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Abstract

We study the phase transition of the random d-process, which is a time-evolving random graph model
with bounded degrees: starting with an empty graph on n vertices, new random edges are added step-
by-step so that the maximum degree remains at most d. We show that the d-process undergoes a giant
component phase transition for fixed d > 3, solving a problem of Wormald from 1999. We also show that
the giant component has a non-trivial distribution at the end of the 2-process, verifying a conjecture of
Balińska and Quintas from 1993. Our techniques show that the critical point of the phase transition in
fact equals the blow-up point of the susceptibility, which in turn is determined by O(d2) many differential
equations. Our results extend to many hypergraph generalizations of the d-process.

1 Introduction
sec:intro

One of the most interesting features of random graphs is the ‘giant component’ phase transition, i.e., the sud-
den change of the global graph structure from only small components to a single giant component plus
small ones. Motivated by properties of real-world networks and ideas from mathematical physics, during the
last two decades there has been an increased interest in the phase transition of time-evolving random graph
models. For many of these difficult-to-analyze models, it remains a mathematical challenge to narrow the
widening gap between simulation based results and theoretical understanding.

In this paper we study a time-evolving random graph model with bounded degrees. More precisely, for an
integer parameter d > 1 we consider the random d-process (Gi)i>0 = (Gdn,i)i>0 with vertex set [n] = {1, . . . , n},
that starts with no edges and then sequentially adds new edges one-by-one, each time choosing the next edge
uniformly at random from all so-far unused edges whose addition does not create a vertex of degree d; this
process stops when no more such edges can be added, which whp1 happens after bdn/2c steps, see [42]. Note
that Gdn,i has i edges. Furthermore, for d > n− 1 the d-process reduces to the classical Erdős-Rényi random
graph process (which simply adds a new random edge in each step).

The random d-process is so natural that it has been studied by different communities. In combinatorics
it can be traced back to a suggestion2 of Erdős and Rényi from 1961 for more realistic modeling [22].
In chemistry it has been studied as early as 1985, motivated by polymerization modeling [33, 7]. It also
corresponds to a simple random greedy algorithm for generating d-regular graphs [42, 52] (that differs from
the usual uniform random d-regular graph model). More recently, it has also been analyzed through the lens
of statistical physics [10], and a square lattice variant was studied in percolation theory [20]. Further interest
in the d-process stems from the fact that its analysis has repeatedly stimulated the development of new proof
techniques, including the differential equation method [42, 54, 53] and associated self-correction idea [48],
which both were instrumental for later breakthroughs in Ramsey Theory [12, 13, 23].
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2Erdős and Rényi proposed, more generally, to study random graph processes where the probability of joining two vertices v
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Establishing the phase transition in the random d-process is an open problem of Wormald from 1999: he
asked [53, Section 4.3] whether there is a critical point tc = tc(d) after which a linear size ‘giant’ component
emerges, i.e., such that the size L1(i) = L1(Gi) of the largest component after i steps is whp L1(btnc) = o(n)
when t < tc and whp L1(btnc) = Θ(n) when t > tc. Turning to the history of this problem, results
of Ruciński and Wormald [44] from 2002 imply that if tc exists, then tc 6 (d/2− 1/6) for d > 3. In 2008
Droseltis [21] attempted to analyze the d-process phase transition using the configuration model, and
in 2011 Ben-Naim and Krapivsky [10] presented kinetic theory based evidence for the existence of tc for
d > 3. In 2013 Seierstad [45] showed that if tc exists (and further technical properties hold), then the
size of the giant component is asymptotically normal after suitable rescaling. Around 1993 Balińska and
Quintas [8, 9] also made a simulation based conjecture regarding the distribution of the giant component in
the 2-process.

In this paper we solve the more than 20-year-old problem of Wormald, by establishing that there is a
giant component phase transition in the d-process for fixed d > 3 (see Theorem 1.1). We also verify the more
than 25-year-old conjecture of Balińska and Quintas, by relating the size of the giant component at the end of
the 2-process with the largest component in random 2-regular graphs (see Theorem 1.3). In addition, we show
that the d-process with d = d(n)→∞ as n → ∞ has the same critical point tc = 1/2 as the Erdős–Rényi
random graph process (see Remark 1.2), and establish a phase transition in many hypergraph generalizations
of the d-process, including variants where each vertex has its own degree bound (see Theorems 1.5–1.6).

The motivation for this work is to further develop the emerging theory of phase transition in time-evolving
random graph models. Powerful ideas and heuristics from percolation theory [1, 36] and aggregation and
coagulation theory [3, 34] suggest the following generic two-step program [2, 4, 46] for establishing phase
transition: (i) show that the so-called susceptibility has a blow-up point tc, and (ii) show that this tc
coincides with the critical point after which a giant component emerges; here the susceptibility is defined as
the expected size of the component containing a randomly chosen vertex, i.e.,

S(i) = S(Gi) :=
∑
v∈[n]

|Cv(Gi)|/n, (1.1) def:S

where Cv(Gi) denotes the component of Gi which contains vertex v; cf. [30, 28]. While (parts of) this emerging
program have been implemented for a few random graph models [2, 4, 14, 47, 32, 41], its application often
remains challenging. For example, step (i) usually requires showing that some system of differential equations
has a blow-up point tc, which for the d-process is non-trivial since this involves O(d2) many equations. Our
proofs show how to avoid the differential equation analysis in the two-step phase transition program, i.e.,
how to obtain useful information about the susceptibility blow-up point tc without much technical effort.

1.1 Main results: random d-process

Our first result proves that the random d-process undergoes a phase transition for fixed d > 3, i.e., that there is
a critical point tc = tc(d) at which the size of the largest component changes from orderO(log n) to order Θ(n);
this solves a problem of Wormald from 1999. Recall that the d-process whp ends after bdn/2c steps.

thm:maind Theorem 1.1 (Phase transition of d-process for d > 3). Given d > 3, there exists tc ∈ (0, d/2) such that, in
the random d-process, for any t ∈ [0, d/2] the size of the largest component after btnc steps whp satisfies

L1

(
btnc

)
=

{
O(log n) if t < tc,

Θ(n) if t > tc.
(1.2) eq:maind:L1

There also exists a continuously increasing function s : [0, tc) → [1,∞) with limt↗tc s(t) = ∞ such that, in
the random d-process, for any t ∈ [0, tc) the susceptibility after btnc steps whp satisfies S(btnc) ∼ s(t).

rem:maind:tc Remark 1.2. The critical point of the random d-process satisfies tc = tc(d) → 1/2 as d → ∞. In fact, for
any t ∈ [0,∞) whp (1.2) also holds with tc = 1/2 when d = d(n)→∞ as n→∞. (See Appendix A.)

This result recovers several fundamental phase transition features of the classical Erdős-Rényi reference
model [16, 31, 30] where (a) the size of the largest component after btnc steps also whp satisfies (1.2)
with tc = 1/2, and (b) the susceptibility after btnc steps is whp asymptotic to 1/(1− 2t), i.e., also blows up
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at tc. Remark 1.2 indicates that the phase transition of the d-process approaches Erdős-Rényi behavior for
large d (as expected, since then the degree bounds ought to become negligible), illustrating that small d is
the most interesting case. In fact, the assumption d > 3 in Theorem 1.1 is best possible, as we shall see.

From the perspective of mathematical physics, Theorem 1.1 shows that in the d-process the following
two different phase transition thresholds are in fact the same: (i) the critical point around which the giant
component emerges, and (ii) the blow-up point of the susceptibility. This mimics deep results in percolation
theory [1, 36], which show that two different critical probabilities related to (i) and (ii) are the same. This also
mimics heuristics in aggregation and coagulation theory [3, 34], which suggest that two different definitions
of the gelation time related to (i) and (ii) are the same. Furthermore, since the idealized susceptibility s(t)
is in fact determined by a system of O(d2) many differential equations (see Remark 1.7), we can use equality
of (i) and (ii) to estimate the critical point tc by numerically solving this system; see Section 5 for the details.

Our second result proves that the random 2-process does not exhibit Erdős-Rényi like behavior. Indeed,
Theorem 1.3 shows that the rescaled size of the largest component L1(n)/n converges in distribution to a
non-trivial random variable; this in particular verifies the conjecture P(L1(n) > n/2) ∼ log(

√
2 + 1) ≈ 0.8814

of Balińska and Quintas from 1993. Recall that the 2-process whp ends after n steps.

thm:d2 Theorem 1.3 (Largest component in final graph of 2-process). There exists a continuously decreasing func-
tion F : (0, 1]→ [0, 1] such that, in the random 2-process, the size of the largest component after n steps
satisfies

lim
n→∞

P
(
L1(n)/n > c

)
= F (c) for any c ∈ (0, 1], (1.3) eq:L1sup:d2

with F (c) ∈ (0, 1) for c ∈ (0, 1), F (c) = log
(√
c−1 +

√
c−1 − 1

)
for c ∈ (1/2, 1], and F (ε)→ 1 as ε→ 0.

rem:d2 Remark 1.4. Analogous to (1.2), for any t ∈ [0, 1) whp L1(btnc) = O(log n) in the random 2-process.

It is tantalizing that the probability (1.3) in the 2-process has the same limit as the corresponding proba-
bility limn→∞ P(L1(Rn)/n > c) = F (c) in the standard configuration model Rn for random 2-regular graphs
with n vertices [15, 52], see Lemma 4.3. Our proof of Theorem 1.3 explains this by establishing a close con-
nection between Rm and the way paths merge during the final m = o(n) steps of the 2-process, see Section 4.
The complementary distribution function F also arises in the context of the Ewens’s sampling formula, and
is closely related to the Poisson-Dirichlet distribution with parameter 1/2; see [5, Sections 5.5 and 6.1].

Our phase transition results extend to the hypergraph generalizations of the d-process introduced in [25].
More precisely, the random k-uniform d-process process with vertex set [n] sequentially adds new k-uniform
hyperedges one-by-one (starting with no hyperedges), such that the next hyperedge is chosen chosen uniformly
at random from all so-far unused hyperedges whose addition does not create a vertex3 of degree d; this process
stops when no more such edges can be added, which whp happens after bdn/kc steps, see [25].

thm:maindk Theorem 1.5 (Phase transition of k-uniform d-process). Given k, d > 2 with (k, d) 6= (2, 2), Theorem 1.1
also holds (with d/2 replaced by d/k) for the random k-uniform d-process.

This result implies that, among k-uniform d-processes, only the trivial k-uniform 1-process (which simply
adds disjoint edges) and the 2-process exhibit special phase transition behaviors.

1.2 Organization

The remainder of this paper is organized as follows. In Section 1.3 we give a detailed overview of the proof
strategy, highlighting the key ingredients and steps. In Section 1.4 we then state our main phase transition
result Theorem 1.6, which applies to many degree restricted hypergraph generalizations of the d-process (and
extends Theorems 1.1 and 1.5). The next two sections are the core of the paper: in Section 2 we use coupling
arguments to obtain some approximate control over the degree restricted process, and in Section 3 we then
combine this with the differential equation method in order to prove Theorem 1.6, by relating the evolution
of the degree restricted process with suitable differential equations. In Section 4 we consider the 2-process:
after a detailed outline of the proof strategy, we then prove Theorem 1.3 by using coupling arguments to
relate the evolution of the 2-process with the 2-regular configuration model. In Section 5 we demonstrate
how to estimate the value of the critical point tc by numerically solving relevant differential equations. In

3For a hypergraph H, the degree of vertex v is simply defined as the number of edges of H that contain v.
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Section 6 we discuss several open problems. Finally, Appendix A studies the critical point tc = tc(d) of the
d-process for large d, Appendix B shows how to deduce results for the degree restricted process from results
for its multigraph variant, and Appendix C contains some proofs that are omitted from the main text.

1.3 Proof overview
sec:outline

We now outline our proof of Theorem 1.1, which adapts the mathematical physics inspired two-step phase
transition program to the random d-process (Gi)i>0 = (Gdn,i)i>0 with d > 3. Recalling that tc will denote
the blow-up point of the susceptibility (whose existence will be established as part of the proof), the basic
strategy is to first carefully analyze the first (tc−ε)n steps, say, and then use rough approximation arguments
to show that a giant component emerges by step (tc + ε)n.

1.3.1 Key ingredients
sec:outline:ingr

We shall distinguish two types4 of vertices: active vertices with degree less than d and inactive vertices
with degree equal to d, the crux being that the d-process only adds new edges between active vertices. In
addition, our core two-step argument will rely on the following three key ingredients:
• Susceptibility variables: Taking into account that inactive vertices play no role in the subsequent

evolution of the d-process, instead of the usual susceptibility we here study the active susceptibility

Su(i) = Su(Gi) :=
∑
v∈[n]

|Cv(Gi) ∩ Ui|/|Ui|, (1.4) def:Su

where Ui denotes the active vertex-set of Gi, i.e., the set of vertices with degree less than d. In words, Su(i)
denotes the expected active size of the component containing a randomly chosen active vertex from Gi. Using
the differential equation method [54, 53, 51], our aim is to show that for t < tc whp

Su(tn) ≈ su(t), (1.5) eq:Su:approx

where the function su(t) is the solution to suitable differential equations, which arise from considering the
expected one-step changes E(Su(i + 1) − Su(i) | Gi). This is more involved than in previous susceptibility
related work [2, 4, 14, 47, 32, 11]: to even be able to write down these expected changes we need to introduce
additional O(d2) auxiliary random variables Zx,y(i), which are refinements of Su(i) that take into account
the vertex degrees inside each component (intuitively, degree knowledge is required for understanding when
active vertices can become inactive); see (3.2) for the precise definitions of Zx,y(i) = Zx,d,y,d(i).
• Blow-up point tc: For the active susceptibility we obtain differential equations of form

s′u(t) = F
(
t, su(t),

(
zx,y(t)

)
06x,y<d

)
, (1.6) eq:su:diff

along with O(d2) differential equations for the functions zx,y(t) = zx,d,y,z(t) associated with the new vari-
ables Zx,y(i); see (3.11) and (3.13)–(3.17) for the actual equations. This system of differential equations is
larger and more complicated than in previous susceptibility related work [4, 14, 47, 32, 11], where the blow-up
point of such systems is established by technical analysis. We manage to sidestep this difficulty by adapting
ideas developed for processes where differential equations are unavailable [41], so that we can show existence
of the critical point tc where su(t) blows up without much technical effort (by transferring properties of the
random d-process to the differential equations), see (1.10)–(1.11) and Section 3.1 for more details.
• Rough control: Using coupling arguments, our aim is to show that (for a small number of steps)

the evolution of the d-process can be sandwiched between two simpler random graph models. Exploiting
combinatorial properties of the d-process, for sufficiently small m we essentially show that whp

E(Gi) ∪Mm/2,Ui ⊆ E(Gi+m) ⊆ E(Gi) ∪ E2m,Ui , (1.7) eq:sandwich

where E`,Ui and M`,Ui intuitively denote ` random (matching) edges with endvertices in the active vertex
set Ui, see Lemma 2.2. The usage of matching edges in these inclusions differs from previous related coupling

4These two types are called unsaturated and saturated vertices in [42, 43, 52, 44].
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arguments [14, 47, 32, 41]. The crux is that via branching process and random walk arguments we can obtain
some rough control over the two random graphs models on both sides of (1.7), see Lemma 2.3. In particular,
assuming that the graph Gi is well-behaved, for small m this essentially allows us to conclude that whp

L1(i+m) =

{
O(log n) if m 6 c|Ui|/Su(i),

Θ(n) if m > C|Ui|/Su(i),
(1.8) eq:sandwich:L1

where c, C > 0 are suitable constants; see Theorem 2.1 for the full details.

