W. 2013+)

We establish the missing logarithm using new techniques:

$$
\mathbb{P}(X \geq(1+\varepsilon) \mathbb{E} X)=\exp (-\Theta(1) \min \{\mathbb{E} X, \sqrt{\mathbb{E} X} \log (1 / p)\})
$$

and can also recover the 'correct' dependence on ε

WHY ARE LOWER AND UPPER TAILS SO DIFFERENT?

Lower and upper tails are quite different (for k-term APs)
Ignoring polylogarithmic factors:

$$
\begin{aligned}
-\log \mathbb{P}(X \leq 0.5 \mathbb{E} X) & \cong \min \left\{\mathbb{E} X, \mathbb{E}\left|[n]_{p}\right|\right\} \cong \min \left\{n^{2} p^{k}, n p\right\} \\
-\log \mathbb{P}(X \geq 2 \mathbb{E} X) & \cong \sqrt{\mathbb{E} X} \cong n p^{k / 2}
\end{aligned}
$$

One conceptual key difference

- Can create many APs by adding small interval $[m]=\{1, \ldots, m\}$
- Can not significantly reduce number of APs by removing few elements (extreme case: all/most numbers contained in only $O(1)$ APs)

Take-home message

- Lower tail mainly governed by 'global behaviour'
- Upper tail mainly governed by 'local behaviour'

Intuitive punchline of our results (W. 2015+)

Assume that basic application of $\mathrm{Kim}-\mathrm{Vu}$ gives

$$
\mathbb{P}(X \geq 2 \mathbb{E} X) \leq \exp \left(-c(\mathbb{E} X)^{1 / q}\right)
$$

Then under some additional 'strictly-balanced-like condition' we obtain

$$
\mathbb{P}(X \geq 2 \mathbb{E} X) \leq \exp \left(-c \min \left\{\mathbb{E} X,(\mathbb{E} X)^{1 / q} \log (1 / p)\right\}\right)
$$

Improvement conceptually important

- Exponential decay best possible for additive combinatorics examples
- The 'strictly-balanced' condition can not be dropped
- Proof develops new tools/ideas for obtaining extra logarithmic factor

Intuitive punchline of our results (W. 2015+)

Assume that basic application of $\mathrm{Kim}-\mathrm{Vu}$ gives

$$
\mathbb{P}(X \geq 2 \mathbb{E} X) \leq \exp \left(-c(\mathbb{E} X)^{1 / q}\right)
$$

Then under some additional 'strictly-balanced-like condition' we obtain

$$
\mathbb{P}(X \geq 2 \mathbb{E} X) \leq \exp \left(-c \min \left\{\mathbb{E} X,(\mathbb{E} X)^{1 / q} \log (1 / p)\right\}\right)
$$

Best possible for examples in additive combinatorics:

- k-term arithmetic progressions
- Schur triples $\left(x_{1}+x_{2}=x_{3}\right)$
- Additive quadruples $\left(x_{1}+x_{2}=y_{1}+y_{2}\right)$
- (r, s)-sums $\left(x_{1}+\cdots+x_{r}=y_{1}+\cdots+y_{s}\right)$

Intuitive punchline of our results (W. 2015+)

Assume that basic application of $\mathrm{Kim}-\mathrm{Vu}$ gives

$$
\mathbb{P}(X \geq 2 \mathbb{E} X) \leq \exp \left(-c(\mathbb{E} X)^{1 / q}\right)
$$

Then under some additional 'strictly-balanced-like condition' we obtain

$$
\mathbb{P}(X \geq 2 \mathbb{E} X) \leq \exp \left(-c \min \left\{\mathbb{E} X,(\mathbb{E} X)^{1 / q} \log (1 / p)\right\}\right)
$$

The 'strictly-balanced' condition can not be dropped:

- There are families of examples where exponent is of order $(\mathbb{E} X)^{1 / q}$, i.e., we do not have an extra logarithmic factor

