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Abstract. We present a new approach to the deletion method that is based on the
Harris inequality. We obtain deletion lemmas that are similar in spirit to those of Rödl
and Ruciński, but hold for arbitrary decreasing properties. That is, we show that under
appropriate conditions, with very high (‘Janson-like’) probability it suffices to delete a
small fraction of the edges of a random graph Gn,p to ensure that a given decreasing
property holds. We also obtain stronger results for decreasing properties that only
depend on edges involved in copies of some given graph H.
As an application of our methods, we present a new deletion lemma that concerns local
subgraph counts, i.e., the number of copies of H each edge or vertex of Gn,p is contained
in.

1 Introduction

1.1 Tail bounds for subgraph counts

The subgraph containment problem is a well-studied problem in random graph theory. It was shown
in [2] that the threshold for the existence of a given fixed graph H in the binomial random graph
Gn,p is determined by the densest subgraph of H. A related line of research is the study of subgraph
counts, i.e., of the distribution of the random variable XH that counts the number of copies of H
in Gn,p. Throughout, we denote by vH and eH the number of vertices and edges of H, and by

µH = µH(n, p) := E[XH ] =

(
n

vH

)
(vH)!

Aut(H)
peH (1)

the expected number of copies of H in Gn,p. Note that µH = Θ(nvHpeH ). We are mostly interested
in settings where µH (and ΦH defined below) is a growing function of n.

Janson’s inequality [10, 16] gives very good upper bounds on the probability that XH is significantly
smaller than its expectation. Letting

ΦH = ΦH(n, p) := min
J⊆H: eJ≥1

µJ(n, p),

1Research was partially carried out when the author was still at ETH Zürich and at MPI Saarbrücken. The author
was partially supported by a grant from the Swiss National Science Foundation.

2Research was partially carried out when the author was still at ETH Zürich.

1



it yields that for any fixed ε > 0 there exists a constant c = c(H, ε) > 0 such that

Pr[XH ≤ (1− ε)E[XH ]] ≤ e−c·ΦH(n,p). (2)

For the corresponding upper tail, however, such bounds are not easily obtained. Much research has
been devoted to proving results of the form

Pr[XH ≥ (1 + ε)E[XH ]] ≤ e−f(n,p,H,ε)

in our and similar combinatorial settings [4, 6, 5, 12, 13, 14]. In [12], a general exponent f(n, p,H, ε)
was given that is best possible up to logarithmic factors. As it turns out, in general this upper tail
probability is simply not as small as the lower tail probability given by (2). Roughly speaking, this
is due to the fact that a reasonably small number of edges that cluster in an appropriate way can
give rise to many copies of H, see, e.g., [13] for an explicit example.

1.2 The deletion method

In order to better control the upper tail of XH , Rödl and Ruciński [17] showed that, with ‘Janson-
like’ probability, the number of copies of H can be reduced to at most (1 + ε) times its expectation
by deleting only a few edges.

Lemma 1 ([11, Lemma 2.51], ‘Deletion Lemma’). Let H be a graph and 0 ≤ p ≤ 1. Then for every
ε > 0 there exists c = c(H, ε) such that for every integer k, with probability at least 1− e−ck, there
exists a set E0 ⊆ E(Gn,p) of size k such that Gn,p \E0 contains at most (1 + ε)E[XH ] copies of H.

Typically, this lemma is applied in settings where ΦH(n, p) = Θ(n2p), with k := αn2p set to delete
some small fraction of all edges. Note that then the resulting bound is similar to the lower tail
bound given by (2).

Usually, this deletion lemma is used in conjunction with a second lemma that states that other
relevant properties of the random graph (that hold with probability very close to 1) are not destroyed
by the removal of a few edges. Such a lemma is often called ‘robustness lemma’. The robustness
lemma used in [17], see also [11, Lemma 2.52], works for arbitrary increasing graph properties (see
Section 2 for the formal definition), but it is quite technical and only useful if k is of order n2p. A
more generally applicable version can be found in [1], see also [8, Theorem 2.54].

Lemma 2 ([1, Lemma 4.2], ‘Robustness Lemma’). Given an increasing graph property I, let I(k) ⊆
I denote the property that for every set E0 ⊆ E(Gn,p) of size k the graph Gn,p \E0 satisfies I. Then
for any integer k and any real numbers 0 < p, γ < 1 we have

Pr[Gn,p /∈ I(k)] ≤ γ−k Pr[Gn,(1−γ)p /∈ I].

In typical applications, the robustness lemma implies that if I holds with probability exponentially
close in k to 1, then the same holds for I(k), the ‘robust version’ of I.