1.3.2 Phase transition: two-step approach
sec:outline:pt

With these key ingredients in hand, we then are in a position to prove the phase transition result Theorem 1.1
for the d-process with d > 3 using (a rigorous version of) the following two-step approach:

Step 1: Subcritical phase. The goal is to establish both (a) the existence of the active susceptibility
blow-up point tc and (b) that the largest component whp has size O(log n) after (tc − ε)n steps. To this end
we shall use a ‘nibble’ argument from probabilistic combinatorics that develops ideas from [47, 41], i.e., show
that certain structural properties hold by iteratively considering a small number of steps of the d-process
(where the number of steps considered decreases as the active susceptibility increases). More precisely, using
the differential equation method and the rough control bounds we first use induction on h > 0 to essentially
establish that, after ih ≈ thn steps, the resulting graph Gih is whp well-behaved in the sense that

Su(ih) ≈ su(th), |Uih | ≈ u(th)n, and L1(ih) = O(log n), (1.9) eq:dem:temp

where the deterministic time-sequence (th)h>0 satisfying th < d/2 is roughly of form

t0 = 0 and th+1 ≈ th + ξu(th)/su(th), (1.10) eq:th:temp

see Theorem 3.1 for the full details (where we in fact inductively establish that the component distribution
of Gih has exponentially decaying tails). To motivate the form of the th, note that by the approximations
from (1.9) we have ih+1 − ih < c|Uih |/Su(ih) for ξ = ξ(c) small enough, which eventually enables us to induc-
tively establish L1(ih+1) = O(log n) by invoking the rough control bound (1.8) with i = ih and m = ih+1 − ih,
see Section 3.4. More importantly, the form (1.10) of the th < d/2 automatically guarantees that

lim
h→∞

u(th)/su(th) = 0, (1.11) eq:blowup:temp

and it also is not hard to see that limh→∞ su(th) =∞, i.e., that the idealized active susceptibility blow-ups up
at the critical point tc := limh→∞ th ∈ (0, d/2], see Sections 3.1 and 3.2.3 for the details (where we also show
that the usual susceptibility blows up at tc). We then pick h = h(ε, tc) large enough such that th > tc − ε,
which by our inductive bound (1.9) suggests that whp

L1

(
(tc − ε)n

)
6 L1

(
ih
)

= O(log n), (1.12) eq:choiceh:L1bound:subcr

as claimed by the t < tc part of (1.2) from Theorem 1.1; see Section 3.2.1 for the rigorous details.
Step 2: Supercritical phase. The goal is to establish that the largest component whp has size Θ(n)

after (tc + ε)n steps. To this end we shall use a ‘sprinkling’ argument from random graph theory, i.e., show
emergence of the desired giant component by adding εn extra edges to a suitable subcritical graph Gih . More
precisely, we first pick h = h(ε, C) large enough such that the approximations (1.9) and the limit (1.11)
together guarantee that the graph Gih after ih ≈ thn steps is whp well-behaved and satisfies

C|Uih |/Su(ih) ≈ Cu(th)n/su(th) < εn. (1.13) eq:choiceh:temp

Invoking the rough control bound (1.8) with i = ih and m ≈ εn, using th 6 tc this suggests that whp

L1

(
(tc + ε)n

)
> L1(ih + εn) = Ω(n), (1.14) eq:choiceh:L1bound

as claimed by the t > tc part of (1.2) from Theorem 1.1; see Section 3.2.2 for the rigorous details. It is
instructive that (1.14) fails for the random 2-process, which already ends after at most dn/2 = n = tcn steps
(a similar remark applies to the 1-process). For the d-process with d > 3, this explains why we also need to
show tc < d/2 via an extra argument, see Section 3.2.3. For the 2-process this ‘end of process’ obstacle also
explains why Theorem 1.3 requires a different two-step proof approach, whose details we defer to Section 4.
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1.4 More general results: random k-uniform dn-process
sec:statement

Our arguments extend to a large class of degree restricted hypergraph processes that generalize the d-process.

Informally, each vertex v ∈ [n] has its own maximum degree restriction d
(n)
v ∈ N = {0, 1, 2, . . .}, and in

each step we add one new random k-hyperedge that does not violate any of these degree restrictions. More

formally, given k > 2 and a degree sequence dn =
(
d

(n)
1 , . . . , d

(n)
n

)
∈ Nn, the random k-uniform dn-process

corresponds to a random sequence (Hi)i>0 = (Hk,dn
n,i )i>0 of k-uniform hypergraphs with vertex set [n] and

empty initial initial hypergraph H0. In each step we obtain obtain Hi+1 by adding the hyperedge ei+1 to Hi,
where ei+1 is chosen uniformly at random from all hyperedges in

(Ui
k

)
\E(Hi), where the active vertex set Ui

contains all vertices v ∈ [n] with degree less than d
(n)
v in Hi; this process stops when no more such edges can

be added, which happens5 after mn −O(1) steps, where mn :=
∑
v∈[n] d

(n)
v /k.

Our main result regarding the phase transition of the random k-uniform dn-process extends Theorems 1.1
and 1.5, based on two main assumptions: (a) that all degree restrictions in dn are bounded by some con-
stant ∆, and (b) that the fraction of vertices in dn with degree restriction j converges to rj . For example,
the d-process corresponds to the special case k = 2, ∆ = d, dn = (d, . . . , d) and rj = 1{j=d}, where T = d/2.
In view of (1.15), note that the k-uniform dn-process ends after mn −O(1) = Tn− o(n) steps, where T > 0
follows from

∑
j∈[∆] rj > 0. Here N>j(H) denotes the number of vertices of H in components of size at least j.

thm:mainhg Theorem 1.6 (Phase transition of k-uniform dn-process). Given k > 2, ∆ > 1 and r = (r0, . . . , r∆) ∈
[0, 1]∆+1 with

∑
j∈[∆] rj > 0, set T :=

∑
j∈[∆] jrj/k. Then there exist tc ∈

(
0,min{T, 1

k−1}
]

and a

continuously increasing function s : [0, tc)→ [1,∞) such that the following holds for the random k-uniform

dn-process provided that dn =
(
d

(n)
1 , . . . , d

(n)
n

)
satisfies dn ∈ {0, . . . ,∆}n and

lim
n→∞

∣∣{v ∈ [n] : d(n)
v = j

}∣∣/n = rj for each 0 6 j 6 ∆. (1.15) conv

mainhg:subcr 1. (Subcritical phase: exponential tails) For every t ∈ [0, tc) there are constants a,A > 0 depending only

on t, k,∆, r such that, with probability 1− o(n−99), we have N>j(H
k,dn
n,btnc) 6 Ae−ajn for all j > 1, which

in particular implies L1(Hk,dn
n,btnc) 6 C log n for a suitable constant C > 0.

mainhg:supcr 2. (Supercritical phase: giant component) For every t ∈ (tc, T ) there is a constant c = c(t, k,∆, r) > 0 such

that, with probability 1− o(n−99), we have L1(Hk,dn
n,btnc) > cn.

mainhg:tc 3. (Susceptibility: blow-up at critical point tc) For every t ∈ [0, tc) there is a parameter ξn > 0 with ξn = o(1)

such that, with probability 1− o(n−99), we have S(Hk,dn
n,i ) = (1± ξn) s(i/n) for all 0 6 i 6 tn. Further-

more, limt↗tc s(t) =∞ if tc < T .

rem:mainhg:tc Remark 1.7. The function s(t) is determined by the unique solutions to a system of O(∆4) differential
equations, see (3.11) and (3.13)–(3.17).

This result establishes exponential decay of the component size distribution in the subcritical case
t ∈ [0, tc), which is well-known for the Erdős-Rényi reference model [16, 31]. This also strengthens analogies
with Percolation theory [26, 19], where exponential decay is a prominent hallmark of the subcritical phase.

Theorem 1.6 identifies the critical point tc of the phase transition as the blow-up point of the susceptibility,
but it does so only when tc < T , i.e., only if the giant component emerges when there is still some significant
part of the degree restricted process remaining. The 1-process shows that this extra complication is necessary,
since its susceptibility never blows up (as all components trivially have size at most 2). Theorem 1.6 also
implies that the separation tc < T follows from the sufficient condition T > 1/(k − 1), which in turn is
equivalent to the idealized average degree condition

∑
j∈[∆] jrj > 1 + 1/(k − 1). This readily implies tc < T

for the d-process with d > 3 and for the k-uniform d-process with (k, d) 6= (2, 2) and k, d > 2, which in turn
demonstrates that Theorem 1.6 implies Theorems 1.1 and 1.5 (recalling that these two processes whp end
after bdn/2c and bdn/kc steps, respectively). In fact, the aforementioned sufficient condition for tc < T is
sharp due to the 2-process, which satisfies T = 1/(k − 1) = tc and

∑
j∈[∆] jrj = 1 + 1/(k − 1).

5The process stops when we cannot add another any edge without violating the degree restriction of some vertex v. Then

there must be |{v ∈ [n] : d
(n)
v = j}| −O(1) vertices with degree j ∈ [∆], so the process stops after adding m−O(1) edges.
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1.4.1 Multigraph variant
sec:multigraph

In the proofs it is convenient to consider a multigraph variant of the k-uniform dn-process, which corre-
sponds to a random sequence (Gi)i>0 = (Gk,dnn,i )i>0 of hypergraphs with vertex set [n] and empty initial
hypergraph G0. In each step we obtain Gi+1 by adding the hyperedge ei+1 = {vi+1,1, . . . , vi+1,k} to Gi,
where the vertices vi+1,j are independently chosen uniformly at random from the active vertex-set Ui of Gi;
this process stops when no more such edges can be added. While these hypergraphs may contain multiple
edges or edges with repeated vertices, there will be rather few of these. As usual, it thus suffices to prove
Theorem 1.6 for the multigraph variant, since this result then transfers in a routine way to the normal
k-uniform dn-process; we include the fairly standard details of this reduction in Appendix B.

rem:red:multi Remark 1.8. It suffices to prove Theorem 1.6 for the multigraph variant (Gk,dnn,i )i>0.

2 Couplings: approximating the evolution
sec:coupling

In this preparatory section we consider the multigraph variant (Gi)i>0 = (Gk,dnn,i )i>0 of the k-uniform
dn-process defined in Section 1.4.1, and make the heuristic ‘rough control’ bound (1.8) bound rigorous.
In particular, Theorem 2.1 gives, starting from the hypergraph Gi after i steps, some approximate control
over the components arising in the subsequent evolution (during a small number of steps). Defining Nj(Gi)
as the number of vertices of Gi in components of size j, our main technical assumption is that Gi is well-
behaved in the sense that its component distribution has exponential tails:

∑
j∈[n] β

jNj(Gi) 6 Bn implies

N>j(Gi) 6 Bβ−jn, which also gives L1(Gi) = O(log n). The subcritical statement (2.1) is optimized for our
upcoming inductive proof of Theorem 1.6, implying that whp all subgraphs of Gi+m remain well-behaved
if m 6 c · |Ui|/Su(i) for small c > 0. The supercritical statement (2.2) implies that Gi+m whp contains a
giant component if m > C · |Ui|/(Su(i)−1) for large C > 0. Note that Nj(Gi) and |Ui| are determined by Gi.

thm:rough Theorem 2.1 (Rough control). Given k > 2, β > 1 and B, ξ, π > 0, there are α > 1 and A, c, σ, n0 > 0 such

that the following holds for all n > n0 and dn ∈ Nn, writing (Gi)i>0 = (Gk,dnn,i )i>0. If
∑
j∈[n] β

jNj(Gi) 6 Bn

and ξn 6 m 6 |Ui|/8k2, then

P
(∑

j∈[n]α
jN≥j(Gi+m) 6 An

∣∣Gi) > 1− n−π if k(k − 1) ·m/|Ui| · Su(i) 6 1/4, (2.1) thm:rough:sub

P
(
L1(Gi+m) > cn

∣∣Gi) > 1− e−σn if k(k − 1) ·m/|Ui| · (Su(i)− 1) > 4. (2.2) thm:rough:super

The constants 1/4 and 4 in (2.1)–(2.2) suffice for our purposes, and we remark that they could be improved
to 1−O(ε) and 1+O(ε) under the stronger assumptionm = Θ(ε|Ui|). The ad-hoc restrictionm > ξn naturally
arises in our later applications, but could also be weakened. The proof of Theorem 2.1 combines coupling
arguments with branching process and random walk arguments, and is spread across Sections 2.1–2.3. On a
first reading, the reader may perhaps wish to skip to the main phase transition proof in Section 3.

2.1 Sandwiching between two simpler models
sec:sandwich

The key step in the proof of Theorem 2.1 is to show that, starting from the hypergraph Gi after i steps, we can
whp sandwich the subsequent evolution of the multigraph process between two simpler random hypergraph
models. To this end we define E`,W as the set {f1, . . . , f`} of edges with fj = {wj,1, . . . , wj,k}, where each
vertex wj,h ∈W is chosen independently and uniformly at random. Similarly, we writeM`,W for a uniformly
chosen random k-matching of W of size |M`,W | = `. Noting that Ui is determined by Gi, the point of the
inclusions in (2.3)–(2.4) is that they enable us to study monotone properties of Gi+j via two more tractable
models (see Section 2.2); below we use the shorthand G+ E := (V (G), E(G) ∪ E).

lem:sandwich Lemma 2.2. Given k > 2, there is λ > 0 such that the following holds for all n > 1 and dn ∈ Nn, writing
(Gi)i>0 = (Gk,dnn,i )i>0. If 0 6 m 6 |Ui|/(4k2), then there is a coupling of Gi+dm/2e and Em,Ui and a coupling
of Gi+M and Mdm/2e,Ui such that

P
(
Gi+dm/2e ⊆ Gi + Em,Ui

∣∣Gi) > 1− e−λm, (2.3) eq:sandwich:super

P
(
Gi +Mdm/2e,Ui ⊆ Gi+m

∣∣Gi) > 1− e−λm. (2.4) eq:sandwich:sub
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Proof. Inequalities (2.3)–(2.4) are trivial for m = 0, so we henceforth assume m > 1. We consider (fj)16j6m

with fj = {wj,1, . . . , wj,k}, where each vertex wj,h ∈ Ui is chosen independently and uniformly at random.
Clearly, {f1, . . . , fm} gives Em,Ui . Furthermore, starting from Gi we obtain the subsequent evolution of the
degree restricted multigraph process by sequentially traversing the (fj)16j6m, only adding those edges which
do not violate the degree restrictions of any vertex. The crux is that any active vertex in Ui can be adjacent
to at least one more edge, which implies that all edges in any induced k-matchingM⊆ {f1, . . . , fm} = Em,Ui
are added by the degree restricted process (the vertices of f ∈ M do not appear in any other edge, so they
are all still active when f is traversed). This yields a natural coupling with the property that

Gi +M⊆ Gi+m and Gi+|M| ⊆ Gi + Em,Ui (2.5) eq:cpl

for any induced matching M⊆ Em,Ui .
We first prove prove (2.3), and say that fj is induced if it (i) contains k distinct vertices and (ii) is vertex

disjoint from (fh)16h6m,h 6=j . Let M contain all induced edges in {f1, . . . , fm}. It routinely follows that

E|M| =
∑
j∈[m]P(fj is good) > m ·

(
1− k(km− 1)/|Ui|

)
> 3m/4. (2.6) eq:prgood

Note that (fj)16j6m is constructed by km independent random variables, each corresponding to a (random)
vertex choice from Ui. Furthermore, changing the outcome of one vertex choice can change |M| by at most
two. Hence a standard application of the bounded differences inequality [35] shows that

P(|M| 6 bm/2c) 6 P(|M| 6 E|M| −m/4) 6 e−λm (2.7) eq:sandwich:bdi

for λ := 1/(128k), say, which together with (2.5) establishes (2.3).
We now prove (2.4) by a rerandomization argument, using a permutation π : Ui → Ui that is chosen

independently and uniformly at random. The key observation is that we can equivalently construct (fj)16j6m

by first generating the edges (gj)16j6m with the same distribution as (fj)16j6m, and then setting fj := π(gj)
for all 1 6 j 6 m, where π(g) := {π(w) : w ∈ g}. By (2.7) we know that, with probability at least 1− e−λm,
the set {g1, . . . , gm} contains at least dm/2e induced edges, say g̃1, . . . , g̃dm/2e. The crux is that, even without
knowing the permutation π, using knowledge of (gj)16j6m we can already conclude that all edges in

M :=
{
π(g̃1), . . . , π(g̃dm/2e)

}
⊆ {f1, . . . , fm} = Em,Ui (2.8) eq:cM:definition

are again induced. Moreover, since π is a random permutation of Ui, the edges inM form a random matching
with the same uniform distribution as Mdm/2e,Ui , which together with (2.5) establishes (2.4).

We remark that for m = Θ(ε|Ui|) the above argument easily allows us to improve the number of added
hyperedges from dm/2e to (1−O(ε))m for small ε (see (2.6)–(2.7) above).