Intuitive punchline of our results (W. 2015+)

Assume that basic application of $\mathrm{Kim}-\mathrm{Vu}$ gives

$$
\mathbb{P}(X \geq 2 \mathbb{E} X) \leq \exp \left(-c(\mathbb{E} X)^{1 / q}\right)
$$

Then under some additional 'strictly-balanced-like condition' we obtain

$$
\mathbb{P}(X \geq 2 \mathbb{E} X) \leq \exp \left(-c \min \left\{\mathbb{E} X,(\mathbb{E} X)^{1 / q} \log (1 / p)\right\}\right)
$$

Exponent resembles two different behaviours:

- Poisson behaviour: $\exp (-c \mathbb{E} X)$
- 'Clustered behaviour': $\exp \left(-c(\mathbb{E} X)^{1 / q} \log (1 / p)\right)=p^{c(\mathbb{E} X)^{1 / q}}$

PROOF SETUP

We take a combinatorial point of view to concentration (no induction)
Random induced subhypergraph
Given a k-uniform hypergraph \mathcal{H} with vertex set $V=[n]$, let

$$
\mathcal{H}_{p}=\mathcal{H}\left[V_{p}\right]
$$

i.e., hypergraph induced by random subset $V_{p}:=[n]_{p}$ of the vertices

Counting the number of edges

Many counting problems can be written as

$$
X=e\left(\mathcal{H}_{p}\right)
$$

Example: k-term arithmetic progressions

Edge set: k-element subsets of $[n]$ corresponding to arithm. progressions

Proof strategy (1/2)

Our approach relies on a blend of combinatorial + probabilistic arguments

High-level proof strategy

1. Define good events \mathcal{G}_{i} which imply that $X=e\left(\mathcal{H}_{p}\right)$ is small:

$$
\text { all } \mathcal{G}_{i} \text { hold } \quad \Longrightarrow \quad X<(1+\varepsilon) \mathbb{E} X
$$

2. Show that these 'good' events \mathcal{G}_{i} are very unlikely to fail:

$$
\mathbb{P}\left(\text { some } \mathcal{G}_{i} \text { fails }\right) \leq \exp (-\cdots)
$$

3. Via $1+2$ we then have

$$
\mathbb{P}(X \geq(1+\varepsilon) \mathbb{E} X) \leq \mathbb{P}\left(\text { some } \mathcal{G}_{i} \text { fails }\right) \leq \exp (-\cdots)
$$

Proof strategy (2/2)

One exemplary 'good event' (proof uses several)

For $\operatorname{ALL} \mathcal{F} \subseteq \mathcal{H}_{p}$ with small max-degree we have $e(\mathcal{F})<(1+\varepsilon / 2) \mathbb{E} X$

- In words: ALL subhypergraphs with small max-degree have few edges

Sparsification idea (simplified)

1. Use combinatorial arguments to gradually decrease the max-degree

$$
\mathcal{H}_{p}=\mathcal{F}_{1} \supseteq \mathcal{F}_{2} \supseteq \cdots \supseteq \mathcal{F}_{q-1} \supseteq \mathcal{F}_{q}
$$

2. 'Good events' then ensure that the number of edges satisfies

$$
X=e\left(\mathcal{H}_{p}\right)=\underbrace{e\left(\mathcal{F}_{q}\right)}_{<(1+\varepsilon / 2) \mathbb{E} X}+\underbrace{\sum_{1 \leq i<q} e\left(\mathcal{F}_{i} \backslash \mathcal{F}_{i+1}\right)}_{\leq \varepsilon \mathbb{E} X / 2}<(1+\varepsilon) \mathbb{E} X
$$

A SURPRISING INEQUALITY

One exemplary 'good event' (proof uses several)
For all $\mathcal{F} \subseteq \mathcal{H}_{p}$ with small max-degree we have $e(\mathcal{F})<(1+\varepsilon / 2) \mathbb{E} X$

