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Abstract 

The problem of finding packings of congruent circles in a circle, or, equivalently, of spreading 
points in a circle, is considered. Two packing algorithms are discussed, and the best packings 
found of up to 65 circles are presented. 

1. Introduction 

Problems of packing congruent circles in different geometrical shapes in the plane 
were raised in the 1960s, and many results - -  mainly for small packings - -  were 
obtained. Excellent sources of results and open problems are [3, 4]. The develop- 
ment of new, effective optimization algorithms for packing problems and the ever- 
increasing performance of computing systems have recently brought these problems 
into focus again; computer-aided methods can now be used to construct good large 
packings. 

We consider the problem of packing congruent circles inside a larger circle which, 
without loss of generality, is assumed to be of unit radius. Given n, we want to place 
n congruent circles without overlaps inside the larger circle in such a way that their 
common radius is as large as possible. We denote the maximum attainable radius of 
the circles by r, and we call the corresponding placement an optimal packing. 

* Corresponding author. E-maih bdl@belt-labs.com. 
1 The research of K.J. Nurmela was supported by the Emil Aaltonen Foundation and the Vilho, Yrj6 and 
Kalle V~is~l/i Foundation. 
2 Present address: Department of Computer Science, Helsinki University of  Technology, FIN-02150 Espoo, 
Finland. The research of P.R.J. Osterg~rd was supported by the Academy of Finland and the Walter Ahlstr6m 
Foundation. 

0012-365X/98/$19.00 Copyright @ 1998 Elsevier Science B.V. All rights reserved 
PII SOO12-365X(97)00050-2  



140 R.L. Graham et al./Discrete Mathematics 181 (1998) 13~154 

Instead of fixing the radius of the larger circle and searching for the maximum radius 

of  the circles in the packing, one can equivalently search for the minimum ratio of the 

radius of  larger circle to the radius of  the circles in the packing without fixing either 

one. The latter minimum is denoted by Dn = l ira.  One more parameter that can be 

optimized is the density of a packing, which is the area occupied by the circles of the 
packing divided by the area of the larger, enclosing circle. 

This circle packing problem has another equivalent presentation, where n points 

(rather than circles) are placed inside a circle with unit radius. The goal is to maximize 

the minimum pairwise distance between the points. I f  dn denotes this maximum, we 

have the following relations: 

2r, 2 
- , D n =  1 + ~ .  dn 1 - rn 

To generate packings we have implemented two different algorithms, which are both 

stochastic. These algorithms are discussed in Section 3. One of them uses ordinary 
non-linear optimization algorithms with an approximate cost function while the other 

simulates the idealized movement of  billiard balls inside a circular container. The com- 

puter programs have been executed repeatedly for each value of n, and the best packings 
found in these runs have been chosen. In most cases, the independent algorithms found 

the same best packing; this increases our confidence in the quality of  the packings to 

be presented. 
In the next section, earlier results on packing circles in a circle are surveyed. Optimal 

packings of up to 11 circles and the best known packings of up to 20 circles are 
presented. Our two packing algorithms are discussed in detail in Section 3. The best 

packings of 21 to 65 circles found are presented and discussed in Section 4, and the 

concluding remarks are given in Section 5. 

2. Earlier results 

Kravitz [10] was, to our knowledge, the first to consider the problem of packing n 
congruent circles in a circle. In [10] packings of up to 19 circles are given without 
any optimality proofs. 3 Graham [6] and Pirl [17] independently proved optimality of 

packings of  up to 7 and 10 circles, respectively. Pirl also presented good packings of 
up to 19 circles; some of these packings (for n = 14, 16, 17) were later improved by 
Goldberg [5], who also gave a packing of 20 circles. Goldberg's packing of 17 circles 
was further improved by Reis [18], who extended the range of n to 25. The packing 
of n = 25 is improved in this paper. Recently, Melissen [13] proved the optimality for 
the case n = 11. 

3 In Fig. 11 in [10] the value of R/r is erroneous; the last digit should be 6 instead of 4. 
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n = 2  n = 3  n = 4  

n = 5  n = 6 ( a )  n = 6 ( b )  

n = 7 n = 8 n = 9 

n = I0 n = Ii (a) ~ Ii (b) 

Fig. 1. Optimal packings of 2-11 circles in a circle. 