2.2 Random evolution from initial hypergraph
sec:evolution

In view (2.3)–(2.4), the next step in the proof of Theorem 2.1 is to study the random evolution starting from a
fixed initial hypergraph F . One key difference to previous related results [47, 32, 41] is that in Lemma 2.3 we
only add random (matching) edges to a subset W ⊆ V (F ) of the vertices. Similar to Theorem 2.1, our main
technical assumption is that the component distribution of F has exponentially decaying tails. The conditions
in both cases of Lemma 2.3 are natural: they ensure that associated component exploration processes are
subcritical or supercritical, see (2.9) and (2.10) below. Note that S(Gi, [n]) = S(i) and S(Gi,Ui) = Su(i),
and recall that F + E = (V (F ), E(F ) ∪ E).

lem:evo Lemma 2.3. Given k > 2, β > 1 and B, ξ, γ, π > 0, there are α > 1 and A, λ, c, n0 > 0 such that, for
all n > n0, ` > 0, the following holds for every n-vertex k-uniform hypergraph F with

∑
j∈[n]β

jNj(F ) 6 Bn,

and every vertex-subset W ⊆ V (F ) of size |W | > ξn, writing S(F,W ) :=
∑
w∈W |Cw(F ) ∩W |/|W |.

1. (Subcritical case: adding random edges) If k(k − 1) · `/|W | · S(F,W ) 6 1 − γ, then, with probability at
least 1− n−π, we have

∑
j∈[n]α

jN≥j(H`) 6 An for H` := F + E`,W .

2. (Supercritical case: adding a random matching) If k(k−1) ·`/|W | ·
(
S(F,W )−1) > 1+γ and ` 6 |W |/k,

then, with probability at least 1− e−λn, we have L1(M`) > cn for M` := F +M`,W .
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The subcritical proof strategy is to consider a ‘breadth first search’ exploration process of H` = F + E`,W ,
which iteratively finds new neighbors in W via edges of E`,W . Starting from an initial vertex v0 ∈W , this
process eventually uncovers Cv0(H`), i.e., the component of H` containing v0. Intuitively, each vertex v ∈W
has on average about k|E`,W |/|W | adjacent edges fv = {v, w1, . . . , wk−1} in E`,W , and via each such edge fv
we find roughly

∑
16h<k |Cwh(F ) ∩W | new vertices in W . Since the vertices wh ∈ W are chosen uniformly

at random, we expect that, on average, the exploration process finds in each step about

k|E`,W |
|W |

·
∑

16h<k

∑
wh∈W

|Cwh(F ) ∩W |
|W |

=
k`

|W |
· (k − 1) · S(F,W ) 6 1− γ (2.9) eq:evo:sub:rate

new vertices in W . By standard heuristics this suggests that the exploration process is ‘subcritical’, i.e.,
should quickly terminate (and thus should only find few vertices). Unfortunately, this reasoning is not yet
enough, since the exploration process is only subcritical when restricted to vertices from W ⊆ V (F ). Here
the saving idea is that, by the assumption that F has exponential tails, an average exploration step should
only pick up additional O(1) vertices outside W (which are not touched by any edges of E`,W , and thus are
irrelevant for the termination of the exploration process). This approach eventually establishes the subcritical
case by careful branching process arguments; we defer the details to Appendix C.1.

The supercritical proof strategy is similar but simpler. Again the main idea is to study the growth of a
component exploration process of M` = F +M`,W , which iteratively finds new neighbors in W via matching
edges in M`,W . One key difference to the subcritical case is that here each vertex is contained in at most
one matching edge (so we need to adjust the number of ‘newly found’ vertices by −1). Mimicking (2.9) we
thus loosely expect that, on average, the exploration process finds in each step about

k|M`,W |
|W |

·
∑

16h<k

∑
wh∈W

(|Cwh(F ) ∩W | − 1)

|W |
=

k`

|W |
· (k − 1) ·

(
S(F,W )− 1

)
> 1 + γ (2.10) eq:evo:super:rate

new vertices in W that can still participate in matching edges. By standard heuristics this suggests that the
exploration process is ‘supercritical’, i.e., should find a giant component. This approach eventually establishes
the subcritical case by fairly routine random walk arguments; we defer the details to Appendix C.2.

2.3 Proof of rough control result
sec:rough:proof

Finally, Theorem 2.1 follows easily from Lemma 2.2 and 2.3; we include the details for completeness.

Proof of Theorem 2.1. We start with inequality (2.1). Applying the subcritical case of Lemma 2.3 with
F = Gi, W = Ui, S(F,W ) = Su(i), ` = 2m, γ = 1/2 and π set to π+1, noting k(k−1) ·2m/|Ui| ·Su(i) 6 1/2
and |Ui| > 8k2m > ξn it follows that there are constants α > 1 and A,n1 > 0 such that

Π := P
(∑

j∈[n]α
jN>j(Gi + E2m,Ui) > An | Gi

)
6 n−(π+1)

for n > n1. Applying (2.3) of Lemma 2.2 with m set to 2m, noting 2m 6 U(i)/(4k2) it follows that there is
a constant λ > 0 such that monotonicity of N>j(·) yields

P
(∑

j∈[n]α
jN>j(Gi+m) > An | Gi

)
6 Π + e−λm 6 n−(π+1) + e−λξn,

which establishes inequality (2.1) for n > n0(π, λ, ξ, n1) large enough.
For inequality (2.2) we proceed similarly. Noting that k(k− 1) · dm/2e/|Ui| · (Su(i)− 1) > 2, here we shall

apply the supercritical case of Lemma 2.3 with F = Gi, W = Ui, S(F,W ) = Su(i), ` = dm/2e and γ = 1.
Together with (2.4) of Lemma 2.2, it follows that there are constants c, λ, n1 > 0 such that

P
(
L1(Gi+m) 6 cn | Gi

)
6 P

(
L1(Gi +Mdm/2e,Ui) 6 cn | Gi

)
+ e−λm 6 e−λn + e−λξn

for n > n1. This establishes inequality (2.2) with σ := λmin{1, ξ}/2 for n > n0(λ, ξ, n1).
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3 Phase transition: emergence of giant component
sec:proof

In this core section we prove the phase transition result Theorem 1.6, and in view of Remark 1.8 we shall
again consider the multigraph variant (Gi)i>0 = (Gk,dnn,i )i>0 of the k-uniform dn-process. As indicated in
Section 1.3, our approach requires numerous auxiliary random variables. Let Xa,b(i) denote the number

of vertices v ∈ [n] of Gi with degree a and degree restriction b, i.e., with degGi(v) = a and d
(n)
v = b. The

assumptions of Theorem 1.6 allow us to restrict our attention to degree pairs (a, b) ∈ V, where

V :=
{

(x, y) ∈ N2 : 0 6 x 6 y 6 ∆
}

and V∗ :=
{

(x, y) ∈ V : x < y
}
. (3.1) def:cVcVS

Writing (Cj)j∈Ci for the components of Gi, the key susceptibility related random variables are

Za,b,c,d(i) :=
∑
j∈Ci

|Cj,a,b||Cj,c,d| for all (a, b), (c, d) ∈ V, (3.2) eq:Z:def

where the (degree based) component subsets Cj,a,b ⊆ Cj are given by

Cj,a,b :=
{
v ∈ Cj : degCj (v) = a and d(n)

v = b
}
. (3.3) eq:Cjab:def

Since |Cj | =
∑

(a,b)∈V |Cj,a,b|, the variables Za,b,c,d(i) refine the susceptibility (1.1) in view of

S(i) =
∑
w∈[n]

|Cw(Gi)|
n

=
∑
j∈Ci

|Cj |2

n
=

∑
(a,b),(c,d)∈V

Za,b,c,d(i)

n
. (3.4) def:SiZ

Since |Cj ∩ Ui| =
∑

(a,b)∈V∗ |Cj,a,b|, they similarly refine the active susceptibility (1.4) in view of

Su(i) =
∑
w∈Ui

|Cw(Gi) ∩ Ui|
|Ui|

=
∑
j∈Ci

|Cj ∩ Ui|2

|Ui|
=

∑
(a,b),(c,d)∈V∗

Za,b,c,d(i)

U(i)
, (3.5) def:SuiZ

where U(i) := |Ui| denotes the number of active vertices v ∈ [n] in Gi, i.e., with (degGi(v), d(n)) ∈ V∗. As
we shall see in Section 3.3.2, the key conceptual point is that the extra auxiliary variables Za,b,c,d(i) allow us
to obtain a ‘closed’ system of random variables, i.e., where we can estimate the expected one-step changes of
all variables using only variables in the system (which would fail otherwise, as indicated in Section 1.3.1).

The following technical result is at the heart of our inductive proof approach: it relates the evolution of the
degree restricted process with suitable differential equations. In particular, the approximations (3.7)–(3.9)
show that typically U(tn) ≈ u(t)n, Xa,b(tn) ≈ xa,b(t)n and Za,b,c,d(tn) ≈ za,b,c,d(t)n for 0 6 t 6 th, where the
deterministic functions u(t), xa,b(t) and za,b,c,d(t) are the solutions to a system of O(∆4) differential equations.
By Remark 3.3 these approximations also ensure S(tn) ≈ s(t) and Su(tn) ≈ su(t), where the functions s(t)
and su(t) are defined in terms of u(t) and za,b,c,d(t). The technical ‘exponential tail’ bound (3.10) is optimized
for inductive applications of the rough control result Theorem 2.1, and by Remark 3.2 it also ensures L1(tn) =
O(log n) for 0 6 t 6 th. The definition (3.6) of the time-sequence (th)h>0 differs slightly from the heuristic
form (1.10): instead of u(th) we here use T − th in the numerator, which makes it easier to see that th < T ,
among other advantages. In particular, in Section 3.1 we shall define tc := limh→∞ th, and the definition (3.6)
then makes it easy to see that limh→∞ su(th) blows up when tc < T .

thm:dgl Theorem 3.1 (Main technical result). Suppose that k > 2, ∆ > 1, r = (r0, . . . , r∆) ∈ [0, 1]∆+1 and dn =(
d

(n)
1 , . . . , d

(n)
n

)
∈ {0, . . . ,∆}n satisfy the assumptions of Theorem 1.6. Set T :=

∑
j∈[∆] jrj/k. Then there is

a sequence
(
th, βh, Bh, n0,h,Ψh(n), ξh(n)

)
h>0

of constants th, βh, Bh, n0,h > 0 with t0 = 0 and βh > 1 and

non-negative functions Ψh(n), ξh(n) such that the following holds for each fixed h > 0:

(P1) On [0, th] the system of differential equations (3.13)–(3.17) has unique solutions u(t), xa,b(t) and za,b,c,d(t)
for all (a, b), (c, d) ∈ V. These solutions satisfy u(t) > k(T − th)/(4∆) and za,b,c,d(t) 6 2Bh/(βh − 1),
and they also have bounded first derivatives.
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(P2) If h > 1, then we have th−1 < th < T , βh 6 βh−1, Bh > Bh−1 and

th − th−1 =
T − th−1

32∆k ·max
{
su(th−1), 1

} , (3.6) ind:thd

where the expression su(th−1) is well-defined by (P1) and (3.11) below.

(P3) We have Ψh(n) = o(n−99) and ξh(n) = o(1), with ξh(n) 6 k(T − th)/(8∆) for n > n0,h.

(P4) With probability at least 1−Ψh(n), for n > n0,h and all 0 6 i 6 thn we have

U(i)

n
= u(i/n)± ξh(n), (3.7) ind:U

Xa,b(i)

n
= xa,b(i/n)± ξh(n) for all (a, b) ∈ V, (3.8) ind:X

Za,b,c,d(i)

n
= za,b,c,d(i/n)± ξh(n) for all (a, b), (c, d) ∈ V, (3.9) ind:Z∑

j∈[n]

βjhN>j(Gi) 6 Bhn, (3.10) ind:tail

where Gi = Gk,dnn,i is the multigraph variant of the k-uniform dn-process.

rem:dgl Remark 3.2. Setting bh := log βh > 0 and Ch := (1+Bh)/bh, note that inequality (3.10) implies N>j(Gi) 6
Bhe

−bhjn, which in particular gives L1(Gi) 6 Ch log n for n > e, say.

rem:s Remark 3.3. In view of the identities (3.4)–(3.5), using (P1) we define

s(t) :=
∑

(a,b),(c,d)∈V

za,b,c,d(t) and su(t) :=
∑

(a,b),(c,d)∈V∗
za,b,c,d(t)/u(t). (3.11) def:stsut

Combining the inequalities from (P1) and (P3) with (3.4)–(3.5), there is Dh = Dh(k,∆, T, th, βh, Bh) > 0
such that, for n > n0,h and all 0 6 i 6 thn, the approximations (3.7) and (3.9) imply

S(i) = s(i/n)±∆4ξh(n) and Su(i) = su(i/n)±Dhξh(n). (3.12) ind:SSu

As we shall see, the slightly roundabout statement of Theorem 3.1 has the advantage of only requiring
very little analytical knowledge about the functions u(t), xa,b(t) and za,b,c,d(t). In fact, in the deferred proof
of Theorem 3.1 the differential equation method based approximations (3.7)–(3.9) will work hand in hand
with the rough control based exponential tail bound (3.10), i.e., they inductively enable each other.

The remainder of this section is organized as follows. In Section 3.1 we state the relevant system of
differential equations, define the critical point tc, and show that su(t) blows at tc. Using these properties, in
Section 3.2 we then prove Theorem 1.6, by combining our main technical result Theorem 3.1 with the rough
control result Theorem 2.1. Finally, Sections 3.3–3.4 are devoted to the deferred proof of Theorem 3.1.

3.1 Differential equations and definition of tc
sec:ODE

As suggested by Theorem 3.1, for given k > 2, ∆ > 1 and r = (r0, . . . , r∆) ∈ [0, 1]∆+1 we are interested in
the solution to the following system6 of differential equations (heuristically derived in Section 3.3):

u′(t) = −
k
∑
b∈[∆] xb−1,b(t)

u(t)
, (3.13) eq:U:diff

x′a,b(t) =
k
(
1{a>0}xa−1,b(t)− 1{a<b}xa,b(t)

)
u(t)

, (3.14) eq:X:diff

z′a,b,c,d(t) =
k(k − 1)

∑
(e,f)∈V∗

(
za,b,e,f (t) + δe,fa,bxe,f (t)

)∑
(e,f)∈V∗

(
ze,f,c,d(t) + δe,fc,dxe,f (t)

)
u(t)2

+
k
∑

(e,f)∈V∗

(
za,b,e,f (t)δe,fc,d + δe,fa,b ze,f,c,d(t) + δe,fa,b δ

e,f
c,dxe,f (t)

)
u(t)

,

(3.15) eq:Z:diff

6Introducing the technically redundant function u(t) =
∑
b∈[∆]

(
x0,b(0)− xb,b(t)

)
allows for cleaner equations.
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for all (a, b), (c, d) ∈ V, with initial conditions

u(0) =
∑
b∈[∆]

rb, xa,b(0) = 1{a=0}rb and za,b,c,d(0) = 1{a=c=0, b=d}rb, (3.16) eq:UXZ:init

where in (3.15) we tacitly used the shorthand

δe,fx,y :=


1, if y = f and x = e+ 1,

−1, if y = f and x = e,

0, otherwise.

(3.17) def:delta

Our proof framework avoids the usual technical analysis of this large system of differential equations, by
effectively transferring properties of the degree restricted process to the solutions of (3.13)–(3.17).

cor:fkt Corollary 3.4. For each h > 1, the following holds on [0, th]: the function s(t) is monotone increasing, and
we have za,b,c,d(t) > 0, u(t) 6 1 and min{s(t), su(t)} > 1.

Proof. By definition Za,b,c,d(i) > 0, so the approximation (3.9) implies that whp 0 6 Za,b,c,d(btnc)/n 6
za,b,c,d(t) + o(1) for all t ∈ [0, th]. This implies za,b,c,d(t) > 0 on [0, th], since the function za,b,c,d(t) is
defined without reference to n. Noting U(i) = |Ui| 6 n as well as S(i) >

∑
w∈[n] 1/n = 1 and Su(i) >∑

w∈[n] 1{w∈Ui}/|Ui| = 1, using (3.7) and (3.12) we similarly obtain u(t) 6 1 and min{s(t), su(t)} > 1. Since

S(i) =
∑
w∈[n] |Cw(Gi)|/n is monotone increasing in each step, using the inequality S(i+ j) > S(i) together

with (3.12) we here obtain s(τ2) > s(τ1) for all 0 6 τ1 6 τ2 6 th, i.e., that s(t) is monotone increasing.