Combining these two lemmas with Janson’s inequality (Theorem 13 below), one obtains in particular
that if ΦH(n, p) = ω(1), then for any α > 0, with probability as in (2) there exists a set E0 of at most
α ·ΦH(n, p) edges such that Gn,p \E0 contains between (1−ε)E[XH ] and (1 + ε)E[XH ] many copies
of H, i.e., roughly as many as the expectation predicts. (The requirement that ΦH(n, p) = ω(1)
is equivalent to the requirement that p = p(n) is above the threshold for the appearance of H in
Gn,p.)
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1.3 Our results

In this work, we present a new approach to the deletion method that is based on the Harris inequal-
ity [9]. We obtain deletion lemmas similar in spirit to Lemma 1 that hold for arbitrary decreasing
graph properties (see Section 2 for the formal definition). Moreover, our approach provides a direct
guarantee that desirable increasing events still hold after edge deletion. This removes the need for
a separate robustness lemma, and thus the technicality of having to consider random graphs with
slightly smaller edge probability (as Lemma 2 and the robustness lemma of [17] do). Furthermore,
we obtain stronger results for decreasing properties that ‘only depend on H-edges’ (see Definition 6
below). As an application of our methods, we present a new deletion lemma that concerns local
subgraph counts, i.e., the number of copies of H each edge or vertex of Gn,p is contained in.

For the sake of presentation, we state our results in increasing order of sophistication – the results
given later in this introduction will subsume some of the results stated earlier. We will use the
following notation.

Definition 3. For any graph property E and any k > 0, we denote by Ek the property that
there exists a set of at most bkc edges such that after deleting these edges the remaining subgraph
satisfies E .

a) A general deletion lemma Our general deletion lemma can be stated as follows.

Theorem 4. Let D be a decreasing graph property, and let n−2 � p = p(n) ≤ 1 be such that there
exists a constant δ > 0 such that

Pr[Gn,p ∈ D] ≥ δ

for n large enough. Then for any α > 0 there exists c = c(α) > 0 such that

Pr[Gn,p ∈ Dαn2p] ≥ 1− e−cn
2p

for n large enough.

Applying Theorem 4 with the decreasing property D := {XH ≤ (1 + ε)E[XH ]} yields essentially
the statement of the original deletion lemma (Lemma 1) with k := αn2p. (The fact that D holds
with constant probability follows from Markov’s inequality.) Results similar to Theorem 4 were also
proven by Bollobás and Leader [3, Section 3].

b) A direct guarantee Our next theorem is a version of Theorem 4 that additionally provides a
guarantee that desirable increasing properties ‘survive’ the deletion of edges, essentially at no extra
cost. Note that if E = D ∩ I for some decreasing property D and some increasing property I in
Definition 3, then Ek ⊆ I is the event that we can delete a set of at most k edges to ensure D
without destroying I.

Theorem 5. Let D be a decreasing graph property, let I be an increasing graph property, and let
n−2 � p = p(n) ≤ 1 be such that there exists constants δ, c′ > 0 such that

Pr[Gn,p ∈ D] ≥ δ

and
Pr[Gn,p ∈ I] ≥ 1− e−c

′n2p (3)
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for n large enough. Then for any α > 0 there exists c = c(α, c′) > 0 such that

Pr[Gn,p ∈ (D ∩ I)αn2p] ≥ 1− e−cn
2p

for n large enough.

Theorem 5 provides an alternative to the combination of Lemmas 1 and 2 in typical applications.

c) Properties that only depend on H-edges If D only depends on edges that take part in
copies of some specific graph H, then the event Dk is only of interest for values of k that are
significantly smaller than µH = E[XH ]. Our next result is a refinement of Theorem 4 that provides
better bounds for such a scenario.

Definition 6. Let H be a graph. We say that a graph property E only depends on H-edges if a
graph G on vertex set V is in E if and only if the graph on V obtained as the union of all copies of
H in G is in E .

Theorem 7. Let H be a graph, and let D be a decreasing graph property that only depends on
H-edges. Let n−vH/eH � p = p(n) ≤ 1 be such that

ΦH(n, p) = µH(n, p) (4)

for n large enough, and such that there exists a constant δ > 0 such that

Pr[Gn,p ∈ D] ≥ δ

for n large enough. Then for any α > 0 there exists c = c(H,α) > 0 such that

Pr[Gn,p ∈ DαµH ] ≥ 1− e−cµH

for n large enough.

Note that the assumption that p� n−vH/eH is equivalent to µH(n, p) = ω(1).

A version similar to Theorem 5 (which also provides a guarantee for an arbitrary increasing property
I that only depends on H-edges and holds with probability at least 1− e−c

′µH for some c′ > 0) can
also be proven. We will come back to this in Remark 17 below; we state the simpler version here
because this is how we will use Theorem 7 in the following.

Also note that every graph property ‘only depends on K2-edges’, and that the condition (4) is
trivially satisfied for H = K2. Thus Theorem 7 contains Theorem 4 as a special case.

d) A bootstrapping trick So far, our theorems are only applicable if the desired property D
holds with constant probability. As the next corollary shows, we may even allow ourselves to delete
edges to reach such a constant probability lower bound:

Corollary 8. Let H be a graph, and let D be a decreasing graph property that only depends on
H-edges. Let n−vH/eH � p = p(n) ≤ 1 be such that ΦH(n, p) = µH(n, p) for n large enough, and
such that there exist constants α, δ > 0 such that

Pr[Gn,p ∈ DαµH ] ≥ δ

for n large enough. Then there exists c = c(H,α) > 0 such that

Pr[Gn,p ∈ D2αµH ] ≥ 1− e−cµH

for n large enough.
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Proof. Apply Theorem 7 with D := DαµH , and observe that D2αµH ⊇ (DαµH )αµH .