In Fig. l ,  the optimal packings of  up to l l  circles are presented. The packings  of  

12 to 20 circles, conjectured to be optimal,  are depicted in Fig. 2, excluding the case 

o f  18 circles, which is displayed separately in Fig. 3. 
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n = 12 n = 13 n = 14 

n = 1 5  n = 1 6  n = 1 7  

n = 1 9  n = 2 0  

Fig. 2. Conjecturally optimal packings of 12-17 and 19-20 circles in a circle. 

A peculiarity o f  the 18-circle case is that the best known packings of  18 circles 

have the same r as the best known packing of  19 circles. Three different, equally 

dense packings o f  18 circles can be obtained by removing a circle in the packing of  

19 circles in Fig. 2; see packings 18(a)-18(c)  in Fig. 3. (A packing obtained by a 

congruence transformation, that is, by rotation or reflection, from another is consid- 

ered the same.) In addition to these three packings, which apparently were the only 

ones known before, there are at least 7 more equally good packings. We suspect 

that there is no 1 lth equally good packing. At least, if  one circle is removed from 

any of  those 10 presumed best and then put back in the packing without overlaps 
with other circles, then one of  these 10 packings is obtained. Furthermore, starting 

from any of  these packings, all the others can be obtained with a series o f  such 
transformations. 
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,, = lS (g) ~ = a8 (h) ',~ = lS (i) 

n = lS (j) 

Fig. 3. Conjecturally optimal packings of 18 circles in a circle. 

The case of  6 circles is analogous to that o f  18 circles; different packings can be 

obtained from the 7-circle packing by  removing  and reordering circles. There are more 

than one optimal  packings also for n = 11. 

Not very much  is known  for n > 20; our intent ion in this study is to explore these 

cases. One  family  of  good packings has already been reported in [12]. In the next  
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sections we shall present the packing algorithms used to produce good packings and 
give the best packings found for 65 or fewer circles. 

3. Packing algorithms used 

In this section, two different methods to generate good packings are presented. In 
both methods, we try to maximize the minimum pairwise distance among n points 
spread in the unit circle centered in the origin. We denote this minimum distance by 
the objective function 

d(S) = min{[[ $i--$j II : l  <~i < j < ~ n } ,  (1) 

where S = {sl,s2 . . . . .  sn} is the set of points in the unit circle. Now the packing 
problem can be formulated as an optimization problem 

max : d(S), (2) 

whose global optima are the (globally) optimal packings. A packing found by one of 
these methods can be further improved by identifying the contacts (bonds) between 
the circles and solving numerically the corresponding system of equations. 

3.1. Optimization by repulsion forces 

The difficulty with (1) when trying to apply an efficient local optimization algo- 
rithm is that (1) is not smooth, and, furthermore, most of the first derivatives of 
the function are zero almost everywhere in the feasible region. To overcome these 
difficulties, we approximate the original problem (2) by minimizing the objective 
function 

(3) 
Ir s, sj 112 

1 <~i<j<~n 

where 2 is a suitable scaling factor (cf. [1]). This can be seen as a potential energy 
function when there are repulsion forces between the points. The parameter m controls 
the strength of the repulsion forces. The optima of (3) approximate those of (1) in the 
sense that as m tends to infinity, only the shortest distance between the points becomes 
significant. 

The cost function (3) is smooth everywhere except where two points coincide. 
In practice, a situation where two points coincide is almost impossible to obtain, 
because such locations in the solution space are surrounded by very high potential 
barriers. 

A packing is formed by first finding a local optimum of (3) using a relatively low 
value of m, for example, m = 80. Then the value of m is increased and the optimization 
step is repeated. If the value of m is only slightly increased, the local optima of 
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consecutive approximations (3) are very close to each other, so this optimization step 
is usually relatively fast. There is a trade-off when selecting the initial value of m: a 

small m gives faster convergence to the first local optimum but then some good local 

optima of (1) may be missed. 
In the beginning of each optimization stage we use a simple steepest-descent search 

with Goldstein-Armijo backtracking line search. When the gradient becomes small 

enough we switch to a modified Newton method to get a higher (in this case quadratic) 

convergence rate. 
Instead of doing the calculations in Cartesian coordinates, we transform the coor- 

dinates to make the resulting optimization problem unconstrained. Let us denote the 

transformed coordinates of a point x = (x l ,x2)  by 2 = (21,22). The transformation 

used is defined by 

xt = sin(Y1 ) sin(Y2), X2 = cos(Y1 ) sin(.~2). 