In particular, while previous related work [4, 14, 47, 32, 11] needed technical analysis to establish existence
of a blow-up point tc of the relevant differential equations (which for (3.13)–(3.17) would require some care
due to the unusually large number of O(∆4) variables), we can simply define the critical point as

tc := lim
h→∞

th, (3.18) def:tc

where the explicit construction (3.6) of the increasing times (th)h>0 then nearly automatically guarantees
that the idealized susceptibility s(t) and active susceptibility su(t) both blow up at tc, provided that tc < T
(the fact that this works can ultimately be traced back to the rough control result Theorem 2.1, i.e., to
combinatorial and probabilistic properties of the degree restricted process; cf. Section 3.4). In fact, for our
purposes it suffices to show that su(th) blows up as h→∞, which is easier to establish; cf. Lemma 5.1

cor:tc Corollary 3.5. We have tc = suph>1 th ∈ (0, T ]. Furthermore, tc < T implies limt↗tc s(t) → ∞ and
limh→∞ su(th) =∞.

Proof. By monotone convergence, tc = suph>1 th ∈ (0, T ] is immediate (since 0 = t0 < th < T for h > 1).
Using su(th−1) > 1 and th 6 tc, by rearranging (3.6) we infer su(th−1) > (32k∆)−1(T − tc)/(tc − th−1) for
all h > 1. Note that za,b,c,d(t) > 0 and (P1) similarly imply s(th) > u(th)su(th) > k(T − tc)/(4∆) · su(th)
for all h > 0. If tc < T , then limh→∞ su(th) =∞, and monotonicity of s(t) implies limt↗tc su(t) =∞.

3.2 Proof of main phase transition result
sec:DGL2

In this subsection we prove Theorem 1.6 following the outline from Section 1.3.2, by combining our main
technical result Theorem 3.1 with the properties of Section 3.1 and the rough control result Theorem 2.1. As
mentioned in Remark 1.8, to this end it suffices to consider the multigraph variant (Gi)i>0 = (Gk,dnn,i )i>0.

3.2.1 Theorem 1.6: subcritical phase and susceptibility
sec:sub

Proof of the ‘subcritical phase’ and ‘susceptibility’ part of Theorem 1.6. Given 0 6 t < tc, we use the con-
clusions of Theorem 3.1 for the smallest h = h(t) > 1 satisfying th > t. Recalling Remark 1.8, this readily
completes the proof by combining the tail bounds of Remark 3.2 and the susceptibility approximation (3.12)
with Ψh(n) = o(n−99), s(t) > 1 and Corollary 3.5 (setting C := Ch, ξn := ∆4ξh(n), a := bh and A := Bh).
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3.2.2 Theorem 1.6: supercritical phase and giant component
sec:super

Proof of the ‘supercritical phase’ part of Theorem 1.6. Since tc < t < T , we may henceforth assume tc < T .
Using Corollary 3.5, we therefore can pick h > 1 large enough (and thus su(th) large enough) such that

τh := min

{
4

k(k − 1) ·max{su(th)− 2, 1}
,

1

64k2
,
t− tc

4

}
=

4

k(k − 1) · (su(th)− 2)
. (3.19) eq:tauh:super

We now define Eh as the event that Gih satisfies (3.7)–(3.10) for i = ih, where

ih := bthnc and mh := b4τhu(th)nc. (3.20) def:ih:mh

Noting that Theorem 3.1 implies P(¬Eh) 6 Ψh(n) = o(n−99), we henceforth condition on Gih , and assume
that Eh holds. Using th 6 tc and u(th) 6 1, by definition (3.19) of τh it follows that

ih +mh 6
(
th + 4τhu(th)

)
n 6 (tc + 4τh)n 6 tn. (3.21) eq:m:sup

The approximations (3.7) and (3.11) imply Su(ih) > su(th)− 1 and u(th)n/2 6 |Uih | 6 2u(th)n for large n.
By definition (3.19) of τh, it follows that mh 6 8τh|Uih | 6 |Uih |/(8k2) and

k(k − 1) ·mh/|Uih | ·
(
Su(ih)− 1

)
> k(k − 1) · τh ·

(
su(th)− 2

)
= 4. (3.22) eq:tail:sup

Since Gih satisfies (3.10) for i = ih, by invoking inequality (2.2) from Theorem 2.1 with i = ih, m = mh,
β = βh, B = Bh, and ξ = τhu(th), there are constants c, σ > 0 such that

P
(
L1(Gbtnc) 6 cn | Gih

)
6 P

(
L1(Gih+mh) 6 cn | Gih

)
6 O(e−σn) = o(n−99), (3.23) eq:mainhg:L1

which by recalling P(¬Eh) 6 Ψh(n) = o(n−99) and Remark 1.8 then completes the proof.

3.2.3 Theorem 1.6: upper bound on tc
sec:gcsuff

To complete the proof of Theorem 1.6, it remains to show that the critical point satisfies tc 6 1/(k − 1).
Our main tool is Lemma 3.6, which is based on the following basic heuristic: as long as all components have
size o(n), each step should join k distinct components with probability close to one, which suggests that a
giant component should appear after roughly n/(k − 1) steps (see [44, 39, 40] for related arguments).

lem:gcsuff Lemma 3.6. Suppose that the assumptions of Theorem 1.6 hold. For every t ∈
(
1/(k − 1), T

)
there are

γ, λ > 0 depending only on t, T, k,∆ such that P(L1(Gbtnc) > γn) = 1−O(e−λn).

Proof of the tc 6 1/(k − 1) bound of Theorem 1.6. Aiming at a contradiction, suppose that tc > 1/(k − 1).
Pick 1/(k − 1) < t < tc, and recall that tc 6 T . Applying Lemma 3.6 and the subcritical part of the multi-
graph variant of Theorem 1.6 (as proved in Section 3.2.1), it follows that whp γn 6 L1(Gbtnc) 6 C log n,
which for large n yields the desired contradiction.

Proof of Lemma 3.6. Set m := btnc. Pick ε > 0 small enough such that t(k− 1) · (1− ε)k−1 > 1 + 2ε. Let Bj
denote the event that, for all 0 6 i 6 j, any component of Gi contains at most ε|Ui|/(k−1) active vertices. We
call a step successful if k distinct components are joined up, and define Sm as the event that at least n/(k−1)
of the first i steps are successful. The point is that if Bi holds, then the next step i + 1 is successful with
probability at least (1 − ε)k−1, say. Since btnc · (1 − ε)k−1 > (1 + ε) · n/(k − 1) for large n, using standard
Chernoff bounds (and stochastic domination) it routinely follows that P(¬Sm ∩ Bm) = O(e−λn) for suitable
λ = λ(ε, t, k) > 0. It remains to show that Sm ∪ ¬Bm implies L1(Gm) > γn for some γ = γ(ε, t, T,∆) > 0.

If Bm fails, then L1(Gi) > ε|Ui|/k for some step i 6 m, so by combining |Ui|∆ >
∑
v∈[n](d

(n)
v − degGi(v))

and
∑
v∈[n] degGi(v) 6 ki 6 ktn with

∑
v∈[n] d

(n)
v /(kn)→ T (see above Theorem 1.6) it follows that

L1(Gm)

n
>
ε|Ui|
kn

>
ε
(∑

v∈[n] d
(n)
v /(kn)− t

)
∆

>
ε(T − t)

2∆
=: γ (3.24) eq:gcsuff

for large n. Furthermore, since each successful step reduces the number of components by k − 1, it also
follows that Sm implies L1(Gm) = n > γn, completing the proof.
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3.3 Analysis of variables: initial values and one-step changes
sec:DGL

In this preparatory subsection we lay the groundwork for the upcoming proof of Theorem 3.1, which hinges
on an application of the differential equation method [54, 53, 51] to the O(∆4) random variables U(i), Xa,b(i)
and Za,b,c,d(i). In particular, tacitly assuming that the assumptions of Theorem 1.6 hold, we investigate the
three main conditions of the differential equation method (trend hypothesis, boundedness hypothesis, and
initial condition), and heuristically motivate the relevant system of differential equations (3.13)–(3.17).

3.3.1 Degree related variables
sec:DGL:basic

We start by analyzing the degree variables Xa,b(i), tacitly assuming (a, b) ∈ V. Using assumption (1.15), it
follows that the initial values of Xa,b(i) satisfy the initial condition

Xa,b(0)

n
=
1{a=0}

∣∣{v ∈ [n] : d
(n)
v = b

}∣∣
n

= 1{a=0}rb ± λ0(n) with λ0(n) = o(1), (3.25) eq:X:start

where λb(n) > 0 depends on dn and r. Since in each step the degrees of at most k vertices are altered, it
follows that the maximum one-step changes of Xa,b(i) satisfy the boundedness hypothesis∣∣Xa,b(i+ 1)−Xa,b(i)

∣∣ 6 k = O(1). (3.26) eq:X:bound

In each step, with probability at least 1− k2/|Ui| all k randomly chosen active vertices vi+1,1, . . . , vi+1,k ∈ Ui
are distinct. With the worst-case changes from (3.26) and |Ui| = U(i) in mind, similarly to [54, 53, 45] it
now routinely follows that the expected one-step changes of Xa,b(i) satisfy the trend hypothesis

E(Xa,b(i+ 1)−Xa,b(i) | Gi) =
∑

16j6k

1{a>0}Xa−1,b(i)− 1{a<b}Xa,b(i)

|Ui|
+O

(
1

|Ui|

)

=
k
(
1{a>0}Xa−1,b(i)− 1{a<b}Xa,b(i)

)
U(i)

+O

(
1

U(i)

)
.

(3.27) eq:X:change

We next analyze the number of active vertices U(i) = |Ui| =
∑
b∈[∆]

(
X0,b(0) − Xb,b(i)

)
. Using esti-

mate (3.25), it follows that the initial value of U(i) satisfies the initial condition

U(0)

n
=

∑
b∈[∆]X0,b(0)

n
=
∑
b∈[∆]

rb ±∆λ0(n). (3.28) eq:U:start

Analogously to (3.26)–(3.27), the one-step changes of U(i) satisfy the boundedness and trend hypothesis∣∣U(i+ 1)− U(i)
∣∣ 6 k = O(1), (3.29) eq:U:bound

E(U(i+ 1)− U(i) | Gi) = −
k
∑
b∈[∆]Xb−1,b(i)

U(i)
+O

(
1

U(i)

)
. (3.30) eq:U:change

To motivate the differential equations (3.13)–(3.16) for u(t) and xa,b(t), we assume the deterministic
approximations U(i) ≈ u(t)n and Xa,b(i) ≈ xa,b(t)n with t = i/n. By inserting these into both sides of the
expected one-step changes (3.30), noting U(i+ 1)− U(i) ≈ [u(t+ 1/n)− u(t)]n ≈ u′(t) we anticipate u′(t) =
−k
∑
b∈[∆] xb−1,b(t)/u(t) as in (3.13). The initial value (3.28) also suggests u(0) =

∑
b∈[∆] rb as in (3.16).

Using (3.27) and (3.25) we similarly anticipate the derivative (3.14) and initial value (3.16) of xa,b(t).

3.3.2 Susceptibility variables
sec:DE:s

We now analyze the susceptibility related key variables Za,b,c,d(i), tacitly assuming (a, b), (c, d) ∈ V. In G0

all component have size one, so that |Cj,a,b||Cj,c,d| ∈ {0, 1}, with |Cj,a,b||Cj,c,d| = 0 unless a = c and b = d.
Using estimate (3.25), it follows that the initial values of Za,b,c,d(i) satisfy the initial condition

Za,b,c,d(0)

n
=
1{a=c, b=d}Xa,b(0)

n
= 1{a=c=0, b=d}rb ± λ0(n). (3.31) eq:Z:start
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Since in each step at most k components are joined, it follows that the maximum one-step changes
of Za,b,c,d(i) satisfy the boundedness hypothesis∣∣Za,b,c,d(i+ 1)− Za,b,c,d(i)

∣∣ 6 kL1(i)2 +
(
kL1(i)

)2
= O

(
L1(i)2

)
. (3.32) eq:Z:bound

For the expected one-step changes of Za,b,c,d(i), we first suppose that k distinct components Cj1 , . . . , Cjk
of Gi are joined via the edge ei+1 = {vi+1,1, . . . , vi+1,k}, where vi+1,` ∈ Cj`,e`,f` satisfies (e`, f`) ∈ V∗ and
thus vi+1,` ∈ Ui. Denoting the resulting component by C+

π , for all degree pairs (x, y) ∈ V the number of

vertices v ∈ C+
π with degC+

π
(v) = x and d

(n)
v = y are then given by

|C+
π,x,y| =

∑
`∈[k]

(
|Cj`,x,y|+ δe`,f`x,y

)
, (3.33) eq:def:Cpi:xy

where the shorthand δe,fx,y ∈ {−1, 0, 1} is defined as in (3.17), see Section 3.1. In each step, with probability at
least 1−k2L1(i)/|Ui| all k randomly chosen active vertices vi+1,1, . . . , vi+1,k ∈ Ui are in distinct components.
With the worst case changes (3.32) in mind, by our above discussion it now follows that

E(Za,b,c,d(i+ 1)− Za,b,c,d(i) | Gi)

=
∑
j1∈Ci

(e1,f1)∈V∗

· · ·
∑
jk∈Ci

(ek,fk)∈V∗

(
|C+
π,a,b||C

+
π,c,d| −

∑
1≤`≤k

|Cj`,a,b||Cj`,c,d|
) ∏

16`6k

|Cj`,e`,f` |
|Ui|

+O

(
L1(i)3

|Ui|

)
,

where the |C+
π,x,y| are here defined by (3.33) above (which together with the additive error term formally

accounts for the degenerate cases where some components Cjh coincide). Recalling (3.33), we have

|C+
π,a,b||C

+
π,c,d| −

∑
1≤`≤k

|Cj`,a,b||Cj`,c,d|

=
∑
h,`∈[k]
h6=`

(
|Cjh,a,b|+ δeh,fha,b

)(
|Cj`,c,d|+ δe`,f`c,d

)
+
∑

1≤`≤k

(
|Cj`,a,b|δ

e`,f`
c,d + δe`,f`a,b |Cj`,c,d|+ δe`,f`a,b δe`,f`c,d

)
.

Since
∑
jh∈Ci,(eh,fh)∈V∗ |Cjh,eh,fh | =

∑
jh∈Ci |Cjh ∩ Ui| = |Ui| by (3.3), it follows that

E(Za,b,c,d(i+ 1)− Za,b,c,d(i) | Gi)

=
∑
h,`∈[k]
h6=`

∑
jh∈Ci

(eh,fh)∈V∗

|Cjh,eh,fh |
(
|Cjh,a,b|+ δeh,fha,b

)
|Ui|

∑
j`∈Ci

(e`,f`)∈V∗

|Cj`,e`,f` |
(
|Cj`,c,d|+ δe`,f`c,d

)
|Ui|

+
∑

1≤`≤k

∑
j`∈Ci

(e`,f`)∈V∗

|Cj`,e`,f` |
(
|Cj`,a,b|δ

e`,f`
c,d + δe`,f`a,b |Cj`,c,d|+ δe`,f`a,b δe`,f`c,d

)
|Ui|

+O

(
L1(i)3

|Ui|

)
.

Since Ze,f,a,b(i) = Za,b,e,f (i) and
∑
j∈Ci |Cj,e,f | = Xe,f (i) by (3.2) and (3.3), using |Ui| = U(i) it follows that

the expected one-step changes of Za,b,c,d(i) satisfy the trend hypothesis

E(Za,b,c,d(i+ 1)− Za,b,c,d(i) | Gi)

=
k(k − 1)

∑
(e,f)∈V∗

(
Za,b,e,f (i) + δe,fa,bXe,f (i)

)∑
(e,f)∈V∗

(
Ze,f,c,d(i) + δe,fc,dXe,f (i)

)
U(i)2

+
k
∑

(e,f)∈V∗

(
Za,b,e,f (i)δe,fc,d + δe,fa,bZe,f,c,d(i) + δe,fa,b δ

e,f
c,dXe,f (i)

)
U(i)

+O

(
L1(i)3

U(i)

)
.