Corollary 8 provides a bootstrapping tool: In order to prove that a deletion statement of the desired
kind holds with probability exponentially close to 1, it suffices to prove that the statement holds
with some positive probability, and then slightly adjust the number of edges we allow to delete.

e) Strictly 2-balanced graphs A connected graph H with eH ≥ 1 and vH ≥ 3 is said to be
strictly 2-balanced if (eJ − 1)/(vJ − 2) < (eH − 1)/(vH − 2) for all proper subgraphs J ( H with
vJ ≥ 3. We also define K2 to be strictly 2-balanced. Complete graphs, complete bipartite graphs,
and cycles of arbitrary size are strictly 2-balanced.

It is well-known (see, e.g., [11, Remark 3.17]) that if H is strictly 2-balanced, then there exists
n0 = n0(H) such that

ΦH(n, p) = min
{
µH(n, p),

(
n

2

)
p
}

(5)

for all 0 < p ≤ 1 and n ≥ n0. Thus in that case, Theorems 4 and 7 cover all p = p(n) for which
µH = ω(1), and we obtain:

Corollary 9. Let H be a strictly 2-balanced graph, and let D be a decreasing graph property that
only depends on H-edges. Let n−vH/eH � p = p(n) ≤ 1 be such that there exists a constant δ > 0
such that

Pr[Gn,p ∈ D] ≥ δ

for n large enough. Then for any α > 0 there exists c = c(H,α) > 0 such that

Pr[Gn,p ∈ DαΦH ] ≥ 1− e−cΦH

for n large enough.

Note that the exponent in Corollary 9 matches the one in (2).

f) Application: Local subgraph counts As an application of our methods, we prove a strength-
ening of Lemma 1 which concerns not only global but also local subgraph counts.

Let V = [n] denote the vertex set of Gn,p. For a vertex v ∈ V , let the random variable XH,v

denote the number of copies of H in Gn,p that contain v. Similarly, for two vertices v1, v2 ∈ V and
e = {v1, v2}, let XH,e denote the number of copies of H in the graph Gn,p ∪ {v1, v2} (i.e., in the
graph obtained by inserting the edge {v1, v2} into Gn,p if it is not already present) that contain the
edge {v1, v2}. It is easy to see that the expectations of these two random variables satisfy

µv = µv(H,n, p) := E[XH,v] = Θ(nvH−1peH ),

µe = µe(H,n, p) := E[XH,e] = Θ(nvH−2peH−1),
(6)

with leading constants that depend on H only. With these notations, our result reads as follows.

Theorem 10. Let H be a strictly 2-balanced graph. Then for any ε > 0 there exist constants
c = c(H, ε) > 0 and C = C(H, ε) > 0 such that the following holds: for n−vH/eH � p = p(n) ≤ 1
arbitrary and n large enough, with probability at least 1− e−cΦH there exists a set E0 ⊆ E(Gn,p) of
size at most εΦH edges such that in Gn,p\E0, every vertex is contained in at most max{C, (1+ε)µv}
copies of H, and every edge is contained in at most max{C, (1 + ε)µe} copies of H.
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The constant C is necessary here: The analogous statement with the stronger bound (1 + ε)µv
instead of max{C, (1 + ε)µv} would clearly be wrong in the regime where µv = o(1) but µH = ω(1).

Combining Theorem 10 with Lemma 2 and Janson’s inequality, we obtain similar to our discussion
at the end of Section 1.2 that, for H and p as in the theorem, with probability 1−e−Θ(ΦH(n,p)) there
exists a set E0 of at most αΦH(n, p) edges such that in Gn,p \E0, the global number of copies of H
is close to its expectation, and all local subgraph counts are bounded as in Theorem 10.

1.4 Organization of the paper

After introducing some definitions and tools in Section 2, we prove Theorems 5 and 7 in Section 3.
Finally, Section 4 is devoted to the proof of Theorem 10.

2 Preliminaries

Throughout this paper, we assume, as usual, that the random graph Gn,p is generated on the vertex
set [n] = {1, . . . , n}. For the purposes of this paper, a graph property is a family of labelled graphs
on the vertex set [n] (which is not necessarily closed under isomorphism), where n will be clear from
the context. We say that a graph property A is decreasing if for any two graphs G and H on vertex
set [n] the following holds: if G ∈ A and H ⊆ G, we also have H ∈ A. Similarly, we say that a
graph property A is increasing if the complement of A is decreasing.

In our proofs, we will make use of the following well-known tools.