- Statement for all subhypergraphs might seem too ambitious, but

A useful insight (W. 2013+)

We get Chernoff-like tail estimate for

$$
\mathbb{P}\left(\text { there is } \mathcal{F} \subseteq \mathcal{H}_{p} \text { with } \Delta_{1}(\mathcal{F}) \leq C \text { and } e(\mathcal{F}) \geq \mu+t\right)
$$

WITHOUT taking a union bound over all subhypergraphs $\mathcal{F} \subseteq \mathcal{H}_{p}$

- Estimates for all $\mathcal{F} \subseteq \mathcal{H}_{p}$ enable additional combinatorial arguments

A SURPRISING + USEFUL INEQUALITY

One exemplary 'good event' (proof uses several)

For all $\mathcal{F} \subseteq \mathcal{H}_{p}$ with small max-degree we have $e(\mathcal{F})<(1+\varepsilon / 2) \mathbb{E} X$

- Statement for all subhypergraphs might seem too ambitious, but

Chernoff-like estimate for all subhypergraphs (W. 2013+)

If \mathcal{H} is a k-uniform with $\mu=\mathbb{E} e\left(\mathcal{H}_{p}\right)$, then for $C, t>0$ we have $\mathbb{P}\left(\right.$ there is $\mathcal{F} \subseteq \mathcal{H}_{p}$ with $\Delta_{1}(\mathcal{F}) \leq C$ and $\left.e(\mathcal{F}) \geq \mu+t\right)$

$$
\leq \exp \left(-\frac{\varphi(t / \mu) \mu}{k C}\right) \leq \exp \left(-\frac{t^{2}}{2 k C(\mu+t / 3)}\right),
$$

where $\varphi(x)=(1+x) \log (1+x)-x$

- $N O$ union bound over all subhypergraphs $\mathcal{F} \subseteq \mathcal{H}_{p}$ needed
- Estimates for all $\mathcal{F} \subseteq \mathcal{H}_{p}$ enable additional combinatorial arguments

SUMMARY

Informal summary

Can often improve estimates for $\mathbb{P}(X \geq(1+\varepsilon) \mathbb{E} X)$ by logarithmic factor:

$$
\leq \exp \left(-c_{\varepsilon} \mu^{1 / q}\right) \quad \longrightarrow \quad \leq \exp \left(-d_{\varepsilon} \min \left\{\mu, \mu^{1 / q} \log (1 / p)\right\}\right)
$$

where $\mu=\mathbb{E} X$ and p is as in random subset $[n]_{p}$ or random graph $G_{n, p}$

Remarks

- Sharp for several additive combinatorics examples (incl. arithm. progr.)
- More combinatorial approach + new tail inequalities
- Estimates for all $\mathcal{F} \subseteq \mathcal{H}_{p}$ enable additional combinatorial arguments

Open problem

Obtain 'missing log' for subgraph counts in $G_{n, p}$ (only special cases known)

ReLATIVE EstIMATES: MORE GOOD EVENTS

$$
\Delta_{j}(\mathcal{H})=\max _{S \subseteq V(\mathcal{H}):|S|=j}|\{f \in \mathcal{H}: S \subseteq f\}|
$$

$=$ upper bound for $\#$ edges containing any j vertices of \mathcal{H}

Relative degree events $\left(Q_{j}<R_{j}\right)$

$\mathcal{D}_{j} \triangleq$ for all $\mathcal{F} \subseteq \mathcal{H}_{p}: \quad \Delta_{j+1}(\mathcal{F}) \leq R_{j+1}$ implies $\Delta_{j}(\mathcal{F}) \leq R_{j}$
$\mathcal{D}_{j}^{+} \triangleq$ for all $\mathcal{F} \subseteq \mathcal{H}_{p}: \quad \Delta_{j+1}(\mathcal{F}) \leq Q_{j+1}$ implies $\Delta_{j}(\mathcal{F}) \leq Q_{j}$