(3.34) eq:Z:change

The precise form of (3.34) not important for our purposes: what matters is that the expected one-step
changes can be accurately estimated by a well-behaved function of the random variables Za,b,c,d(i), Xe,f (i)
and U(i). In particular, the differential equations (3.15)–(3.17) for za,b,c,d(t) are again heuristically suggested
by inserting the approximations Za,b,c,d(i) ≈ za,b,c,d(t)n, Xe,f (i) ≈ xe,f (t)n and U(i) ≈ u(t)n with t = i/n
into the expected one-step changes (3.34) and initial values (3.31), similarly to Section 3.3.1.
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3.4 Deferred proof of main technical result
sec:dgl:proof

In this subsection we give the deferred proof of Theorem 3.1, which inductive proceeds roughly as follows.
Assuming that (3.7)–(3.10) hold for step ih−1 ≈ th−1n, we use the rough control result Theorem 2.1 to show
that, with probability 1− o(n−99), the technical exponential tail bound (3.10) again holds up to step ih ≈ thn.
By Remark 3.2 this ensures that all components have size O(log n), so that the one-step changes (3.32)
of the Za,b,c,d(i) variables are at most O((log n)2), i.e., remain fairly small. With this extra information
about the subsequent evolution in hand, we then apply the differential equation method to show that, with
probability 1− o(n−99), the approximations (3.7)–(3.9) also hold up to step ih ≈ thn. Here the following
simple lower bound on U(i) = |Ui| will be convenient: similarly to (3.24) we deterministically have

U(i)

n
>

(∑
v∈[n] d

(n)
v /(kn)− t

)
k

∆
>

(
T − t− o(1)

)
k

∆
for all 0 6 i 6 tn. (3.35) eq:U:lower

Proof of Theorem 3.1. We construct the claimed sequence by induction on h, using Ψh(n) := 2h · n−100 for
concreteness. For the base case h = 0 we set t0 := 0, β0 := 2, B0 := 2, and define u(0), xa,b(0), za,b,c,d(0) via
the initial conditions (3.16). The inequalities in (P1) hold, since za,b,c,d(0) 6 rb 6 1 and u(0) =

∑
b∈[∆] rb >

kT/∆. Inspecting the initial values (3.25), (3.28), (3.31), there is a function ξ0(n) := ∆λ0(n) = o(1) which,
for large n, deterministically satisfies (3.7)–(3.9) for i = 0 and the inequality in (P3). Inequality (3.10) also
holds deterministically for i = 0, establishing the base case.

We now turn to the more interesting induction step, where h > 1. Let

ih−1 := bth−1nc, (3.36) ind:ih1

and define Eh−1 as the event that Gih−1
satisfies (3.7)–(3.10) for i = ih−1. By induction we have

P(¬Eh−1) 6 Ψh−1(n). (3.37) eq:Pr:Eh

We henceforth condition on Gih−1
, and assume that the event Eh−1 holds. Noting that su(th−1) is inductively

determined by (3.11) and (P1), gearing up to apply the rough control result Theorem 2.1 we define

τh :=
1

8k2 ·max{su(th−1), 1}
, uh :=

(T − th−1)k

2∆
and mh := bτhuhnc. (3.38) def:tauh:uh:mh

Inequality (3.35) implies |Uih−1
| > uhn for large n, so thatmh 6 τh|Uih−1

|. Similarly, the approximation (3.12)
implies Su(ih−1) 6 su(th−1) + 1 for large n. By definition (3.38) of τh we infer mh 6 |Uih−1

|/(8k2) and

k(k − 1) ·mh/|Uih−1
| · Su(ih−1) 6 k(k − 1) · τh ·

(
su(th−1) + 1

)
< 1/4. (3.39) eq:tail:ind:cond

Since Gih−1
satisfies (3.10) for i = ih−1, by invoking inequality (2.1) from Theorem 2.1 with i = ih−1,

m = mh, β = βh−1, B = Bh−1, ξ = τhuh/2 and π = 100, there are constants α > 1 and A > 0 such that

P
(∑

j∈[n]α
jN>j(Gih−1+mh) > An

∣∣Gih−1

)
6 n−100 (3.40) eq:tail:ind

for large n. Setting βh := min{α, βh−1} and Bh := max{A,Bh−1}, we now define the event

Gh :=
{

(3.10) def:Ghholds for all 0 6 i 6 thn
}
. (3.41) def:Gh

Note that ih−1 +mh > (th−1 + τhuh/2)n = thn by (3.6). It follows by monotonicity of N>j(·) that

P(¬Gh) 6 P(¬Eh−1) + P
(
(3.10) eq:Pr:Ghfails for i = ih−1 +mh, and Eh−1 holds

)
6 Ψh−1(n) + n−100. (3.42) eq:Pr:Gh

In preparation of the differential equation method, we observe that the event Gh implies

0 6 Za,b,c,d(i)/n 6 S(i) =
∑
j>1

N>j(Gi)/n 6 Bh
∑
j>1

β−jh 6 Bh/(βh − 1) =: Γh (3.43) eq:Z:bound:Pi
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for all 0 6 i 6 thn. With this in mind, we next define a domain Dh ⊆ R2+|V|+|V|2 which shall contain the
functions u(t), xa,b(t) and za,b,c,d(t) for t ∈ [0, th], while avoiding potential singularities of the functions u(t)
and za,b,c,d(t). For concreteness fix ε := 10−99 (any small constant suffices), and set

Dh :=
{ (

t, u, (xa,b)(a,b)∈V , (za,b,c,d)(a,b),(c,d)∈V
)

: t ∈
(
−ε, th + (T − th)/2

)
,

u ∈
(
uh+1/2, 1 + ε

)
, xa,b ∈

(
−ε, 1 + ε

)
, za,b,c,d ∈

(
−ε, 2Γh

) }
.

(3.44) def:Dh

Let us collect two consequences of the definitions of the domain Dh and the event Gh. First, if we assume
that t 6 th+ (T − th)/2, then the deterministic inequality (3.35) implies min06i6tn U(i) > (T − th)n/(4∆) =
Ω(n) for large n, which ensures that the additive error terms in the expected one-step changes (3.27) and (3.30)
of Xa,b(i) and U(i) are both O(n−1). Second, if we assume that the graph Gi is consistent with the event Gh,
then Remark 3.2 implies L1(i) 6 Ch log n when i 6 thn. For the variables Za,b,c,d(i) with i 6 thn this
means that there is a constant D′h > 0 such that (i) the additive error terms in the expected one-step
changes (3.34) are bounded by δ := D′h(log n)3/n, and (ii) the maximum one-step changes (3.32) are at
most β := D′h(log n)2. Applying the differential equation method [53, 51] with the bounded domain D = Dh
to the variables U(i), Xa,b(i) and Za,b,c,d(i), by the preparatory work of Section 3.3 it now is fairly routine
to see that (a) the uniqueness property (P1) holds for t ∈ [0, th], and (b) there is ξh(n) = o(1) such that

P
(
(3.7) eq:Pr:dem:step–(3.9) eq:Pr:dem:stepfails for some 0 6 i 6 thn, and Gh holds

)
6 n−ω(1). (3.45) eq:Pr:dem:step

(For the interested reader, in the following short interlude we briefly expand on a few standard details re-
garding the application of the differential equation method, using [51, Theorem 2] for concreteness. The trend
hypothesis corresponds to (3.13),(3.30), (3.14),(3.27), (3.15),(3.34) with additive error terms bounded by δ,
the boundedness hypothesis corresponds to (3.26), (3.29), (3.32) with maximum one-step changes bounded
by β, and the initial condition corresponds to (3.16), (3.28),(3.25),(3.31) with additive error terms bounded by
λ := max{∆λ0(n), n−1/4} = o(1), say. To clarify: the improved estimates (i),(ii) may indeed be used for the
variables Za,b,c,d(i), since by [51, Lemma 9] we can abandon our argument for Gi+1 as soon as Gi violates Gh.
The Lipschitz hypothesis is routinely verified: each of the derivatives in (3.13)–(3.15) corresponds to a func-
tion F that is a polynomial of degree at most two in the variables (xa,b/u)(a,b)∈V and (za,b,c,d/u)(a,b),(c,d)∈V ,

where u stays bounded away from 0 in the closure Dh of Dh, so F : Dh → R has continuous derivatives in the
compact set Dh, and is thus L-Lipschitz continuous in Dh for suitable L = L(Dh). To ensure that the approx-
imations (3.7)–(3.9) with ξh(n) = O(λ) = o(1) extend to all 0 6 i 6 thn, it suffices to verify that the solutions
u(t), xa,b(t) and za,b,c,d(t) to the system of differential equations (3.13)–(3.17) can only come o(1) close to the
boundary of Dh for t 6∈ [0, th]. This is straightforward, since otherwise we can easily get a contradiction to the
fact that, for large n, the rescaled random variables are well approximated by the solutions of the differential
equations. Indeed, 0 6 Xa,b(i)/n 6 1 is trivial, (3.35) implies uh+1 6 U(i)/n 6 1 for 0 6 i 6 thn, and (3.43)
implies 0 6 Za,b,c,d(i)/n 6 Γh for 0 6 i 6 thn. Finally, the n−ω(1) failure probability in (3.45) follows from
nλ2/β2 � log n and λ� δ � n−1, see [51, Theorem 2 and Lemma 9].)

To sum up, combining (3.41)–(3.42) with (3.45) now completes (for large n) the proof of the induction step
with Ψh(n) := Ψh−1(n) + 2n−100 = 2h · n−100, noting that ξh(n) = o(1) implies the inequality in (P3).

4 Random 2-process
sec:2process

In this section we prove Theorem 1.3 for the random 2-process (Gi)i>0 = (G2
n,i)i>0 defined in Section 1; note

that here we do not allow for loops or multiple edges. In particular, we shall analyze the size of the largest
component in the final graph of the random 2-process using the following 2-step argument :

Step 1: Early evolution. We first consider the 2-process graph GM after M ≈ n−o(n) steps, and show
that it whp satisfies the following properties: (i) all components have size o(n), and (ii) after removing an
exceptional set W of o(|UM |) vertices, all remaining active vertices in UM \W have degree 1 and are endpoints
of paths with at least 3 vertices; see Section 4.1 and the event T in Section 4.2 for the details. For ease of
exposition, we henceforth tacitly ignore the exceptional vertices in W . In particular, all relevant components7

7Here all cycles of GM are irrelevant for our purposes, since they have size o(n) and contain only inactive vertices.
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of GM containing active vertices are then simply paths with at least 3 vertices, whose set we denote by P .
Clearly, from any such path p ∈ P only its two endvertices can each participate in one more edge.

Step 2: Coupling with configuration model. The further evolution of the 2-process after step M
then iteratively joins up endpoints of paths (also allowing paths to be closed to cycles), and in each step all
such connections have the same probability8 by definition of the 2-process. A coupling of the 2-process and
the 2-regular configuration model [15, 52] with m := |P | bins then becomes evident if we assign each path
p ∈ P to one bin with two points, so that path joinings in the 2-process correspond9 to point pairings in the
configuration model. To recover the component sizes in the 2-process using the configuration model, we need
to take into account the sizes of the paths assigned to the bins, which are simply added up when distinct
bins are paired up. By concentration of measure we expect that the resulting component sizes are close to
their expected value (at least for large components), which in fact means that their size in the 2-process
is approximately their configuration model size multiplied with a fixed ‘stretching’ factor, see (4.6). This
stretching factor accounts for the fact that the configuration model has m = o(n) bins, and it eventually
cancels out after suitable rescaling of the sizes, see (4.5). In particular, it turns out that the size of the
largest configuration model component rescaled by m is whp approximately equal to the size of the largest
2-process component rescaled by n, see (4.10). Using known results for the 2-regular configuration model,
see Lemma 4.3, this then implies the desired distributional convergence result (1.3) of Theorem 1.3 for
the largest component in the final graph of the 2-process; see Section 4.2 for a rigorous version of this
heuristic argument (which also takes into account the exceptional set of vertices W ⊆ Ui).

4.1 Early evolution and value of tc
sec:2pr:tc

In preparation of the proof of Theorem 1.3, we henceforth fix 0 < δ 6 1/70 and define

M :=
⌈
n− n1−δ⌉ and r :=

⌊
n1−δ⌋. (4.1) def:M:r

We first show that whp L1(GM ) = o(n), which in view of M = n− o(n) easily implies tc = 1.

lem:2proc Lemma 4.1. In the random 2-process, whp L1(GM ) 6 n1/2+5δ.

Proof. We first consider the event A that, during one of the first M steps, two components of size at
least s := n1/2+2δ join. Before completing step M , note that the number of active vertices is always at
least n − (M − 1) > n1−δ =: a (analogous to (3.35) in Section 3.4), and that the number of components of
size at least s is always at most n/s. Since any component contains at most two active vertices, by taking a
union bound over all M possible joining steps it follows that

P(A) 6M ·O
(
(n/s)2 · a−2

)
= O(n−2δ).

We next consider the event Bi that, during one of the first M steps, the component containing vertex i
joins at least z := dn2δe times another component. With similar reasoning as for the event A above, by
taking a union bound over the first z joining steps it is routine to see that

P(Bi) 6
(
M
z

)
·
[
O
(
a−1

)]z
6
[
O(M/(az)

]z
6 e−z = o(n−1−2δ).

Hence, using a union bound argument, whp none of the events A,B1, . . . ,Bn occur. In that case, any
component initially starts with one vertex i and during the first M steps then sequentially grows by at most z
component joinings, which each bring in at most s new vertices. Thus L1(GM ) 6 1 + zs = o(n1/2+5δ).

cor:2proc Corollary 4.2. The critical point of the random 2-process satisfies tc = 1.

Proof. Note that tc 6 T = 1 follows by applying Theorem 1.6 to the 2-process, with k = ∆ = 2, r = (0, 0, 2)
and dn = (2, . . . , 2). Now, aiming at a contradiction, suppose that tc < T . Pick tc < t < T . Applying
Lemma 4.1 and Theorem 1.6 implies that whp cn 6 L1(Gbtnc) 6 n1/2+5δ < n3/4, which for large n yields the
desired contradiction.

Hence Remark 1.4 for the random 2-process is a direct consequence of Theorem 1.6.

8This uniformity would fail if 2-vertex paths were in P , since pairing their two endpoints yields a forbidden multiple edge.
9This correspondence would fail if isolated vertices were in P , since pairing their two bin points yields a forbidden loop.
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4.2 Final graph: size of the largest component
sec:2reg:size

To study the final graph of the 2-process, we now consider the further evolution from step M onwards;
here M = dn− n1−δe and r = bn1−δc as well as 0 < δ 6 1/70 are defined as in (4.1) above.

Proof of Theorem 1.3. We start with the auxiliary claim that GM satisfies, whp, the following event T :

i:P:2 (i) The largest component has size at most n1/2+5δ = o(r).
i:P:1 (ii) The number Xi of vertices of degree i satisfies X1 ∼ 2r and X0 = o(r). Additionally, the number Y of

components of size 2 satisfies Y = o(r).

Indeed, (i) is implied by Lemma 4.1, and (ii) follows from [48, Theorem 4 and (2.23)] (and requires δ < 1/4),
establishing the claim. We henceforth condition on GM , and assume that T holds. Noting that X1 is even,
the components of the graph GM must consist of X0 isolated vertices, Y paths with 2 vertices, and

m := X1/2− Y ∼ r (4.2) def:m

paths with at least 3 vertices, and an additional set C of cycles (if there are any). For later reference, we
write P for the set of m = |P | paths with at least 3 vertices, and W for the set of |W | = X0 + 2Y = o(r)
vertices in components of size at most 2. We also denote by G the random 2-process applied from this
point onwards.

To analyze how the subsequent steps of G affects these paths and components, we shall below employ
the standard configuration model [15, 52] for a random 2-regular graph on m vertices. This has m bins
with 2 points in each, and a random pairing (matching) of the points is chosen. The bins are collapsed into
vertices, the pairs become edges, and a multigraph (possibly with loops and multiple edges) results. We
consider the configuration model process R = (R0, . . . , Rm) which arises by choosing the random pairs of
points sequentially. Here Ri is marginally distributed as a uniformly random choice of a set of i pairs of the
2m points in the model.