Theorem 11 (Harris’ inequality [9]). For any two decreasing (increasing) graph properties A and
B and any n ∈ N and 0 ≤ p ≤ 1, we have

Pr[Gn,p ∈ A ∩ B] ≥ Pr[Gn,p ∈ A] Pr[Gn,p ∈ B].

Lemma 12 (Chernoff bounds [11]). Let X be a binomially distributed random variable with param-
eters N and p. Then for any 0 ≤ k ≤ Np we have

Pr[X ≥ Np+ k] ≤ e−k
2/(3Np),

Pr[X ≤ Np− k] ≤ e−k
2/(2Np).

Theorem 13 (Janson’s inequality [10]). Consider a family H = {Hi | i ∈ I} of subgraphs of the
complete graph on the vertex set [n]. For each Hi ∈ H, let Xi denote the indicator random variable
for the event Hi ⊆ Gn,p, and, for each ordered pair (Hi, Hj) ∈ H × H with i 6= j, write Hi ∼ Hj

if Hi and Hj are not edge-disjoint. Let

X :=
∑
Hi∈H

Xi,

µ := E[X] =
∑
Hi∈H

pe(Hi),

∆ :=
∑

(Hi,Hj)∈H×H
Hi∼Hj

E[XiXj ] =
∑
Hi∈H

pe(Hi)
∑
Hj∈H
Hi∼Hj

pe(Hj)−e(Hi∩Hj).

Then for all 0 ≤ δ ≤ 1 we have

Pr[X ≤ (1− δ)µ] ≤ e
− δ2µ2

2(µ+∆) . (7)
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3 Deletion lemmas via the Harris inequality

To the best of our knowledge, the Harris inequality has not been used to prove deletion lemmas
before. On a related note however, it was shown in [15] that certain upper tail difficulties, which
are traditionally dealt with via the deletion method (as outlined in Section 1.2), can in some cases
be avoided by applying the Harris inequality. The arguments in this section hinge on Lemma 14,
which may be of independent interest.

3.1 Basic inequality

The following consequence of the Harris inequality is at the heart of our approach.

Lemma 14. Let n ∈ N and 0 ≤ p ≤ 1 be arbitrary. Let I denote an increasing graph property, and
let D denote a decreasing graph property satisfying Pr[Gn,p ∈ D] > 0. Moreover, let S = S(I,D)
denote the property of containing a subgraph that satisfies I and D simultaneously. Then we have

Pr[Gn,p /∈ I] ≤ Pr[Gn,p /∈ S] ≤ Pr[Gn,p /∈ I]

Pr[Gn,p ∈ D]
.

Proof. The lower bound on Pr[Gn,p /∈ S] follows trivially from the fact that S ⊆ I. The definition
of S also implies that I ∩ D ⊆ S and thus ¬S ∩ D ⊆ ¬I.

By construction S is an increasing graph property, and thus ¬S is a decreasing graph property.
Hence the Harris inequality (Theorem 11) implies that

Pr[Gn,p /∈ S] ≤ Pr[Gn,p ∈ (¬S ∩ D)]

Pr[Gn,p ∈ D]
≤ Pr[Gn,p /∈ I]

Pr[Gn,p ∈ D]
.

Note that whenever Pr[Gn,p ∈ D] is bounded from below by a constant, Lemma 14 implies that
the probability that S fails is within a constant factor of the probability that I fails. In many
asymptotic scenarios, this means that it suffices to prove a bound for I to derive a good bound
for S.

3.2 Proof of Theorem 5

We infer Theorem 5 from Lemma 14 as follows.

Proof of Theorem 5. W.l.o.g. we assume that α ≤ 0.01. We will prove the claim for c := 0.99 ·
min{α2/6, c′}. Set k := αn2p, and let I∗ denote the property of satisfying I as given and containing
at least

(
n
2

)
p − k/2 edges. We apply Lemma 14 with D as given and I∗ as just defined. Together

with the Chernoff bounds stated in Lemma 12, we obtain that, for n large enough, with probability
at least

1− Pr[Gn,p /∈ I∗]
Pr[Gn,p ∈ D]

≥ 1− δ−1(e−(α2/4)·n2p + e−c
′n2p),

Gn,p contains a subgraph that satisfies D ∩ I and has at least
(
n
2

)
p − k/2 edges. Lemma 12 also

yields that with probability at least 1− e−(α2/6)·n2p, Gn,p contains at most
(
n
2

)
p+ k/2 edges. Hence

with the claimed probability it suffices to remove at most k edges from Gn,p to obtain a subgraph
satisfying D ∩ I.
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Remark 15. A closer inspection of the preceding proof reveals that in fact, the conclusion of Theo-
rem 5 still holds under the weaker assumption that, for n large enough, Pr[Gn,p ∈ D] ≥ e−c

′′n2p for
some constant c′′ < min{α2/4, c′}. The constant c then needs to be adjusted to c = c(α, c′, c′′) :=
0.99 ·min{α2/6,min{α2/4, c′} − c′′}.

3.3 Proof of Theorem 7

The proof of Theorem 7 uses Lemma 14 in a way similar to the previous proof, but is quite a bit
more technical.