Sparsification event (by deleting edges)

$\mathcal{E} \triangleq \Delta_{1}\left(\mathcal{H}_{p}\right) \leq R_{1}$ implies existence of subhypergraph $\mathcal{J} \subseteq \mathcal{F}$ with $\Delta_{k-1}(\mathcal{J}) \leq Q_{k-1}$ and $e\left(\mathcal{H}_{p} \backslash \mathcal{J}\right)<\varepsilon \mathbb{E} X / 2$

Remarks

- Sparsification in spirit of Rödl-Ruciński 'deletion lemma', which focuses mainly on (i) the removal of vertices and (ii) global object counts
- New approach: combinatorics + BK-inequality ('disjoint occurrence')

Relative Estimates: more good events

$$
\Delta_{j}(\mathcal{H})=\max _{S \subseteq V(\mathcal{H}):|S|=j}|\{f \in \mathcal{H}: S \subseteq f\}|
$$

$=$ upper bound for $\#$ edges containing any j vertices of \mathcal{H}
Relative degree events $\left(Q_{j}<R_{j}\right)$
$\mathcal{D}_{j} \triangleq$ for all $\mathcal{F} \subseteq \mathcal{H}_{p}: \quad \Delta_{j+1}(\mathcal{F}) \leq R_{j+1}$ implies $\Delta_{j}(\mathcal{F}) \leq R_{j}$
$\mathcal{D}_{j}^{+} \triangleq$ for all $\mathcal{F} \subseteq \mathcal{H}_{p}: \quad \Delta_{j+1}(\mathcal{F}) \leq Q_{j+1}$ implies $\Delta_{j}(\mathcal{F}) \leq Q_{j}$

Sparsification event (by deleting edges)
$\mathcal{E} \triangleq \Delta_{1}\left(\mathcal{H}_{p}\right) \leq R_{1}$ implies existence of subhypergraph $\mathcal{J} \subseteq \mathcal{F}$ with $\Delta_{k-1}(\mathcal{J}) \leq Q_{k-1}$ and $e\left(\mathcal{H}_{p} \backslash \mathcal{J}\right)<\varepsilon \mathbb{E} X / 2$

First good event revisited
$\mathcal{G} \triangleq$ for all $\mathcal{F} \subseteq \mathcal{H}_{p}: \quad \Delta_{1}(\mathcal{F}) \leq Q_{1}$ implies $e(\mathcal{F}) \leq(1+\varepsilon / 2) \mathbb{E} X$

NEW CONCENTRATION INEQUALITY (SIMPLIFIED)

$\left(\xi_{i}\right)_{i \in \mathcal{A}}$: independent random variables
$\left(Y_{\alpha}\right)_{\alpha \in \mathcal{I}}$: indicator random variables with $Y_{\alpha}=F\left(\xi_{i}: i \in \alpha\right) \in\{0,1\}$

Well-behaved variant of the sum $X:=\sum_{\alpha \in \mathcal{I}} Y_{\alpha}$

Restriction to subsum where each Y_{β} depends on $\leq C$ variables

$$
X_{C}:=\max _{\mathcal{J} \subseteq \mathcal{I}}\left\{\sum_{\alpha \in \mathcal{J}} Y_{\alpha}: \max _{\beta \in \mathcal{J}} \sum_{\alpha \in \mathcal{J}: \alpha \cap \beta \neq \emptyset} Y_{\alpha} \leq C\right\}
$$

- $\alpha \cap \beta=\emptyset$ implies that Y_{α} and Y_{β} are independent

Chernoff-type upper tail estimate, simplified (W. 2013+)

If $\mu=\mathbb{E} X$, then for all $C, t>0$ we have

$$
\mathbb{P}\left(X_{C} \geq \mu+t\right) \leq \cdots \leq \exp \left(-\frac{t^{2}}{2 C(\mu+t / 3)}\right)
$$