The key point is that we can define a coupling of (a sub-process of) the 2-process G with the configuration
model process R as follows. Each path p ∈ P represents a bin in R, which initially contains two points
that are labeled by the two endpoints of p. Sequentially considering the steps of the 2-process G, suppose
that v1v2 is added in the current step. If both v1 and v2 currently appear as labels in R, then we add the
corresponding pair v1v2 in the configuration process R. Otherwise no step is taken in R, but for coupling
purposes we update the labels as follows: if only v1 appears as a label in R, then v2 is one endpoint of a
path p′ in G whose vertices are all in W , and we replace the label v1 by the other endpoint of p′ (to clarify:
this endpoint equals v2 when p′ consists only of one vertex); we proceed analogously when only v2 appears
as a label in R, with the roles of v1 and v2 interchanged. Note that in R is each so-far unpaired pair with
labels vw corresponds to an edge vw that can be added to G (since both v, w currently have degree one, and
are not yet connected by an edge). Under this coupling, it thus follows that in each step of R = (R1, . . . , Rm)
all pairs of currently unpaired vertices are indeed equally likely to be joined up, as desired.

Consider the auxiliary graph R′m obtained by replacing each vertex in the multigraph resulting from Rm
by its corresponding path p ∈ P , in the obvious way so that the maximum degree is 2. The components
of R′m are just cycles, whose size (number of vertices) equals the total size of those paths p ∈ P it contains.
Note that the component structure at the end of the 2-process G is obtained from the auxiliary graph R′m by
(a) inserting the vertices of W into cycles of R′m or into separate other cycles or paths, and then (b) adding
the set C of cycles from GM . Since T holds, the insertions and additions in (a) only involve at most o(r)
new vertices, and the cycles added in (b) each have size at most o(r). It follows that∣∣L1(Gn)− L1(R′m)

∣∣ = o(r), (4.3) def:L1diff

where we temporarily write Gn for the graph at the end of the 2-process to avoid clutter (this slight abuse
of notation will later be justified by the fact that this final graph has whp n edges).

The next step is to relate the auxiliary graph R′m to the 2-regular configuration model Rm. Here the
key observation is that, equivalently to the process described above, we can obtain R′m by first running the
process R to determine Rm, and only after that assigning the paths in P randomly to the vertices of Rm.
Writing s1, . . . , sm for the sizes (number of vertices) of the paths in P , note that T implies

w :=
∑
j∈[m]

sj ∈
[
n− r , n

]
and S := max

j∈[m]
sj 6 n1/2+5δ. (4.4) eq:sumsj:S
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Consider any cycle Q of Rm of length q > 1. After replacement of vertices by paths, the resulting cycle size
in R′m is equal to the sum of q numbers sampled uniformly at random from the sequence (s1, . . . , sm), without
replacement. Letting Zi denote the i-th number chosen, the resulting cycle size is thus

∑
i∈[q] Zi =: XQ. We

now claim that the size L1(R′m) = maxXQ of the largest component of R′m whp satisfies∣∣L1(R′m)/n− L1(Rm)/m
∣∣ 6 4n−δ. (4.5) eq:CycRm

To see this, let q0 :=
√
m3/2n8δ. First define L as the event that, for all q > q0, every cycle Q of Rm with

size q satisfies XQ = (1 ± n−δ)qw/m. The expectation and variance of XQ are known (see, e.g., Section 6
in [27] for the exact relation between sampling with and without replacement) to satisfy

E(XQ | Rm) = q · w
m

and Var(XQ | Rm) 6 S · E(XQ | Rm) =
Sqw

m
. (4.6) eq:exp:XQ:var

Note that Rm contains at most m/q0 cycles of size at least q0. Taking a union bound argument over all
cycles, using Chebyshev’s inequality together with (4.4) and m 6 n it follows that

P(¬L) = EP(¬L | Rm) 6
m

q0
·max
q>q0

Sm

n−2δqw
=
n2δSm2

q2
0w

= O(n−δ). (4.7) eq:Cheb:XQ:gamma

Next define S as the event that, for all q 6 q0, every cycle Q of Rm with size q satisfies XQ 6 n1−δ. Known
variants of the Azuma–Hoeffding and Chernoff bounds (see, e.g., Theorem 2 and the remark below Theorem 4
in [27] for upper tail inequalities that apply to sampling without replacement) yield for all x > 0 that the
upper tail P(XQ > qw/m + x|Rm) is at most exp(−2x2/(qS2)). Note that n1−δ � q0m/w. Taking a union
bound similar to (4.7) above, using q0 < n3/4+4δ and δ 6 1/70 it follows that

P(¬S) 6 n ·max
q6q0

exp
(
−Ω
(
n1−12δ/q

))
6 n · exp

(
−Ω
(
n1/4−16δ

))
= o(n−δ). (4.8) eq:Chern:XQ:gamma

Noting L1(Rm)w/m 6 w 6 n and q0w/m = o(n1−δ), the event L ∩ S implies∣∣∣L1(R′m)− L1(Rm)
w

m

∣∣∣ 6 n−δ · L1(Rm)
w

m
+ 2n1−δ 6 3n1−δ,

which together with L1(Rm)|w − n|/m 6 r 6 n1−δ establishes that (4.5) holds whp, as claimed.
It remains to analyze the size L1(Rm) of the largest component in the 2-regular configuration model Rm.

Results of type (4.9) are known, but often proved in a more technical setting (such as Table 2.2, Lemma 5.7,
page 110 and Theorem 6.8 in [5]); we thus include an elementary proof of Lemma 4.3 in Appendix C.3.

lem:L1Rm Lemma 4.3. There exists a continuously decreasing function F : (0, 1]→ [0, 1] such that

lim
m→∞

P(L1(Rm)/m > c) = F (c) for any c ∈ (0, 1], (4.9) def:LF

with F (c) ∈ (0, 1) for c ∈ (0, 1), F (c) = log
(√
c−1 +

√
c−1 − 1

)
for c ∈ (1/2, 1], and F (ε)→ 1 as ε→ 0.

To sum up, since the event T holds whp and the 2-process ends whp after n steps by [42] (justifying our
slight abuse of notation in (4.3) above), by combining (4.3) and (4.5) with r 6 n1−δ it follows that, whp,∣∣L1(Gn)/n− L1(Rm)/m

∣∣ 6 o(r/n) + 4n−δ 6 5n−δ. (4.10) def:L1GnRm

Given c ∈ (0, 1), we fix ε > 0 small enough such that [c− ε, c+ ε] ⊂ (0, 1), and infer

P
(
L1(Rm)/m > c+ ε

)
− o(1) 6 P

(
L1(Gn)/n > c

)
6 P

(
L1(Rm)/m > c− ε

)
+ o(1). (4.11) def:LF:G

Inserting (4.9) into (4.11), now (1.3) follows by first sending n → ∞ (and thus m ∼ r = bn1−δc → ∞) and
afterwards sending ε ↘ 0, noting that F (c ± ε) → F (c) ∈ (0, 1). This completes the proof of Theorem 1.3
since trivially P

(
L1(Gn)/n > 1

)
= 0 = F (1).

The arguments of this section extend to the sizes L1(n), . . . , Lr(n) of the largest r = O(1) components
in the final graph Gn of the random 2-process. Indeed, noting the second proof of F (c) < 1 in the proof of
Lemma 4.3 given in Appendix C.3, by combing the above concentration event L∩ S with a minor variant of
the approximation inequalities (4.3) and (4.10) it is not hard to extend (1.3) and deduce that

lim
n→∞

P
(
L1(n)/n > c1, L2(n)/n > c2, . . . , Lr(n)/n > cr

)
= F (c1, . . . , cr) (4.12) eq:L1sup:multiple

for a certain function F that is strictly between 0 and 1 provided 0 <
∑
i∈[r] ci < 1.

20



5 Numerical estimates of critical point
apx:tc

In this section we demonstrate that our methods from Sections 2–3 also give (without much effort) further
information about the critical point tc. Indeed, the following lemma shows that if we are able to numerically
solve the differential equations (3.13)–(3.17) for the idealized active susceptibility su(t) with explicit error
bounds, then we can use this to (i) prove that tc < T holds, and (ii) estimate tc up to arbitrary precision.

lem:numeric Lemma 5.1. Suppose that the assumptions of Theorem 1.6 hold. Let T :=
∑
j∈[∆] jrj/k. Define su(t) as

in (3.11), and tc as in (3.18). Let α := 1/(32k∆) and β := 64/k. If tc < T , then limt↗tc su(t) = ∞.
If t ∈ [0, T ) satisfies maxx∈[0,t] su(x) <∞ and su(t) > 130, then tc < T and

tc ∈
(
t+

α(T − t)
su(t)

, t+
β(T − t)
su(t)− 2

)
. (5.1) eq:sut:tc

rem:numeric Remark 5.2. The proof shows more generally that, for t ∈ [0, tc), we have

α∆u(t)

k(tc − t)
< su(t) < max

{ βu(t)

k(tc − t)
, 128

}
+ 2, (5.2) eq:sut:bound

k(T − t)/∆ 6 u(t) 6 k(T − t). (5.3) eq:ubounds

The proof is based on the idea that if su(t) is too small or big for t ∈ [0, tc), then we can reach a
contradiction between the whp approximation Su(tn) ≈ su(t) and the phase transition location tc. To this

end we again consider the multigraph variant (Gi)i>0 = (Gk,dnn,i )i>0, as in Sections 2–3.

Proof (sketch). Note that all estimates claimed by Lemma 5.1 follow from Remark 5.2, so it suffices to

prove inequalities (5.2)–(5.3). Noting that |Ui|∆ >
∑
v∈[n](d

(n)
v − degGi(v)) > |Ui|, by proceeding along the

lines of (3.35) and the proof of Corollary 3.4, using the whp approximation (3.7) we infer (5.3).
Aiming at a contradiction, suppose that su(t) 6 α∆u(t)/[k(tc − t)] =: π for some t ∈ [0, tc), where

su(t) > 1 implies π > 1. Using Theorem 3.1 we condition on the whp event that Gi satisfies (3.7)–(3.10)
for i := dtne. Let τ := 1/(8k2π) and m := bτ |Ui|c. Noting m 6 |Ui|/(8k2) and k(k − 1) ·m/|Ui| · Su(i) 6
k2 · τ · 2su(t) = 1/4, inequality (2.1) from Theorem 2.1 implies that whp L1(Gi+m) 6 C log n for some C > 0.
But, noting i+m > [t+ τu(t)/2]n = [tc + (tc − t)]n, the multigraph variant of Theorem 1.6 (as proved in
Section 3.2.2) also implies that whp L1(Gi+m) > cn, which for large n yields the desired contradiction.

Aiming at a contradiction, suppose that su(t) > max{βu(t)/[k(tc − t)], 128} + 2 =: λ + 2 for some
t ∈ [0, tc). Using Theorem 3.1 we condition on the whp event that Gi satisfies (3.7)–(3.10) for i := btnc. Let
τ := 16/(k2λ) and m := bτ |Ui|c. Noting m 6 |Ui|/(8k2) and k(k − 1) ·m/|Ui| · (Su(i)− 1) > k2/2 · τ/2 · λ =
4, inequality (2.2) from Theorem 2.1 implies that whp L1(Gi+m) 6 cn. But, noting i+m 6 [t+ 2τu(t)]n 6
[tc − (tc − t)/2]n, the multigraph variant of Theorem 1.6 (as proved in Section 3.2.2) also implies that whp
L1(Gi+m) 6 C log n, which for large n yields the desired contradiction.

The above arguments illustrate one conceptual difference to the statistical physics approach [10] for the
random d-process, which for each d > 3 deduces10 existence of the critical tc = tc(d) by numerically
finding the point beyond which a certain integral equation (involving the solution to a nonlinear second order
differential equation) starts having multiple solutions. Indeed, in our approach we analytically prove the
existence of the critical point tc, and merely use numerical methods to estimate the concrete value of tc (if
desired).

6 Open problems
sec:open

In this paper we initiated the study of the phase transition in the random d-process and its degree restricted
hypergraph generalizations, and the natural next step is to study the finer details of the phase transition.
With the goal of making the proof techniques in the area more robust (i.e., to handle non-trivial dependencies

10For the random d-process with fixed d > 1, their approach uses (among other things) the scaling assumption [10, equa-
tion (32)] for the fraction of vertices in the giant component. This plausible assumption is somewhat non-trivial here, since it
fails for the 2-process due to the potential presence of multiple giant components, see (4.12).
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between edges), here the following open problems for the random k-uniform dn-process seem interesting for
further work. Below we tacitly assume that the general assumptions of Theorem 1.6 hold, but we stress that
our main interest is really the graph case k = 2, in particular the random d-process (whenever relevant).
• Critical point: Determine the correct condition for tc < T , i.e., when the giant component emerges

significantly before the end of the process. Perhaps optimistically, we conjecture that tc < T is implied11

by (k − 1)
∑
j∈[∆](j − 1)jrj/

∑
j∈[∆] jrj > 1, i.e., the hypergraph generalization of the (branching process

based) Molloy-Reed giant component criterion for uniform random graphs with specified degrees. Of course,
it would also be interesting to get more explicit analytical knowledge of tc, and here it might be insightful to
first prove that tc = tc(d) > 1/2 for the d-process with d > 3.
• Maximum degree: Remove or weaken the technical condition ∆ = O(1) from Theorem 1.6.
• Second largest component: Show that the second largest supercritical component has logarithmic

size, i.e., that for any t ∈ (tc, T ) there is C = c(t, k,∆, r) > 0 such that whp L2(btnc) 6 C log n.
• Giant component: (i) Show that the giant component has a scaling limit, i.e., that there is a function

ρ = ρk,∆,r : (tc, T )→ (0, 1] such that, for any t ∈ (tc, T ) and δ > 0, we have P(|L1(btnc)/n− ρ(t)| > δ)→ 0
as n → ∞. (ii) Show the phase transition is ‘second order’, i.e., that ρ(tc + ε) ∼ cε as ε ↘ 0 for some
constant c = c(k,∆, r) > 0. (iii) Show that the giant component satisfies a central limit theorem, i.e., that
after suitable rescaling L1(btnc) is asymptotically normal for any t ∈ (tc, T ); cf. [45].
• Nearly 2-regular case: Determine the behavior of the largest component in the final graph when

k = 2 and r2 = 1. To clarify: the 2-process corresponds to the case when all n degree-restrictions d
(n)
v are 2,

and we are asking about the behavior when only n − o(n) degree restrictions d
(n)
v are 2. More generally, it

would be interesting to get a better understanding12 of the final hypergraph behavior when tc = T .
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[19] Béla Bollobás and Oliver Riordan. Percolation. Cambridge University Press, New York, 2006.
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A Critical point of random d-process when d→∞
apx:ERR

In this appendix we study the location tc = tc(d) of the phase transition in the d-process for large d.

thm:crit Theorem A.1. The critical point tc = tc(d) of the random d-process satisfies tc(d) → 1/2 as d → ∞,
and tc(d) = 1/2 when d = d(n)→∞ as n→∞.

The proof is based on a comparison of the random d-process (Gdn,i)i>0 with the classical Erdős–Rényi
random graph process (Gn,i)i>0. The crux is that the Erdős–Rényi giant component (i) emerges after
roughly n/2 steps, and (ii) is robust with respect to the deletion of a few edges. Furthermore, for large d,
most vertices of the Erdős–Rényi random graph Gn,n have degree less than d. By viewing (Gdn,i)i>0 as a
process where we ignore certain edges from (Gn,i)i>0, this makes it plausible that tc(d)→ 1/2 as d→∞.

Proof. We consider (ej)j>1, where each edge ej+1 is chosen uniformly at random from
(

[n]
2

)
\ {e1 . . . , ej}.

Clearly, {e1, . . . , ei} gives the uniform random graph Gn,i. Furthermore, we obtain the evolution of the
d-process by sequentially traversing the (ej)j>1, only adding those edges which do not create a vertex of
degree larger than d. Since ej is certainly added by the d-process if both its endvertices appear in less than d
edges in {e1, . . . , ej−1}, this yields a natural coupling with the property that Gdn,max{0,i−Xn,d} ⊆ Gn,i for

all 0 6 i 6 n, with Xn,d :=
∑
k>d kDk and Dn,k denoting the number of vertices in Gn,n with degree k

(see [18, 37, 49] for related arguments). Writing p = n/
(
n
2

)
∼ 2/n and noting EDn,k 6 n ·

(
n
k

)
pk 6 n(6/k)k, a

standard first moment argument shows that whp maxk>lognDn,k = 0. Together with a routine application of
the bounded differences inequality for uniform random graphs (see, e.g., [35, Theorem 7.4 and Example 7.3]
or the discussion below [50, Theorem 1.9]), there are constants β ∈ (0, 1) and B ∈ [1,∞) such that, whp,

Xn,d =
∑

d6k<logn

kDn,k 6
∑

d6k<logn

k
(
EDn,k + n2/3

)
6
⌈
Bmax

{
βd, n−1/4

}
n
⌉

=: In,d.