Proof of Theorem 7. We begin by defining all constants and events needed in the proof. Let H and
α be given, and assume w.l.o.g. that α ≤ 0.01. Set

γ = γ(H,α) :=
α

6(eH)2
, (8)

c∆ = c∆(H) := 2vH+eH (vH)2vH , (9)

c1 = c1(H,α) :=
α2(1− γ)eH

144(1 + c∆)(eH)2
, (10)

ε = ε(H,α) := min{α/3, c1

− log γ
}, (11)

and let c2 = c2(H,α) denote the constant guaranteed by Theorem 4 for α := ε.

We shall prove the theorem for

c = c(H,α) := 0.99 ·min{c1, c2}. (12)

Let p = p(n) as in the theorem be given, and consider the increasing properties

L := {G | G contains at least (1− α/(3eH))µH copies of H}

(where G ranges over all graphs on n vertices) and

I := L(εµH)

as defined in Lemma 2. Let S := S(I,D) be defined as in Lemma 14.

Furthermore, let

T := {G | there exists X ⊆ E(G), |X| ≤ εµH , such that

G \X contains at most (1 + α/(3eH))µH copies of H}.

We will prove Theorem 7 by showing that

S ∩ T ⊆ DαµH , (13)

and that
Pr[Gn,p /∈ S ∩ T ] ≤ e−cµH (14)

for n large enough.

To see that (13) holds, let G ∈ S∩T be given. By definition of T , we can remove a set X of at most
εµH edges from G to obtain a graph G′ := G \X that contains at most (1 + α/(3eH))µH copies of
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H. Furthermore, by definition of S, G contains a subgraph J that satisfies I and D. Note that the
graph J ′ := J \X ⊆ G′ satisfies D (trivially, as D is decreasing) and L (by definition of I = L(εµH)).
Thus the number of copies of H in G′ and J ′ differs by at most 2α/(3eH) · µH , and we need to
remove at most 2α/3 · µH edges from G′ to obtain a graph G′′ whose set of H-edges is exactly the
set of H-edges of J ′. Since D only depends on H-edges, it follows from the fact that J ′ satisfies D
that also G′′ satisfies D. Moreover, G′′ was obtained by removing at most εµH + 2α/3 · µH ≤ αµH
edges from G (see (11)). This shows that G is in DαµH and concludes the proof of (13).

To show that (14) holds, we first bound the probability of I = L(εµH) using Janson’s inequality
(Theorem 13) and the robustness lemma stated in the introduction (Lemma 2). For convenience of
notation, we set p′ = (1− γ)p, and abbreviate µH(n, p′) as defined in (1) by µ′H .

Note that

µ′H = (1− γ)eHµH
(8)

≥(1− α/(6eH))µH .

Therefore, if Gn,p′ is not in L then the random variable that counts the number of copies of H in
Gn,p′ is at least α/(6eH) ·µH ≥ α/(6eH) ·µ′H below its expectation µ′H . We use Janson’s inequality
(Theorem 13) to bound the probability that this happens. It is not difficult to see that for every
J ⊆ H with eJ ≥ 1 we have (p′)eH−eJ ≤ peH−eJ and nvJpeJ/(vJ)vJ ≤ µJ ≤ nvJpeJ . By standard
arguments it follows that

∆ ≤ µ′H
∑

J⊆H: eJ≥1

(vH)vJnvH−vJ (p′)eH−eJ

≤ µ′H · 2vH+eH (vH)2vH max
J⊆H: eJ≥1

(µH/µJ)
(9)

≤ c∆µ
′
H ,

where in the last step we also used that µH ≤ µJ by assumption (4).

Thus Janson’s inequality (7) yields

Pr[Gn,p′ /∈ L] ≤ exp

(
−

(α/(6eH))2(µ′H)2

2(µ′H + ∆)

)
(10)
= e−2c1µ′H/(1−γ)eH = e−2c1µH ,

and applying Lemma 2 to I = L(εµH) we obtain

Pr[Gn,p /∈ I] ≤ γ−εµH Pr[Gn,p′ /∈ L]
(11)

≤ e−c1µH .

Furthermore, Lemma 14 implies with our assumption on D that

Pr[Gn,p /∈ S] ≤ Pr[Gn,p /∈ I]

Pr[Gn,p ∈ D]
≤ δ−1e−c1µH .

Lastly, by Theorem 4 and our definition of c2 we have

Pr[Gn,p /∈ T ] ≤ e−c2·n
2p

(4)

≤e−c2µH .

Together with the definition of c in (12), and observing that µH = ω(1), the last two inequalities
imply that Pr[Gn,p /∈ S ∩T ] is bounded as claimed in (14). This concludes the proof of Theorem 7.
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Remark 16. As can be seen from the preceding proof, the conclusion of Theorem 7 still holds under
the weaker assumption that, for n large enough, Pr[Gn,p ∈ D] ≥ e−c

′′µH for a small enough constant
c′′ = c′′(H,α). We omit the details.