Now we have an unconstrained optimization problem in the transformed variables. We 
could use a constrained optimization algorithm, but in order to make the constraints 

linear, some kind of a transformation is needed anyway. 

3.2. Billiards simulation 

In the second packing algorithm we use the hard disks or billiards model of compu- 

tational physics. Consider a set S of n points spread in the unit circle. Let d -- d(S)  be 

the minimum pairwise distance among the points, as defined in (1). If  we draw circles 
of diameter d around each point in S, the circles do not overlap. Now imagine that 

we relax the configuration S and let the circles, which can also be thought of as hard 
disks, move chaotically obeying the restrictions of not overlapping and not escaping 
the larger circle of radius 1 + d/2 (so that the centers of the circles do not escape the 

unit circle). 

While the disks are moving, the configuration is visiting a subset in the configu- 
ration space over which the maximum of (1) is being sought. If  d = 0 this subset 
is the entire configuration space. Now as disks move we gradually increase d. Then 

the subset in the configuration space which is being visited by the changing configu- 
ration is gradually shrinking. In the limit, the subset reduces to a single configuration 

(up to the equivalence transformation of rotation), and thus a packing is achieved 
as a steady state of the system. This configuration is a local maximum of the fun- 
ction ( 1 ). 

The computer algorithm realizes the scenario outlined above. The effect of chaotic 
motion is obtained by letting the disks experience elastic collisions at impacts begin- 
ning with a randomly chosen initial configuration at d = 0. Round-off errors in the 
computations work as an additional randomization factor. 

The computations are implemented in an efficient, event-driven fashion where 
the algorithm proceeds directly from one collision to another and does not waste 
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computations on disks that are not involved in a collision. A more detailed description 
of the algorithm is given in [11]. 

3.3. Tightening the packings 

A characteristic feature of both methods discussed above is their slowing down 
near an optimum; it becomes progressively more difficult to obtain higher precision of 
the positions of the circle centers as the configuration approaches a steady state. The 
precision is also limited by the precision of the software used (both algorithms were 
implemented using double precision). Furthermore, the local optima of (3) with finite 
m differ slightly from the corresponding optima of (1). Thus, both algorithms yield 
what can be qualified as 'loose' packings. 

To tighten the packings, a complementary procedure was developed that works as 
follows. The first step of the procedure is detecting points of contact in a packing 
obtained using the methods described above. We identify circles that touch each other 
or the area boundary. To know which circles are touching, we select a small positive 
threshold value and compare it to the computed gap between the circumferences of each 
pair of circles. Selecting the threshold is usually easy, because in the gap distribution 
there is most often a clearly visible jump between, say, gaps smaller than 10 -12 and 
gaps larger than 10 -6 of the diameter of the circles. 

In the second step of the procedure, given the conjectural contacts, a system of non- 
linear equations is formed. The equations state that the distances between centers of 
contacting circles are equal and that the centers of circles touching the area boundary 
are located on the periphery of the unit circle. Often there are more equations than 
unknowns in the system, especially when the packing is symmetric. 

The final step of the procedure is to solve the system of equations formed in the sec- 
ond step. Several numerical methods can be used, we use a modified Newton-Raphson 
method. Alternatively, the system can be formulated as a nonlinear least-squares min- 
imization problem, for which several algorithms exist in the literature. Because we 
have a very good initial 'loose' solution, fast convergence to a 'tight' solution usually 
takes place, if the system has a solution. In finding the 'tight' solution we use high 

computational resolution. 
If the right contacts are not identified in the first step, the final step usually does not 

converge. In work on another packing problem [16], it turned out that difficulties can 
arise especially when there is a large, slightly disturbed hexagonal array of circles as 
a part of the packing. Among the cases considered in the present paper, only the case 
of 53 circles was difficult. The billiards algorithm, however, was finally able to give a 
solution with such a precision that the true contacts could be identified. 