Putting things together, the described natural coupling whp satisfies the following inclusion:

Gdn,i−In,d ⊆ Gn,i for all In,d 6 i 6 n. (A.1) eq:thm:crit:couple

We now compare the d-process with the Erdős–Rényi process. In the subcritical case, for any ε ∈ (0, 1/2)
we have εn > εn/2 + In,d for d > d1(ε) and n > n1(ε), so using (A.1) it follows that, whp,

L1(Gdn,(1/2−ε)n) 6 L1(Gdn,(1/2−ε/2)n−In,d) 6 L1(Gn,(1/2−ε/2)n) 6 Cε log n, (A.2) eq:thm:crit:lower

where the last inequality is well-known, see [31, Theorem 5.4]. For the supercritical case we define Lx1(G) :=
minL1(G′), where the minimum is taken over all graphs G′ that differ from G in at most x edges. It is known13

13Writing m := (1/2 + ε)n and p := m/
(n

2

)
∼ (1 + 2ε)/n, for the binomial random graph Gn,p whp Lκn1 (Gn,p) > cεn by [17,

Theorem 3.9], which carries over to the uniform random graph Gn,m by monotonicity [31, Corollary 1.16(i)].
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that whp Lκn1 (Gn,(1/2+ε)n) > cεn for suitable κ = κ(ε) > 0. For any ε ∈ (0, 1/2) we have In,d < min{κn, n/2}
for d > d2(ε) and n > n2(ε), so using the coupling from (A.1) it follows that, whp,

L1(Gdn,(1/2+ε)n) > L1(Gdn,(1/2+ε)n−In,d) > Lκn1 (Gn,(1/2+ε)n) > cεn. (A.3) eq:thm:crit:upper

To sum up, since tc(d) exists for fixed d > 3 by Theorem 1.1, the whp estimates (A.2)–(A.3) imply that for
any ε > 0 we have |tc(d)− 1/2| 6 ε for d > d0(ε), i.e., that tc(d)→ 1/2 as d→∞. The same reasoning also
establishes that tc(d) = 1/2 when d = d(n)→∞ as n→∞, without presupposing the existence of tc(d).

We remark that when d = d(n)→∞ as n→∞, then the above proof also shows that, for any t = O(1),
the size of the largest component in the d-process whp satisfies (1.2) with tc = 1/2.

B Transferring results from multigraph variant
apx:transfer

In this appendix we show that whp results for the k-uniform dn-process routinely follow from whp results
for its multigraph variant. Indeed, given t ∈ [0, T ), note that if an event E fails with probability at most π

in the multigraph variant (Gk,dnn,i )06i6tn, then by inequality (B.1) this event E fails with probability at most

C · π = O(π) in the original process (Hk,dn
n,i )06i6tn. This justifies Remark 1.8 from Section 1.4.1, since in

Theorem 1.6 we only consider fixed t ∈ [0, T ) and events that fail with probability at most o(n−99).

lem:transfer Lemma B.1. Suppose that k > 2, ∆ > 1, r = (r0, . . . , r∆) ∈ [0, 1]∆+1 and dn =
(
d

(n)
1 , . . . , d

(n)
n

)
∈

{0, . . . ,∆}n satisfy the assumptions of Theorem 1.6. Set T :=
∑
j∈[∆] jrj/k. Then for every t ∈ [0, T )

there exists C = C(t, k,∆, T ) > 0 such that, for n large enough, we have

P
((
Hk,dn
n,i

)
06i6tn

∈ Sn,tn
)

6 C · P
((
Gk,dnn,i

)
06i6tn

∈ Sn,tn
)

(B.1) eq:transfer

for any set Sn,tn of hypergraph sequences (Gi)06i6tn with vertex set [n].

The proof is based on a standard step-by-step comparison argument (similar to [25, 38, 29]).

Proof. We fix a hypergraph sequence (Gi)06i6tn ∈ Sn,tn that can be attained by
(
Hk,dn
n,i

)
06i6tn

. Comparing

the probabilities with which the next edge is added in each of the two process, we have

P
(
Hk,dn
n,i+1 = Gi+1

∣∣∣ ⋂
06j6i

{
Hk,dn
n,j = Gj

})
=
|Ui|k/k!

|Qi|
· P
(
Gk,dnn,i+1 = Gi+1

∣∣∣ ⋂
06j6i

{
Gk,dnn,j = Gj

})
, (B.2) eq:transfer:ind

where Qi denotes the set of edges that can be added to Hk,dn
n,i , and Ui denotes the set of active vertices in Gi.

Similar to (3.35), we deterministically have min06i6tn |Ui| > (T − t)n/∆ > 2(k2 + ∆k!) for n large enough.

Noting
∣∣(Ui
k

)
∩ E(Gi)

∣∣ 6 |Ui| ·∆ and
(|Ui|
k

)
> (1− k/|Ui|)k · |Ui|k/k!, for 0 6 i 6 tn we thus infer

|Ui|k/k!

|Qi|
6

|Ui|k/k!(|Ui|
k

)
− |Ui|∆

6
1

1− (k2 + ∆k!)/|Ui|
6 exp

(
2(k2 + ∆k!)∆

(T − t)n

)
.

Since initially P(Hk,dn
n,0 = G0) = 1 = P(Gk,dnn,0 = G0), by multiplying (B.2) it follows that

P
( ⋂

06i6tn

{
Hk,dn
n,i = Gi

})
6 exp

(
2t(k2 + ∆k!)∆

(T − t)

)
· P
( ⋂

06i6tn

{
Gk,dnn,i = Gi

})
. (B.3) eq:transfer:prod

This establishes (B.1) by summing (B.3) over all attainable sequences (Gi)06i6tn ∈ Sn,tn.
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C Deferred proofs
apx:deferred

C.1 Lemma 2.3: subcritical case (adding random edges)
sec:sandwich:subcr

In this appendix we prove the subcritical case of Lemma 2.3 from Section 2.2. For technical reasons we
consider a Poissonized variant of H` = F+E`,W , and introduce the multiset E∗`,W where each of the |W |k tuples

(v1, . . . , vk) ∈W k arrives according to independent Poisson processes with mean ψ := `/|W |k. We study

H∗` := F + E∗`,W =
(
V (F ), E(F ) ∪ E∗`,W

)
,

where we tacitly map tuples (v1, . . . , vk) to hyperedges {v1, . . . , vk}. Our upcoming analysis exploits standard
splitting properties of Poisson processes, which imply that we may generate E∗`,W via the following more
tractable two-stage process: we first determine x := |E∗`,W | ∼ Po(`), and then set E∗`,W = {g1, . . . , gx}
with gy = (wy,1, . . . , wy,k), where each vertex wy,h ∈ W is chosen independently and uniformly at random.
For G ∈ {F,H∗` } we henceforth also write Cw(G) for the component of G which contains w.

Our analysis of the components of H∗` is based on a natural ‘breadth first search’ exploration process: in
each step j > 0 we maintain two lists, one of ‘active’ vertices Aj = V (F ), and one of ‘explored’ vertices Ej ⊆
V (F ). Initially A0 := Cv0(F ) and E0 := ∅, where v0 ∈ V (F ) is chosen uniformly at random. In step j > 1, we
pick an active vertex vj ∈ Aj−1∩W (if there is one) and proceed as follows. We sequentially test the presence
and multiplicity of each (so far untested) tuple g ∈W k of the form (vj , w1, . . . , wk−1), . . . , (w1, . . . , wk−1, vj)
in E∗`,W , and denote the resulting multiset of newly found ‘partial’ tuples g̃ = (w1, . . . , wk−1) by Sj . For
each g̃ ∈ Sj , we then mark all vertices in

⋃
16h<k Cwh(F ) \ (Aj−1 ∪ Ej−1) as active. At the end of step j we

move vj from the active list to the explored list. The exploration process stops when |Aj ∩W | = 0, in which
case Ej ∪ Aj = Cv0(H∗` ) holds (since we already found all hyperedges of E∗`,W containing a vertex from Ej).

By construction P(|Cv0(H∗` )| > s | H∗` = G) = N>s(G)/|V (F )|, so using |V (F )| = n we see that

EN>s(H
∗
` ) = P(|Cv0(H∗` )| > s)n. (C.1) eq:Ngej:UB

Formally setting Aj+1 := Aj and Ej+1 := Ej whenever |Aj ∩W | = 0, let

Xj := |(Aj ∪ Ej) ∩W | and Yj := |Aj ∪ Ej |. (C.2) def:XjYj

At the end of each step vj ∈ Aj−1 ∩W is moved from the active to the explored list, so Xr 6 r implies
|Ar ∩W | = 0 and thus Yr = |Cv0(H∗` )|. For all r > 0, it follows that

P(|Cv0(H∗` )| > s) 6 P(Xr > r) + P(Yr > s). (C.3) eq:Pr:J

We next show that the component size distribution of H∗` has an exponential tail, by estimating Xr and Yr
using the following Chernoff-type bound (whose standard proof we include for completeness).

lem:sum:T Lemma C.1. Let Z,Z0 > 0 be independent integer-valued random variables with EZ 6 µ− γ, EαZ0 6 A
and EαZ 6 A′, where α > 1. Given r > 0 set Tr := Z0 +

∑
16j6r Zj, where the Zj with j > 1 are independent

copies of Z. Then there is a = a(µ, γ, α,A′) > 0 such that P(Tr > s) 6 Ae−as for all s > µr.

Proof. Let f(t) := E(et(Z−µ)). Clearly, f(0) = 1 and f ′(0) = E(Z −µ) ≤ −γ. Since P(Z > s)αs 6 EαZ 6 A,
there is D = D(µ, α,A) > 0 such that f ′′(t) = E((Z − µ)2et(Z−µ)) ≤ D for 0 ≤ t ≤ (logα)/2, say.
For x := min{γ/D, (logα)/2} Taylor’s Theorem thus yields f(x) ≤ 1 − γx + Dx2/2 ≤ 1 − γx/2 =: c,
with c < 1. Recalling s > µr, using Markov’s inequality and independence of the Zj we infer

P(Tr > s) = P
(
ex(Tr−µr) > ex(s−µr)) 6 (EexZ0

)(
f(x)

)r · e−x(s−µr) 6 Acre−x(s−µr) 6 Ae−as

for suitable a = a(c, µ, x) > 0 (by distinguishing the cases s > 2µr and r > s/(2µ), say).

lem:UT:XY Lemma C.2. If the assumptions of the subcritical case of Lemma 2.3 hold, then there are constants c, C > 0
(depending only on k, β,B, ξ, γ) such that P(|Cv0(H∗` )| > s) 6 Ce−cs for all s > 0.
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Proof. Starting with upper tail bounds for Xr, note that we initially have

X0,6 |Cv0(F )| =: N0. (C.4) eq:deltaX0

In each subsequent exploration step j > 1, the multiset of newly ‘found’ partial tuples {(w1, . . . , wk−1) ∈ Sj

}
is dominated from above (with respect to the subset relation) by the random multiset S, where tuples
(w1, . . . , wk−1) ∈ W k−1 appear according to independent Poisson processes with rate kψ = k`/|W |k. It
follows that there is a coupling of Xr and Tr satisfying

Xr 6 N0 +
∑

16j6r

Rj =: Tr, (C.5) eq:deltaXj:cpl

where the Rj are independent copies of

R :=
∑

(w1,...,wk−1)∈S

∑
16h<k

|Cwh(F ) ∩W |. (C.6) eq:deltaXj:1

Similarly to E∗`,W we may generate S as follows: we first determine x := |S| ∼ Po(kψ|W |k−1), and then
set S = {g1, . . . , gx} with gy = (wy,1, . . . , wy,k−1), where each vertex wy,h ∈ W is chosen independently
and uniformly at random. Let N ∼ |Cw(F ) ∩W |, where w ∈ W is chosen uniformly at random. Us-
ing EN = S(F,W ) and E|S| = kψ|W |k−1 = k`/|W | together with the subcritical condition, it follows that

ER = E|S| · (k − 1) · EN = k`/|W | · (k − 1) · S(F,W ) 6 1− γ. (C.7) eq:Rj:Exp

Let α := β1/2. Recalling (C.6), using the two-stage construction of S it is routine to deduce

EαR = E
([(

EαN
)k−1

]|S|)
6 exp

(
E|S| ·

(
EαN

)k−1
)
.

Noting (k − 1)EN > 1, we see that (C.7) yields E|S| 6 1 − γ. Using the main technical assumptions
we infer P(N > s) 6 N>s(F )/|W | 6 Bβ−s/ξ, which in view of β = α2 implies EαN 6 B/[ξ(1 − α−1)].
Hence EαR 6 A′ for suitable A′ = A′(k,B, ξ, α). Since P(N0 > s) 6 N>s(F )/n, we analogously infer
EαN0 6 B/(1− α−1) =: A. Invoking Lemma C.1 with µ = 1, there is a = a(γ, α,A′) > 0 such that

P(Xr > r) 6 P(Tr > r) 6 Ae−ar for all r > 0. (C.8) eq:Xr:tail

Mimicking the above analysis for Yr, it follows that there is a coupling of Yr and T+
r satisfying

Yr 6 N0 +
∑

16j6r

R+
j =: T+

r , (C.9) eq:deltaYj:cpl

where the R+
j are independent copies of the random variable R+, which is defined analogously to R but

with |Cwh(F ) ∩W | is replaced by |Cwh(F )| in (C.6). Let N+ ∼ |Cw(F )|, where w ∈ W is chosen uniformly
at random. Similarly to N above, we here again have P(N+ > s) 6 N>s(F )/|W | 6 Bβ−s/ξ, which in turn

implies EαN+

6 B/[ξ(1− α−1)] and EαR′ 6 A′, as well as EN+ =
∑
s>0 P(N+ > s) 6 B/[ξ(1− β−1)] =: λ.

Analogously to (C.7) we also have E|R+| = E|S| ·(k−1) ·EN+ 6 (k−1)λ. Invoking Lemma C.1 with µ = λk
and γ = λ, similarly to (C.8) there is b = b(λ, k, α,A′) > 0 such that

P(Yr > s) 6 P(T+
r > s) 6 Ae−bs for all s > λkr and r > 0. (C.10) eq:Yr:tail

Finally, set r := bs/(λk)c. If s > 2λk, then (C.8) and (C.10) imply P(|Cv0(H∗` )| > s) 6 A(e−ar + e−bs),
with r > s/(2λk). Since otherwise trivially P(|Cv0(H∗` )| > s) 6 1, this completes the proof for suitable
constants c, C > 0 (for example, c := min{a/(2λk), b} and C := max{2A, e2λkc} suffice).

The following proof uses a truncation argument, which restricts to components of size O(log n).
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Proof of the ‘subcritical case’ of Lemma 2.3. For c, C > 0 as given by Lemma C.2, set D := (2 + π)/c and
s := D log n. Applying Markov’s inequality, using (C.1) and Lemma C.2 we obtain that

P(L1(H∗` ) > s) 6 P(N>s(H
∗
` ) > s) 6 EN>s(H

∗
` ) = P(|Cv0(H∗` )| > s)n 6 Cn−(1+π).

Since H∗` = F + E∗`,W conditioned on |E∗`,W | = ` has the same distribution as H` = F + E`,W , using
|E∗`,W | ∼ Po(`) and ` 6 (1− γ)|W |/[k(k − 1)S(F,W )] 6 |W | 6 n (by the subcritical condition) we infer

P(L1(H`) > s) = P
(
L1(H∗` ) > s

∣∣ |E∗`,W | = `
)
6 O

(√
`
)
· P(L1(H∗` ) > s) 6 o(n−π). (C.11) eq:pittel:L1

Furthermore, since N>j(·) is kj-Lipschitz with respect to the addition or deletion of hyperedges, using
|E∗`,W | ∼ Po(`) and Jensen’s inequality together with ` 6 n it follows that

|EN>j(H
∗
` )− EN>j(H`)| 6 kj · E

∣∣|E∗`,W | − `∣∣ 6 kj ·
√

Var |E∗`,W | 6 kj
√
n. (C.12) eq:ENj:approx

With an eye on (C.11), we now define α := min{ec/2, e1/(5D)} > 1 and

Z :=
∑

16j6s

αjN>j(H`). (C.13) def:Zi

Using (C.12) together with (C.1) and Lemma C.2, by choice of α and s = D log n it follows that

EZ 6
∑

16j6s

αj ·
(
EN>j(H

∗
` ) + kj

√
n
)
6
∑
j>1

Ce−cj/2n+ n1/5 · ks2
√
n 6 A0n (C.14) eq:E:Zi

for suitable A0 = A0(c, C, k,D). Observe that H` is equivalent to a probability space Ω that consists
of k` = O(n) independent random variables, each of which corresponds to the choice of a random vertex
from W . Furthermore, changing the outcome of one variable can be interpreted as first deleting one hyperedge
and then adding one hyperedge, which in turn changes each N>j(·) by at most 2kj. So, whenever ω1, ω2 ∈ Ω
differ in the outcome of at most one random variable, then by choice of α and s it follows that

|Z(ω1)− Z(ω2)| 6
∑

16j6s

αj · 2kj 6 2ks2n1/5 = o(n1/4).