Remark 17. A version of Theorem 7 that also provides a guarantee for an increasing property I
that only depends on H-edges and holds with probability at least 1 − e−c

′µH can be proved very
similarly. It suffices to replace the event S = S(L(εµH),D) defined above with S((I ∩ L)(εµH),D)
and adjust a few details.

4 Proof of Theorem 10

To simplify notation, we introduce the abbreviations

Lv = Lv(H,n, p, C, ε) := max{C, (1 + ε)µv},
Le = Le(H,n, p, C, ε) := max{C, (1 + ε)µe}.

(15)

In view of Corollary 9 and the bootstrapping trick stated in Corollary 8, it suffices to prove the
following statement.

Lemma 18. Let H be a strictly 2-balanced graph. Then for any ε > 0 there exists C = C(H, ε) > 0
such that the following holds: for n−vH/eH � p = p(n) ≤ 1 arbitrary and n large enough, with
probability at least 1/2 there exists a set E0 ⊆ E(Gn,p) of size at most εΦH edges such that in
Gn,p \ E0, every vertex is contained in at most Lv copies of H, and every edge is contained in at
most Le copies of H.

We assume w.l.og. that ε ≤ 0.01. Clearly, to ensure that a given vertex v is contained in at most
Lv copies of H, it suffices to delete one edge from (XH,v − Lv) copies of H (that contain v), if
XH,v > Lv. The expected number of edges we delete by this is thus at most∑

k>Lv

Pr[XH,v = k] · (k − Lv) =
∑
k>Lv

Pr[XH,v ≥ k] =: zv.

Similarly, to ensure that a fixed vertex pair e = {v1, v2} is contained in at most Le extensions to
copies of H, it suffices to delete at most (XH,e − Le) edges from Gn,p if XH,e > Le. Note that we
only care about XH,e if e is an edge of Gn,p, and that XH,e does not depend on the status of e.
Since e is present with probability p, the expected number of edges we delete is thus at most

p
∑
k>Le

Pr[XH,e ≥ k] =: pze.

It follows that we can reach our goal by deleting an expected number of

z = z(H,n, p, C, ε) := nzv +
(
n
2

)
pze

edges in total. By Markov’s inequality, to infer Lemma 18 it suffices to show that z ≤ εΦH/2 for
an appropriate choice of the constant C.

To do so, it suffices to show that zv is bounded by εΦH/(4n), and that ze is bounded by εΦH/(4
(
n
2

)
p).

Note that the last term is of order min{µe, 1} by (5). Recalling that H is connected, and observing
that trees T with vT ≥ 3 are not strictly 2-balanced, it follows that H 6= K2 satisfies

eH ≥ vH . (16)
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Hence the term εΦH/(4n) is of order min{µv, np} = Ω(min{µv, 1}), where the asymptotic inequality
comes from the fact that (16) implies p� n−vH/eH ≥ n−1.

Before we summarize in the next claim what we are left with to prove, we make one additional
observation: Using that H is strictly 2-balanced, it follows from the results of Spencer [18] that if
p = p(n) is such that µe = ω(log n) then for any ε > 0, with high probability (i.e., with probability
tending to 1 as n→∞) every edge of Gn,p is contained in at most (1 + ε)µe copies of H (and thus
there is no need to delete any edges to fix the number of copies containing each edge). Hence when
bounding ze we may restrict our attention to the case where µe = O(log2 n), say. By an analogous
argument we may assume that µv = O(log2 n) when bounding zv; to apply Spencer’s result here we
use the well-known fact that every strictly 2-balanced graph is also strictly 1-balanced, i.e., satisfies
eJ/(vJ − 1) < eH/(vH − 1) for all proper subgraphs J ( H with vJ ≥ 2 (this inequality is trivial if
H = K2 or vJ = vH , and otherwise equivalent to eH−eJ

vH−vJ >
eH
vH−1 , which in turn holds by the proof

of Lemma 20 below).

With these observations, and after some simplification of the constants, it remains to prove the
following claim.

Claim 19. For any strictly 2-balanced graph H and any ε > 0 there exists C = C(H, ε) such that

(i) for any function p = p(n) for which µv = O(log2 n) we have
∑

k>Lv
Pr[XH,v ≥ k] ≤ εmin{µv, 1}

for n large enough,

(ii) for any function p = p(n) for which µe = O(log2 n) we have
∑

k>Le
Pr[XH,e ≥ k] ≤ εmin{µe, 1}

for n large enough.

The assumption of strict 2-balancedness comes into play via the following lemma.

Lemma 20. For every strictly 2-balanced graph H, there exists γ = γ(H) such that the following
hold.

(i) If p = p(n) is such that µv = O(log2 n), then for every proper subgraph J ( H with eJ ≥ 1 we
have nvH−vJpeH−eJ ≤ n−γ for n large enough.

(ii) If p = p(n) is such that µe = O(log2 n), then for every proper subgraph J ( H with eJ ≥ 2 we
have nvH−vJpeH−eJ ≤ n−γ for n large enough.