Previous research has revealed that there are good circle packings in an equilateral 
triangle and in a square with very narrow gaps between the circles or between a circle 
and the boundary [7, 14, 16]. This is why the calculations in the final step presented 
above were done with a very high computational resolution. In all the packings of 
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this paper, the maximum difference between the distances of  the centers of  contacting 
circles is less than 10 98 and the maximum off-placement of the centers of  the periphery 
circles is less than l0  -100 when the centers are contained in the unit circle. It is thus 

extremely unlikely that any of the packing structures presented in this paper turns out 

not to exist. 
With this precision, we are confident about the existence of a packing if the sys- 

tem of equations has a solution where no circles overlap. The solution might ex- 

ist and yet, the packing might not be rigid; that is, there might exist a continuous 

movement of a subset of circles, different from the rotation of the entire assembly, 

such that no circles overlap or penetrate the boundary. In some cases both the exis- 

tence and the rigidity problem could be solved using the interval arithmetic package 
INTBIS [9]. 

Numerical evidence for the rigidity of the packings in this paper was obtained as 

follows. We solved the system of equations several times with different initial ' loose' 
solutions which were obtained by rotating and slightly perturbing one 'loose' solution. 

Each time the algorithm converged to the same 'tight' solution (up to a rotation) with 

a very high precision. If  the packing were not rigid, infinitely many different 'tight' 

solutions would have existed in arbitrarily small neighborhood of the first found 'tight' 

solution, and it would be highly improbable that the algorithm would converge every 
time to the same 'tight' solution (within the very high computational resolution that was 

used). 

4. Packings found 

The best known packings of 21-32, 33-44, 45 56, and 57~55 circles are shown in 
Figs. 4, 5, 6, 7, respectively. The packings of 21-24 circles are from [18], and the 
packings of 36-38, 60-62 circles are from [12]. 

With 28, 29, 42, 44, and 58 circles there exist many inferior packings that are 

close to the optimum and have slightly different density and bond structure. The pack- 

ings of 19, 37, and 61 circles are examples of curved hexagonal packings defined 
in [12]. 

Some properties of  the best known packings are listed in Table 1. 
For completeness, we have included all packings from 2 to 65 circles in Table 1. 

In the table, n denotes the number of circles and d is the distance between the centers 
of the circles when the centers are contained in a circle of radius 1. The density of 
the packing is shown in the next column. The number of loose circles and the number 
of contacts are shown in the next two columns. Finally, the symmetry group of the 

packing is given. Loose circles are not considered when determining the symmetry 
group; in all cases these can be placed to fulfill the symmetry imposed by the other 
circles. In some cases there exist more symmetric but slightly less dense packings than 
those in Table 1. 
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n = 21 n = 22 n = 23 

n = 24 n = 25 n = 26 

n = 27 n = 28 n = 29 

n = 30 n = 31 n = 32 

Fig. 4. Best known packings of 21-32 circles. 

N o t e  tha t  in  all  c a s e s ,  s h o w n  d i g i t s  o f  d a n d  densi ty  su f f i ce  to d i s c e r n  t h e  b e s t  

a c h i e v e d  p a c k i n g  f r o m  t he  n e x t - b e s t  w e  g o t  in  t h e  e x p e r i m e n t s .  S o m e  o f  t h e  v a l u e s  o f  

d in  T a b l e  1 c a n  be  e x p r e s s e d  exp l i c i t l y .  F o r  e x a m p l e ,  i f  t h e r e  a re  k c i r c l e s  t o u c h i n g  

t he  l a r g e r  c i r c l e  a n d  t h e r e  a re  n o  g a p s  b e t w e e n  t h e s e  c i r c l e s ,  t h e n  d = 2 s i n ( n / k ) .  T h i s  
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n = 3 3  n = 3 4  n = 3 5  

n = 3 6  n = 3 7  n = 3 8  

n---39 n = 4 0  n = 4 1  

n = 42 n = 43 n = 44 

Fig. 5. Best known packings of 33~44 circles. 

appl ies  to the cases  n = 6 and 7 wi th  k = 6, n = 8 wi th  k = 7, n = 9 wi th  k = 8, 

n =  11 w i t h k = 9 ,  n =  18 and 19 w i t h k =  12, n = 3 7 w i t h k =  18, a n d n = 6 1  with  

k = 24. Fur thermore ,  for n = 31 and 55, d = l x ~  and l x / ~ ,  respect ively.  In all 

cases,  the exact  value o f  d can be expressed  as a solut ion o f  a sys tem o f  equations.  
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n = 54 n = 55 n = 56 

Fig. 6. Best known packings of 45-56 circles. 

