Line in space maps to the Hyperbolic interpolation: line on the screen. BLIC issue Dept iclus of \vec{v} by lenping In just 061 Notso for vertex $\left(\overrightarrow{v}_{i}, \overrightarrow{v}_{i}, \beta \right)$ $v' = lev_D(v_1', v_2', \alpha)$ $\chi_{I/W}$) X r/Wr $\frac{1}{V}$ Siveen $U_2 = (X_2, Y_2, Z_2, W_1)$ $\vec{u}_{1} = \langle X_{1}, Y_{1}, Z_{1}, W_{1} \rangle$ V1 -- < X1/21> -9 - output by Fragment Shade V2= < X2/W2> -9 1/

Shift gears: What does lexpine do to homegeneous
coordinates?
Example
$$\vec{x} = \langle 0, 0 \rangle \in \mathbb{R}^2$$
 $\vec{u} = \langle 0, 0, 1 \rangle$ represents \vec{x}
 $\vec{y} = \langle 2, 0 \rangle \in \mathbb{R}^2$ $\vec{v} = \langle 2, 0, 1 \rangle$ " \vec{y}
 $\vec{y} = \langle 2, 0 \rangle \in \mathbb{R}^2$ $\vec{v} = \langle 2, 0, 1 \rangle$ " \vec{y}
 $\vec{v} = \langle 4, 0, 2 \rangle$ also represents?
 $lexp(\vec{u}, \vec{v}, \frac{1}{2}) = \langle 1, 0 \rangle$.
 $lexp(\vec{u}, \vec{v}, \frac{1}{2}) = \langle 1, 0, 1 \rangle$ represents $\langle 1, 0 \rangle$
 $lexp(\vec{u}, \vec{v}, \frac{1}{2}) = \langle 2, 0, \frac{3}{2} \rangle$ represents $\langle \frac{4}{3}, 0 \rangle \neq \langle 1, 0 \rangle$
 $lexp(\vec{u}, \vec{v}, \frac{1}{2}) = lexp(\vec{x}, \vec{y}, \frac{2}{3}) = \frac{1}{3}\vec{x} + \frac{2}{3}\vec{y}$.
 $\vec{w} - with Brd comparent 2 w weighted twise as mach
 w with 3^{rd} component 1.$

More generally Let
$$\vec{x} \in \mathbb{R}^{n}$$
. Suppose $\vec{x} = \langle x_{ij} \langle x_{ij}, x_{ij} \rangle$
With $(\vec{x}_{j} \otimes \vec{y}) \in \langle x_{ij} \otimes x_{ij} \otimes x_{ij} \rangle$
So $\langle w \tilde{x}_{j} \otimes w \rangle$ is a hanogeneous representation for \vec{x} .
Now Let $\vec{y}_{1,j} \cdots, \vec{y}_{k} \in \mathbb{R}^{n}$. Let $w_{1} \cdots w_{k} > 0$
Let $\alpha_{1,j} \langle x_{ij}, \cdots, \alpha_{k} \in \mathbb{R}$ $(x_{1} + \alpha_{k} + \cdots + \alpha_{k}) = 1$
Form affine can binedia
 $(\vec{z}) = \langle x_{i} \langle w_{i} \vec{y}_{ij}, w_{i} \rangle + \langle x_{2} \langle w_{2} \vec{y}_{2}, w_{2} \rangle + \cdots + \langle x_{k} \langle w_{k} \vec{y}_{k}, \vec{y}_{k} \rangle$
Goal: Find $f_{1, \cdots, f_{k}} \leq h \neq is a$ representation
 $of_{j} = \beta_{i} \vec{y}_{i} + \cdots + \beta_{k} \vec{y}_{k}$
 $\vec{z} = \langle \alpha_{i} \otimes y_{i} + \alpha_{k} \otimes y_{k} \rangle = \langle \alpha_{i} \otimes y_{i} \rangle + \langle \alpha_{k} \otimes y_{k} \rangle = \langle \alpha_{i} \otimes y_{i} \rangle$

So Z representi $\frac{\alpha_{i}\omega_{j}}{\sum_{j}\alpha_{j}\omega_{j}}\tilde{\gamma}_{i} + \cdots + \frac{\alpha_{k}\omega_{k}}{\sum_{j}\alpha_{j}\omega_{j}}\tilde{\gamma}_{k}$ So $\beta_i = \frac{A_i \omega_i}{\sum_{j} \alpha_j \omega_k}$ gives \vec{z} represent $\sum_{i} \beta_i \vec{y}_i$

Bothm liné $\beta_{i} \prec \alpha_{i} \omega_{i}$

Conversely &; & Bilw;

Hyperbilic interpolation - Bi JB2 losp(xil, u2) = (I-B) u, + Bu2 x,= 1-x Charle & s.t. 1-x & 1-B $\alpha_2 = \alpha$ XLB

Could help as Part 3 of the Quiz (Quiz 14) Derivative of lerp-in $\vec{u}(\alpha) = lexp(\vec{x}, \vec{y}, \alpha) = (1 - \alpha)\vec{x} + \alpha \vec{y}$ \mathcal{L}^{-1} Dervative) divi = w.v.t. dx = ~×+ÿ= ÿ-× x =0 X depend on X,