Proof. As there is nothing to prove for H = K2, we may assume that eH ≥ vH ≥ 3, see (16). The
assumption that H is strictly 2-balanced implies that every subgraph J ⊆ H with 3 ≤ vJ < vH
satisfies

eH − eJ
vH − vJ

=
(eH − 1)− (eJ − 1)

(vH − 2)− (vJ − 2)
>
eH − 1

vH − 2
>

eH
vH − 1

,

where in the last inequality we used that eH ≥ vH . Noting that the inequality eH−eJ
vH−vJ >

eH
vH−1 also

holds for J = K2, we may define

γv = γv(H) :=
1

2
min

J(H: eJ≥1

(
(eH − eJ)(vH − 1)

eH
− (vH − vJ)

)
> 0,

γe = γe(H) :=
1

2
min

J(H: eJ≥2

(
(eH − eJ)(vH − 2)

eH − 1
− (vH − vJ)

)
> 0.

11



Assume that we have µv = O(log2 n). Then this implies that p = O(n−(vH−1)/eH (log n)2/eH ), and
thus for any proper subgraph J ( H with eJ ≥ 1 we have

nvH−vJpeH−eJ = O
(
n

(vH−vJ )− (eH−eJ )(vH−1)

eH (log n)2(eH−eJ )/eH
)

= O(n−2γv log2 n) ≤ n−γv

for n large enough. Similarly, if µe = O(log2 n) then p = O(n−(vH−2)/(eH−1)(log n)2/(eH−1)), and
thus for any proper subgraph J ( H with eJ ≥ 2 we have

nvH−vJpeH−eJ = O
(
n

(vH−vJ )− (eH−eJ )(vH−2)

eH−1 (log n)2(eH−eJ )/(eH−1)
)

= O(n−2γe log2 n) ≤ n−γe

for n large enough. The claim follows for γ := min{γv, γe}.

To prove Claim 19, we apply the so-called ‘approximation by a disjoint subfamily’ technique [13],
which can be traced back to Spencer [18]. For a graph G we denote by α(G) the independence number
of G, by β(G) the size of a largest induced matching in G, and by ∆(G) the maximum degree of G.
It follows from basic graph theory (see, e.g., Section 2.3.4. in [13]) that V (G) ≤ α(G) + 2β(G)∆(G).

In order to prove part (i) of Claim 19 we define an auxiliary graph G = G(Gn,p) as follows. The
vertex set of G is the set of all copies of H in Gn,p that contain the vertex v, and two vertices of G
are connected by an edge if and only if the two corresponding copies of H share at least one edge.
Then

XH,v = V (G) ≤ α(G) + 2β(G)∆(G). (17)

Intuitively, we will show that the dominant term on the right hand side of (17) is α(G), and that
the probability for a contribution of the term 2β(G)∆(G) decreases exponentially. More precisely,
we will show that there exist positive constants A = A(H), B = B(H, ε) and β = β(H, ε) such that
the following estimates hold for all n large enough and k > L′v, where L′v = Lv(H,n, p, C

′, ε) with
C ′ = C ′(H, ε) chosen appropriately:

Pr[∆(G) ≥ A] ≤ ε/2 · n−vH ·min{µv, 1}, (18)

Pr[α(G) ≥ (1− 2βA)k] ≤ e−Bk ·min{µv, 1}, (19)

Pr[β(G) ≥ βk] ≤ e−Bk ·min{µv, 1}. (20)

Note that together these estimates imply by (17) that for all such k we have

Pr[XH,v ≥ k] ≤
(

2e−Bk + ε/2 · n−vH
)

min{µv, 1}.

For any C ≥ C ′ we have Lv ≥ L′v, and thus this bound holds for all k > Lv. As moreover XH,v

cannot exceed nvH , summing up yields that

∑
k>Lv

Pr[XH,v ≥ k] ≤
(

2e−BC

1− e−B
+ ε/2

)
min{µv, 1}

for n large enough. For C = C(H, ε) chosen suitably large, this is bounded by εmin{µv, 1} as
desired.

It remains to establish (18), (19), and (20). To do so, we introduce some additional notation. Let S
be an arbitrary family of subsets of E(Kn). For α ∈ S, let Xα denote the indicator random variable
for the event that all edges of α are present in Gn,p, and set XS =

∑
α∈S Xα. By Hp(S) we denote

12



the random intersection graph given by S, which is defined as follows: The vertex set is the set of
all α ∈ S with Xα = 1, and two vertices α, β ∈ S are connected by an edge if and only if α∩ β 6= ∅.
For S = S1 being the family of all edge sets corresponding to copies of H containing v, this is exactly
the auxiliary graph G defined above. In particular, we have XS1 = XH,v and α(G) = α(Hp(S1)).
Moreover, for S = S2 being the family of all edge sets obtained as the union of two intersecting
copies of H, both containing v, this is exactly the line graph of the auxiliary graph G defined above,
and thus we have β(G) = α(Hp(S2)).