The packing 6(a) in Fig. 1 has one rigid circle surrotmded by 5 loose circles that can 

be moved relatively to each other along the enclosing circle periphery. The number of 

contacts between the circles varies between 10 and 14 and the number of free circles 

is from 2 to 5. The symmetry group can be C1, D1, or Ds. 
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n = 6 0  n = 6 1 ( a )  n = 6 1  (b) 

n = 61 (c) n = 62 n -  63 

n = 64 n = 65 

Fig. 7. Best known packings of 57 65 circles. 

The packing o f  25 circles improves  on the best previous ly  known packing for which  

d = 0.420093512 [18]. The new packing is a lmost  symmetr ic  and has one loose circle. 

The  packing in [18] has two loose circles and is symmetr ic .  
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Table 1 
Properties of  the best packings 

n d Density Loose Contacts Symmetry 

circles group 

2 2.000000000 0.500000000 0 3 D 2 

3 1.732050808 0.646170928 0 6 D3 

4 1.414213562 0.686291501 0 8 D 4 

5 1.175570505 0.685210244 0 10 D5 

6 (a) 1.000000000 0.666666667 2 5 10-14 See text 

6 (b) 1.000000000 0.666666667 0 12 D 6 

7 1.000000000 0.777777778 0 18 D 6 

8 0.867767478 0.732502069 1 14 D7 

9 0.765366865 0.689407990 1 16 D8 

10 0.710978236 0.687797433 0 20 D1 

11 (a) 0.684040287 0.714460109 0 24 D1 

11 (b) 0.684040287 0.714460109 0 23 D1 

12 0.660152735 0.739021298 0 24 D3 

13 0.618033989 0.724465170 0 26 D1 

14 0.600884161 0.747252762 0 29 Dl 

15 0.567962868 0.733759381 0 30 D5 

16 0.553185219 0.751097773 0 32 D~ 

17 0.527421466 0.740302448 0 35 DI 

18 (a) 0.517638090 0.760918874 0 42 D6 

18 (b) 0.517638090 0.760918874 0 43 DI 

18 (c) 0.517638090 0.760918874 1 41 D1 

18 (d) 0.517638090 0.760918874 0 42 Di 

18 (e) 0.517638090 0.760918874 0 42 D1 

18 (~  0.517638090 0.760918874 0 44 DI 

18 (g) 0.517638090 0.760918874 0 44 D1 

18 (h) 0.517638090 0.760918874 0 43 C1 

18 (i) 0.517638090 0.760918874 0 43 C1 

18 ~)  0.517638090 0.760918874 0 43 C1 

19 0.517638090 0.803192145 0 48 D6 

20 0.485163607 0.762248290 1 38 Dl 

21 0.470331769 0.761232561 2 38 Dt 

22 0.450478965 0.743480797 0 44 Ct 

23 0.440024233 0.747984753 0 46 Cl 

24 0.429953937 0.751378942 2 44 Cl 

25 0.420802424 0.755401397 1 48 Cl 

26 0.414235061 0.765434356 2 48 Cl 

27 0.407631028 0.773959740 0 54 6"3 

28 0.398808512 0.773919353 2 52 (72 

29 0.389211228 0.769590369 4 50 CI 

30 0.384782538 0.781006050 0 60 D2 

31 0.377964473 0.783164386 0 84 D6 
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Table 1. (continued) 
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n d Density Loose Contacts Symmetry 

circles group 

32 0 . 3 6 8 3 6 0 5 5 6  0.774106260 1 62 Ci 
33 0 . 3 6 4 5 1 7 6 2 7  0.784270529 0 66 Ci 