Hence a standard application of the bounded differences inequality [35] yields P(Z > EZ+n) 6 n−ω(1), which
together with (C.11) and (C.13)–(C.14) establishes the subcritical case of Lemma 2.3 with A := A0 + 1.

C.2 Lemma 2.3: supercritical case (adding a random matching)
sec:sandwich:supercr

In this appendix we prove the supercritical case of Lemma 2.3 from Section 2.2 for M` = F +M`,W . For
technical reasons we shall generate a random k-matching of W of size ` using the following procedure.

lem:uniform Lemma C.3. Let `,N, k ∈ N satisfy k > 1 and N > max{`k, 1}. Then, given W ⊆ N with |W | = N ,
the following procedure generates a uniform random k-matching M of W with |M| = `. Starting with
m := `, M := ∅, V1 := W and j := 1, repeat the following as long as m ≥ 1. Pick any vj ∈ Vj, and
flip an independent random coin with success probability km/|Vj |. In case of success, add the hyperedge
e := {vj , w1, . . . , wk−1} to M, where each wi ∈ Vj \{vj , w1, . . . , wi−1} is chosen independently and uniformly
at random. Furthermore, set m := m−1, Vj+1 := Vj \e and j := j+1. In case of failure, set Vj+1 := Vj \{vj}
and j := j + 1.

Proof. Fix k > 1. It suffices to show, by induction on ` + N satisfying N > max{`k, 1}, that every k-
matching M∗ of W ⊆ N with |M∗| = ` and |W | = N is generated with probability

pk(`,N) := 1{`>1}
`!∏`−1

j=0

(
N−jk
k

) + 1{`=0}.

For the base case, note that the claim is trivial whenever ` = 0 or 1 6 N 6 k. For the induction step we
thus may assume that `+N satisfies ` > 1 and N > max{`k, k+ 1}. Fix an arbitrary k-matching M∗ of W
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with |M∗| = `. Let vj ∈ W be the first vertex picked by the procedure, for which we distinguish two cases.
First, if no hyperedge ofM∗ contains vj , then we must have N −1 > `k. Since also N −1 > k > 1 and ` > 1,
using induction it then follows that the procedure generates M∗ with probability(

1− k`

N

)
· pk(`,N − 1) =

N − k`
N

· `!∏`−1
j=0

(
N−1−jk

k

) =
`!∏`−1

j=0

(
N−jk
k

) = pk(`,N).

Second, if vj is contained in some hyperedge of M∗, then the procedure adds the corresponding unique
hyperedge f = {vj , w1, . . . , wk−1} with probability

qf :=
k`

N
·

(
1{k>2}

(k − 1)!∏k−1
i=1 (N − i)

+ 1{k=1}

)
=

`(
N
k

) .
Since N − k > max{(`− 1)k, 1}, using induction it follows that the procedure generatesM∗ with probability

qf · pk(`− 1, N − k) =
`(
N
k

) ·(1{`>2}
(`− 1)!∏`−2

j=0

(
N−k−jk

k

) + 1{`=1}

)
= pk(`,N),

completing the proof.

Deferring the choice of K > 1, it will be convenient to study the ‘truncated’ subgraph FK ⊆ F , where we
ensure (by deleting suitable edges) that all vertices in components C of F with |C ∩W | > K become isolated
vertices in FK . In particular, any component C of FK satisfies |C ∩W | 6 K. Furthermore,

M`,K := FK +M`,W ⊆ F +M`,W = M`. (C.15) def:Fk

Recalling the definition of S(F,W ) from Lemma 2.3, by construction of FK we also have∣∣S(F,W )− S(FK ,W )
∣∣ 6 ∑

w∈W :
|Cw(F )∩W |>K

|Cw(F ) ∩W |/|W | 6
∑
s>K

sN>s(F )/|W |, (C.16) eq:SFKW:lower

where for G ∈ {F, FK} we write Cw(G) for the component of G which contains w, as before.
Our analysis of of M`,K is again based on an exploration process, but with the twist that after finishing

exploring one component we start exploring another component: in each step j > 0 we maintain lists of ‘active’
vertices Aj ⊆W and ‘explored’ vertices Ej ⊆W . Using the procedure from Lemma C.3, the plan is to step-
by-step generate the matchingM`,W as the exploration process evolves, formally also maintaining the list of
so-far ‘unexplored’ vertices Vj := W \ Ej−1, and the ‘remaining’ number of matching hyperedges m. Turning
to the details, initially we pick a vertex v0 ∈ W and start with A0 := Cv0(FK) ∩W , E0 := ∅ and m := `. In
step j > 1, when m > 1 holds we then pick an active vertex vj ∈ Aj−1 ⊆W \ Ej−1 = Vj , and intuitively test
for the presence of a matching hyperedge containing vj , which in the procedure from Lemma C.3 formally
corresponds to flipping an independent random coin with success probability km/|Vj |. Only in case of success
we proceed as follows: we generate the hyperedge e = {vj , w1, . . . , wk−1} ⊆ Vj as in Lemma C.3, then mark the
vertices in e∗ := {w1, . . . , wk−1} as explored, mark all vertices in

⋃
16h<k(Cwh(FK) ∩W ) \ (Aj−1 ∪ Ej−1 ∪ e∗)

as active, and set m := m − 1. At the end of step j we move vj from the active list to the explored list. If
the resulting active list Aj is empty, then we pick an unexplored vertex v∗j ∈ W \ Ej (if there is one), and
set Aj := Cv∗j (FK) ∩W ; the exploration process stops if no such v∗j exists, or if m = 0.

The key observation is that, at the end of each step j > 0, all currently active vertices in Aj belong to
the same component of M`,K , so that (C.15) implies

L1(M`) > L1(M`,K) > |Aj |. (C.17) eq:L1Mo

The following proof analyzes the (expected) one-step changes of the active vertex set Aj .

Proof of ‘supercritical case’ of Lemma 2.3. We start by carefully choosing several constants, along with some
preliminary estimates. First, we pick σ > 0 small enough such that

(1− σ)2(1 + γ)− 1 > γ/2. (C.18) choice:sigma
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Second, using the supercritical condition and ` 6 |W |/k it follows that

S(F,W )− 1 >
(1 + γ)|W |
k(k − 1)`

>
1

k
. (C.19) ineq:S

We now pick K = K(k, β,B, ξ, γ) > 1 large enough such that the main technical assumptions imply∑
s>K

sN>s(F )/|W | 6
∑
s>K

sBβ−s/ξ 6
σ

2k
. (C.20) choice:K

Third, as in the proof of Lemma C.2 we have S(F,W ) = EN 6 EN+ 6 B/[ξ(1 − β−1)], so using the
supercritical condition it follows that that there is τ = τ(k, β,B, ξ) > 0 such that

` >
(1 + γ)|W |

k(k − 1)
(
S(F,W )− 1

) > τ |W |. (C.21) eq:ell:upper

We now define I := bδ|W |c, where we pick δ > 0 small enough such that

δ < min{τ, στ, 1} and 5kK2δ 6
σ

2k
. (C.22) choice:delta

We henceforth restrict our attention to the first I steps of the exploration process, during which m >
` − I > (τ − δ)|W | > 0 and |W \ Ej | > |W | − I > (1 − δ)|W | > 0 ensure that the process never stops. As
usual, we denote by Fj the natural filtration associated to the exploration process after j steps. Writing
vj ∈ Aj−1 ⊆W \ Ej−1 = Vj for the active vertex chosen in step 1 6 j 6 I, it is not difficult to see that

E
(
|Aj | − |Aj−1|

∣∣ Fj) > k(`− I)

|W |
· E
( ∑

16h<k

E
(
|Cwh |

∣∣ Fj−1, w1, . . . , wh−1

) ∣∣∣ Fj−1

)
− 1, (C.23) eq:evo:EAj

where the vertices wh ∈ Wh := W \ (Ej−1 ∪ {vj , w1, . . . , wh−1}) = Vj \ {vj , w1, . . . , wh−1} are chosen inde-
pendently and uniformly, and the vertex set Cwh is defined as

Cwh :=
(
Cwh(FK) ∩W

)
\
(
Aj−1 ∪ Ej−1 ∪ {w1, . . . , wk−1} ∪

⋃
16s<k:s6=h

(
Cws(FK) ∩W

))
.

Using wh ∈ Cwh(FK)∩W and |Cw(FK)∩W | 6 K together with |Aj−1 ∪ Ej−1| 6 IkK, a moment’s thought
reveals that we deterministically (over all possible choices of the vertices ws with s 6= h) have∑

w∈Wh

|Cw| >
∑
w∈Wh

∣∣(Cw(FK) ∩W ) \ {w}
∣∣− (|Aj−1 ∪ Ej−1|+ k + kK

)
·K

>
∑
w∈W

(
|Cw(FK) ∩W | − 1

)
− 5kK2I.

Noting |Wh| 6 |W |, by combining I 6 δ|W | and (C.22) with (C.16) and (C.20) it follows that∑
w∈Wh

|Cw|
|Wh|

> S(FK ,W )− 1− 5kK2δ > S(F,W )− 1− σ

k
> (1− σ) ·

(
S(F,W )− 1

)
,

where we used (C.19) for the last inequality. Note that (C.21)–(C.22) imply I 6 δ|W | 6 σ`. Using the
supercritical condition together with our choice (C.18) of σ, it follows that (C.23) is at least

E
(
|Aj | − |Aj−1|

∣∣ Fj) > k(1− σ)`

|W |
· (k − 1) · (1− σ)

(
S(F,W )− 1

)
− 1

> (1− σ)2 · (1 + γ)− 1 > γ/2.

(C.24) eq:evo:EAj:2

Finally, set ∆j := |Aj | − |Aj−1| and Zs :=
∑

16j6s

[
∆j − E(∆j |Fj−1)

]
. The expected one-step changes

of (Zj)06j6I are E(Zj − Zj−1 | Fj−1) = 0. Combining (C.24) and (C.17) with |A0| > 0, it follows that

ZI =
∑

16j6I

∆j −
∑

16j6I

E(∆j |Fj−1) 6
(
|AI | − |A0|

)
− I · γ/2 6 L1(M`)− γI/2.
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We have
∣∣|Aj | − |Aj−1|

∣∣ 6 kK by definition of FK , so the maximum one-step changes of (Zj)06j6I satisfy
|Zj − Zj−1| 6 2kK. Since Z0 = 0, a standard application of the Azuma–Hoeffding inequality [6, 27] yields

P(L1(M`) 6 γI/4) 6 P(ZI 6 −γI/4) 6 e−I/[2(2kK)2],

which together with I > δ|W |/2 > δξn/2 (for n large enough) establishes the supercritical case of Lemma 2.3
for suitable c, λ > 0.

C.3 Lemma 4.3: largest component of random 2-regular graph
apx:2regular

Proof of Lemma 4.3. Let Xt denote the number of cycles of length t in Rm. Abbreviating the number of
perfect matchings of 2i points by M(2i) := (2i)!/(i!2i), simple computations (see also [24, Lemma 4]) yield

EXt =

(
m

t

)
· 2t · (t− 1)!

2
· M(2m− 2t)

M(2m)
=

([m]t)
222t−1

t[2m]2t
, (C.25) exlong0

where [a]b denotes the falling factorial a(a− 1) · · · (a− b+ 1). Using Stirling’s formula we obtain

EXt = θ

√
m

2t
√

max{m− t, 1}
, (C.26) exlong

where θ ∼ 1 if m − t → ∞ and θ = Θ(1) always (i.e., when 3 6 t 6 m). If m/2 < t 6 m, then Xt ∈ {0, 1},
so that P(L1(Rm) = t) = EXt. Summing (C.26), it is routine to verify that in (4.9) we can set

F (c) :=

∫ 1

c

dx

2x
√

1− x
= log

(√
c−1 +

√
c−1 − 1

)
when 1 > c > 1/2. (C.27) def:LF:0

If m/3 < t 6 m/2, then Xt ∈ {0, 1, 2}, so cycles of length t may no longer be unique. Note that the
probability that the longest cycle of Rm has length t and is unique, is precisely the expected number of cycles
of length t for which the remaining graph on m − t vertices has longest cycle length at most t − 1. By the
conclusion of (C.25)–(C.27) above, the probability that the remaining graph has longest cycle length greater
than t is asymptotic to F (t/(m − t)). Furthermore, the probability that Rm has two cycles of length t is
routinely seen to be (by simple calculations similar to (C.25)–(C.26) above) at most(

m

t

)(
m− t
t

)
·
(

2t · (t− 1)!

2

)2

· M(2m− 4t)

M(2m)
=

O(
√
m)

t2
√

max{m− 2t, 1}
= o(m−1).

Putting things together, it follows similarly to (C.27) that in (4.9) we can set

F (c) := F (1/2) +

∫ 1/2

c

1− F
(
x/(1− x)

)
2x
√

1− x
dx when 1/2 > c > 1/3,

where the recursive call of F is well-defined since x/(1−x) ∈ [1/2, 1]. Iterating the same reasoning, it follows
that in (4.9) we can more generally set

F (c) := F (1/k) +

∫ 1/k

c

1− F
(
x/(1− x)

)
2x
√

1− x
dx when 1/k > c > 1/(k + 1) for k > 2. (C.28) def:LF:k

Turning to the claimed properties of the function F , note that (4.9) implies F (c) ∈ [0, 1] for all c ∈ (0, 1].
Using (C.27) and (C.28), it is routine to check that F is monotone decreasing and continuous on (0, 1], and
continuously differentiable on (0, 1). In addition, for any c ∈ (0, 1) we have

1 > F (c) >
(
1− max

y∈[c,1]
F (y)

)
·
∫ 1

c

1

2x
√

1− x
dx >

(
1− F (c)

)
· log

(√
c−1 +

√
c−1 − 1

)
,

so that F (c) > 1 − 1/ log(
√
c−1) → 1 as c → 0. We now show that F (c) ∈ (0, 1) for all c ∈ (0, 1).

The lower bound is immediate, since F (c) > F
(
max{c, 1/2}

)
> 0 by (C.27). For the upper bound, we
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similarly see that F (c) 6 F (1/2) < 1 for any c ∈ [1/2, 1]. For c ∈ (0, 1/2) there are several ways to
prove that F (c) < 1. One (somewhat formal) proof proceeds by contradiction, assuming that F (c) = 1
for some 1/(k + 2) 6 c < 1/(k + 1) with k > 1. Then monotonicity gives F (x) = 1 on [0, c], which in
turn implies F ′(c) = 0, so that F (c/(1 − c)) = 1 follows from (C.28). Iterating this reasoning, it follows
that F (ck) = 1 for ck = c/(1 − kc) ∈ [1/2, 1), contradicting that F (ck) 6 F (1/2) < 1. A second (perhaps
more insightful) proof exploits that (4.9) implies 1 − F (1/K) = P(L1(Rm) 6 m/K) + o(1) for any K > 2.
Note that the number YK of sets of K distinct cycles with lengths all between 1 + m/(K + 1) and m/K
satisfies YK ∈ {0, 1}, so that P(YK = 1) = EYK . Furthermore, EYK = µK + o(1) where µK is the value of
an iterated integral similar to (C.28), and clearly µK > 0. Since YK = 1 implies L1(Rm) 6 m/K, it follows
that F (c) 6 F (1/K) 6 1− µK < 1 for all c ∈ [1/K, 1], completing the proof since K > 2 was arbitrary.
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