With these notations in hand, we prove (18). One mild difficulty arising here is that αj ⊆
⋃
i∈F αi

with j /∈ F is possible, i.e., that the union of several αi can contain other αj subsets. To overcome
this, we first restrict our attention to the cases where this effect does not occur. We call a sequence
(αi)1≤i≤r of distinct sets αi ∈ S nice if for each 1 < j ≤ r, the set αj is neither contained in⋃

1≤i<j αi nor completely edge-disjoint from
⋃

1≤i<j αi. Note that this means that this intersection
is isomorphic to some nonempty proper subgraph J ( H.

Let T = T (H) := d2vH/γe+ 2, where γ = γ(H) is the constant guaranteed by Lemma 20. We will
derive a bound on the probability that a nice sequence of length T exists in Gn,p. Observe that any
graph W spanned by the union of all αi of such a sequence satisfies

e(W ) = eH +

T∑
i=2

(eH − e(Ji)) and v(W ) = vH +

T∑
i=2

(vH − v(Ji)), (21)

where each Ji is a nonempty proper subgraph of H. Since µv ≤ nvH implies µvn
−vH ≤ min{µv, 1},

it follows from Markov’s inequality and Lemma 20 that the probability for the existence of such a
graph W containing v is at most

c1n
v(W )−1pe(W ) ≤ c1n

vH−1peH (n−γ)T−1 ≤ c2µvn
−2vH−γ ≤ c2 min{µv, 1}n−vH−γ ,

where c1 and c2 are constants depending only on H. Taking a union bound over all possible
graphs W (there are only finitely many), we conclude that for n large enough, the probability that
a nice sequence of length T exists is bounded by the right hand side of (18).

It remains to show that this implies the desired bound on ∆(G). Consider any maximal nice
sequence α1, . . . , αr. Then clearly, every α ∈ S \ {α1, . . . , αr} that intersects any one of these αi is
contained in the graph W spanned by α1, . . . , αr. It follows that ∆(G) ≤ v(W )vH ≤ (rvH)vH , which
establishes (18) for A = A(H) := (TvH)vH .

The bounds for α(G) = α(Hp(S1)) and β(G) = α(Hp(S2)) claimed in (19) and (20) follow from
the following tail inequality, which combines estimates of Erdős and Tetali [7] and Janson [10] in a
convenient way.

Lemma 21. Let S be a family of subsets of E(Kn), and set λ = E[XS ]. For ξ > 0, there exists
D = D(ξ) > 0 such that for any x ≥ max{(1 + ξ)λ, 2e} we have

Pr[α(Hp(S)) ≥ x] ≤ min{λx, 1}e−Dx.

Proof. Lemma 1 in [7] and the estimate x! ≥ (x/e)x ≥ 2x imply that

Pr[α(Hp(S)) ≥ x] ≤ λx/x! ≤ λx2−x.

By Lemma 2.46 in [11], which slightly extends Lemma 2 in [10], using x ≥ (1+ξ)λ a short calculation
yields

Pr[α(Hp(S)) ≥ x] = Pr[α(Hp(S)) ≥ λ+ (x− λ)] ≤ e
− (x−λ)2

2(λ+(x−λ)/3) ≤ e
− ξ2x

2(1+ξ)(1+ξ/3) .
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Lemma 21 follows for D := min{log 2, ξ2

2(1+ξ)(1+ξ/3)}.

Setting β := ε/(5A), and C ′ := max{3e, 10eAε−1}, it is easily verified that, for n large enough,

(1− 2βA)L′v ≥ max{(1 + ε/2)µv, 2e} = max{(1 + ε/2)E[XS1 ], 2e},
βL′v ≥ max{βµv, 2e} ≥ max{2E[XS2 ], 2e},

where the last inequality follows with Lemma 20 from the observation that

E[XS2 ] = O( max
J(H: eJ≥1

n2vH−vJ−1p2eH−eJ ) = O(µv n
−γ).

Hence Lemma 21 implies the bounds (19) and (20) for B := min{(1− 2βA)D(ε/2), βD(1)}, where
D(·) is the function given by Lemma 21. (Note that min{λx, 1} ≤ min{λ, 1} for all λ > 0 and
x ≥ 1.)

This concludes the proof of part (i) of Claim 19. Essentially the same arguments also yield part
(ii). For the definition of the auxiliary graph G = Hp(S1), we now consider the family S1 of all edge
sets α of size eH − 1 that together with {v1, v2} form a copy of H. The bounds (18), (19), and (20),
with µv replaced by µe, follow from almost the same arguments as before, and imply part (ii) of
Claim 19 in exactly the same way. (For (19), note that (21) holds for the graph W obtained as the
union of all αi of a nice sequence of length T and the edge {v1, v2}, with e(Ji) ≥ 2 for all 2 ≤ i ≤ T .
The probability for the existence of all these αi is then bounded by c1n

v(W )−2pe(W )−1, and from
there the argument continues as before, using part (ii) of Lemma 20.)
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[13] S. Janson and A. Ruciński. The infamous upper tail. Random Structures & Algorithms,
20(3):317–342, 2002.
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