34 0 . 3 5 6 4 4 5 4 2 8  0.777947412 2 66 CL 

35 0 . 3 5 1 0 5 1 4 2 0  0.780342492 2 66 CI 

36 0 . 3 4 8 0 2 2 5 6 6  0.790883977 3 66 Ci 

37 0 . 3 4 7 2 9 6 3 5 5  0.809965138 0 90 C6 

38 0 . 3 3 5 4 6 4 2 6 0  0.784024549 3 70 Ci 

39 0 . 3 3 0 1 4 8 2 7 4  0.782916696 2 74 CI 

40 0 . 3 2 6 5 9 2 1 2 2  0.788189950 4 72 Ci 

41 0 . 3 1 9 4 8 8 1 8 9  0.777873793 3 76 C1 

42 0 . 3 1 5 1 1 9 6 0 9  0.778132009 3 78 Ci 

43 0 . 3 1 1 5 2 9 1 5 6  0.781028893 2 82 CI 

44 0 . 3 0 7 7 8 5 2 7 4  0.782631916 1 86 Ci 

45 0 . 3 0 4 1 3 0 8 9 3  0.784005834 4 82 CI 

46 0 . 3 0 0 7 4 3 7 4 3  0.785985500 2 88 Ci 

47 0 . 2 9 7 4 3 4 4 7 7  0.787760508 4 86 CI 

48 0 . 2 9 4 4 9 5 6 6 6  0.790723359 1 94 CI 

49 0 . 2 9 0 4 0 7 6 4 8  0.787746731 6 87 Ct 

50 0 . 2 8 7 8 7 2 7 0 3  0.791602691 3 94 Ci 
51 0 . 2 8 4 5 9 5 9 4 8  0.791423233 5 92 Cl 
52 0 . 2 8 2 2 9 7 7 8 9  0.795561354 2 100 Ci 
53 0 . 2 7 8 5 6 7 6 8 4  0.792161024 5 101 C~ 
54 0 . 2 7 7 6 2 4 2 2 1  0.802313910 6 103 DI 
55 0 . 2 7 7 3 5 0 0 9 8  0.815754986 6 126 D6 
56 0 . 2 7 0 8 5 4 0 6 9  0.796673375 6 100 C1 
57 0 . 2 6 8 5 5 7 8 6 4  0.798823587 7 101 CL 
58 0 . 2 6 5 7 9 6 4 9 3  0.798150306 5 107 Ct 
59 0 . 2 6 3 4 1 7 8 4 8  0.799121719 3 112 CI 
60 0 . 2 6 1 5 6 7 1 5 9  0.802599163 3 115 CI 
61 (a) 0 .261052384 0.813137360 0 144 Co 
61 (b) 0 .261052384 0.813137360 0 144 C6 
61 (c) 0 .261052384 0.813137360 0 144 ('6 
62 0 . 2 5 5 4 3 5 4 9 5  0.795231105 2 120 CI 
63 0 . 2 5 3 4 0 9 8 9 8  0.796722906 5 116 Ct 
64 0 . 2 5 1 1 9 4 0 7 9  0.796843244 6 116 C1 
65 0 . 2 4 9 4 5 7 5 1 3  0.799375705 7 116 Cl 

5. Conclusions 

The repuls ion force opt imiza t ion  me thod  in Sect ion 3.1 requires  f ewer  steps to obtain 

a pack ing  configurat ion than the bil l iards method.  On the other  hand,  these steps are 

computa t iona l ly  s lower  than those o f  the bil l iards algori thm. As  a result,  the t ime to 

reach a comparab le  vic ini ty  o f  the op t imu m using the bil l iards me t h o d  is roughly  the 
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same as that for the repuls ion force method. However,  i f  accurate localization of  an 

op t imum is required, our experiments  have showed that the bil l iards algori thm performs 

better. As 9lobal optima are concerned,  the abili ty for both methods to find them hinges 

on making  m a n y  runs with different initial conditions.  

In some cases we can make the packing algori thms faster by  concentrat ing only  

on the packings having certain symmetr ies  and thus reducing the number  o f  variables 

[15]. However,  while most  o f  the smaller  (optimal  or conjectural ly opt imal)  packings 

have symmetries,  it seems that when  the number  o f  circles is increased, symmetr ic  best 

known  packings become more and more rare. 

In [16] it was conjectured that g iven a packing of  n ~> 2 circles in a square, there 

exists a packing o f  n - 1 circles in the square with greater value o f  d. For  packings in 

a circle a similar claim is not  true; an optimal packing of  6 circles is obtained from 

the optimal packing of  7 circles by  removing  one circle. For  packings in an equilateral 

tr iangle it has been  conjectured that there are infinitely m a n y  cases where n -  1 circles 

cannot  be packed better than n circles, namely  for n = k(k  + 1)/2; k = 1,2 . . . .  (the 

tr iangular  numbers )  [7]. Such infinite families are not  known  for packings in a circle. 
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