Hyperbolic" interpolation:-
Baric issue

Screen

$$
\begin{array}{lr}
\vec{u}_{1}=\left\langle x_{1}, y_{1}, z_{1}, w_{1}\right\rangle & u_{2}=\left(x_{2}, y_{2}, z_{2} w_{2}\right\rangle \\
\vec{v}_{2},\left\langle x_{1}, \nu_{1}\right\rangle
\end{array}
$$

- Input by Fragment Shade

$$
\begin{aligned}
& \vec{V}_{1}=\left\langle x_{1} / w_{1}\right\rangle \\
& V_{2}=\left\langle x_{2} / w_{2}\right\rangle
\end{aligned}
$$

Line in space maps to the line an the screen.

Depth values of \vec{V}
is olla ined by leaping
$\frac{\text { with } \beta \text {. }}{\text { Not so for vertex }}$
$\vec{v}=\operatorname{lerp}\left(\vec{v}_{1} \vec{v}_{2}, \beta\right)$

$$
v^{\prime}=\operatorname{levp}\left(v_{1}^{\prime}, v_{2}^{\prime}, \alpha\right)
$$

$v_{2}^{\prime} \longmapsto \vec{v}_{2}$
$v^{\prime} \longmapsto \vec{v}$

Shiftgeass: What does lesping do to haregenecus coordinates?

Example $\quad \vec{x}=\langle 0,0\rangle \in \mathbb{R}^{2}$
$\vec{u}=\langle 0,0,1\rangle$ representer \vec{x}_{x}

$$
\bar{y}=\langle 2,0) \in \mathbb{R}^{2}
$$

$\vec{v}=\langle 2,0,1\rangle$
$\bar{\omega}=\langle 4,0,2\rangle$ alro repersentr \vec{y}

$$
\operatorname{lerp}\left(\vec{x}, \vec{y}, \frac{1}{2}\right)=\langle 1,0\rangle .
$$

$\operatorname{lerp}\langle\vec{u}, \vec{v}, 1 / 2\rangle=\langle 1,0,1\rangle$ represents $\langle 1,0\rangle \quad-$
$\operatorname{lemp}(\vec{u}, \vec{w}, 1 / 2\rangle=\left\langle 2,0, \frac{3}{2}\right\rangle$ vepresents $\left\langle\frac{4}{3}, 0\right\rangle \neq\langle 1,0\rangle$

$$
l \operatorname{eop}(\vec{u}, \vec{w}, 1 / 2)=\operatorname{leup}(\vec{x}, \vec{y}, 2 / 3)=\frac{1}{3} \vec{x}+\frac{2}{3} \vec{y}
$$

$\vec{\omega}$-with $\overrightarrow{b r}^{r d}$ compunent 2 is weightel twice as meek as \vec{u} with $3^{\text {rod }}$ comsoment 1 .

Mare generally Let $\vec{x} \in \mathbb{R}^{n}$. Supper $\bar{x}=\left\langle x, x_{1} \ldots, x_{n}\right\rangle$
Write $\left\langle\vec{x}_{j}, \omega\right\rangle f \quad\left\langle x_{1} \cdots x_{k}, \omega\right\rangle$
So $\langle\omega \vec{x} ; \omega)$ is a hanageneour representation for \vec{x}.
Now Lat $\vec{y}_{1}, \ldots, \vec{y}_{k} \in \mathbb{R}^{n}$. Let $\omega_{1} . . \omega_{k}>0$
Let $\alpha_{1} \mid \alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R} \quad \alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}=1$
Form affine cambinata

$$
\dot{z}=\begin{aligned}
& \text { ate can bivexa } \\
& \left.\alpha_{1}\left\langle\omega_{1} \vec{y}_{1} ; \omega_{1}\right\rangle+\alpha_{2}\left\langle\omega_{2} \tilde{y}_{2}, \omega_{2}\right\rangle+\cdots+\alpha_{k}\left\langle\omega_{k} \vec{y}_{k}, \vec{y}_{k}\right\rangle\right)
\end{aligned}
$$

Goal: Find $\beta_{1}, \cdot ., \beta_{k}$ sit \vec{z} is a representation of $\beta_{1} \vec{y}_{1}+\cdots+\beta_{k} \vec{y}_{k}$

$$
\vec{z}=\left\langle\alpha \omega_{1} \vec{y}_{1}+\alpha_{2} \omega_{2} \vec{y}_{2}+\cdots \alpha_{k} \omega_{k} \vec{y}_{k}, \sum_{j=1}^{k} \alpha_{j} \omega_{j}^{\prime}\right\rangle
$$

So \vec{i} repuesents

$$
\frac{\alpha_{1} \omega_{1}}{\sum_{0} \alpha_{j} \omega_{j}} \vec{y}_{1}+\cdots+\frac{\alpha_{k} \omega_{k}}{\sum_{j} \alpha_{j} \omega_{j}} \vec{y}_{k}
$$

So $\beta_{i}=\frac{\alpha_{i} \omega_{j}}{\sum_{j} \alpha_{j} \omega_{k}}$ gives $\vec{\Sigma}$ represent $\sum_{i} \beta_{i} \vec{y}_{i}$
Bottem liné $\quad \beta, \mathcal{L} \alpha_{i} \omega_{i}$
Converely $\quad \alpha_{i} \propto \beta_{i} / \omega_{i}$

Hyperbalic mferpulatier $\beta_{1} \quad \mu^{\beta_{2}}$

$$
\operatorname{lev}\left(\vec{x}_{1}, \vec{u}_{2} \beta\right)=\widetilde{(1-\beta)} \vec{u}_{1}+\tilde{\beta}_{u_{2}}
$$

Chare α s.t $1-\alpha \alpha 1-\beta$

$$
\alpha \mathcal{L} \beta
$$

$$
\begin{aligned}
& \alpha_{1}=1-\alpha \\
& \alpha_{2}=\alpha
\end{aligned}
$$

Could help w/ Part 3 of the Quiz (Quiz 14.)
Dervative of leoppins

$$
\begin{aligned}
& \vec{u}(\alpha)=\operatorname{lev}(\vec{x}, \vec{y}, \alpha)=(1-\alpha) \vec{x}+\alpha \vec{y} \\
& {\underset{c}{\text { Dervaritive }}}_{\text {w.t. }} \frac{d \vec{u}}{d \alpha}=-\vec{x}+\vec{y}=\vec{y}-\vec{x} \\
& \text { Dues not } \\
& \text { dypend an } \alpha \text {. }
\end{aligned}
$$

