Beezer carves:
Specify a smooth carve $\vec{g}(u) \quad u \in[0,1] \quad \vec{g}(u) \in \mathbb{R}^{k}$ for $k \geqslant 1$.

Degree 1 Bezier curve.
Has 2 control point \vec{P}_{0}, \vec{P}

$$
\vec{g}(u)=\operatorname{lerp}\left(\overrightarrow{p_{0}}, \stackrel{\rightharpoonup}{p}, u\right)
$$

$$
\begin{gathered}
\frac{\text { Degree } 2 \text { Bezel curve }}{3 \text { control points }} \\
\overrightarrow{p_{0}}, \vec{p}_{1}, \vec{p}_{2} \in \mathbb{R}^{1} \\
\vec{q}(u)=(1-u)^{2} \vec{p}_{0}+2 u(1-u) \vec{p}_{1}+u^{2} \vec{p}_{2}
\end{gathered}
$$

Degree 3 Bezier carver 4 control puints $\vec{p}_{0} \ldots \vec{p}_{3}$

$$
\vec{g}(u)=(1-u)^{3} \vec{p}_{0}+3 u(1-u)^{2} \vec{p}_{1}+3 u^{2}(1-u) \vec{p}_{2}+u^{3} \vec{p}_{3}
$$

$\vec{p}_{1} \ldots \ldots \vec{p}_{2}$
Contol polygon

Tangerceses at $u=0, u=1$

Erding Prats

Example 1 in \mathbb{R}^{2}

$$
\begin{array}{ll}
\begin{array}{ll}
\text { Example } & \vec{p}_{2}=\langle 1,1\rangle \\
\vec{p}=\langle 0,0) & \vec{p}_{2} \\
\vec{q}(0)=\vec{p}_{0} & \vec{q}^{\prime}(0)=\langle 3,3\rangle=3(\langle 1,1\rangle-\langle 90\rangle) \\
\vec{q}(1)=\vec{p}_{3} & \vec{q}^{\prime}(1)=\langle 0,-3\rangle=3(\langle 3,0\rangle-\langle 3,1\rangle)
\end{array}+
\end{array}
$$

De Castejou algorthm (For degree 3, waks for
 othen degneess

Evalucte

$$
\dot{g}(u) \quad u \in\{0,1\rangle
$$

(Pchure $u=13$)

$$
\begin{aligned}
& \vec{r}_{0}=\operatorname{levp}\left(\vec{p}_{0}, \vec{p}_{1}, u\right) \\
& \vec{r}_{1}=\operatorname{lerp}\left(\vec{p}_{1}, \vec{p}_{2}, u\right) \\
& \vec{r}_{2}=\operatorname{lerp}\left(\vec{p}_{2}, \vec{p}_{3}, u\right)
\end{aligned}
$$

$$
\vec{S}_{0}=\operatorname{Lerp}\left(\vec{v}_{0}, \vec{v}, u\right)
$$

$$
\widetilde{S}_{1}=\operatorname{levp}\left(\vec{v}_{1}, \vec{r}_{2}, u\right)
$$

$$
\vec{t}_{0}=\operatorname{lerp}\left(\tilde{s}_{0}, \tilde{s}_{1}, u\right)
$$

Theorem t_{0} is a furctien of w. And $t_{0}=\vec{q}(u)$.

Example

$$
\left.\begin{array}{lll}
q(1 / 2)=? & \overrightarrow{v_{0}}=\langle 1 / 2,1 / 2\rangle & \overrightarrow{s_{0}}=\left\langle\frac{5}{4}, \frac{3}{4}\right\rangle \\
q(1 / 2)=\left\langle\frac{15}{8}, \frac{3}{4}\right\rangle & \vec{v}_{1}=\langle 2,1\rangle & \vec{r}_{2}=\langle 3,12\rangle
\end{array} \quad \vec{s}_{0}=\left\langle\frac{5}{2}, \frac{3}{4}\right\rangle, \frac{3}{4}\right\rangle
$$

Theorem Let $\vec{q}_{0}(a)=\vec{g}(\alpha u)$, for $u \in\{0,1\rangle$ Think $\alpha=1 / s$ or $\alpha=1 / 2$
$\vec{q}_{1}(u)=\vec{q}((1-\alpha) u+\alpha)$, for $u \in(0,1]$
be the fint α-fraction of $\vec{g}(0)$ and the $(1-\alpha)$-frock of $\vec{g}(u)$
Then: $\vec{g}_{0}(a)$ is Degree 3 Bezier carve wite cantor ports $\tilde{p}_{0}, \tilde{r}_{0}, \vec{s}_{0}, \vec{T}_{0}$.
and $\vec{q}_{1}(\iota)$ is the degree 3 Bezier carve with control point $\vec{t}_{0}, \vec{r}_{1}, \vec{r}_{2}, \vec{p}_{3}$
Recursive Subdivisiai-Con apply repeated to a curve, wind/ th subcurves
are nearly storajint.

Applications. Robust meth ed of calculaxy $\bar{\delta}(\infty)$

- Subdivide recursively do approximate bs straight lines
- Exploit convex hall property.

Note For $\vec{u} \in[0,1]$ and

$$
B_{0}(n), B_{1}(n), B_{2}(n), B_{3}(n) \in[0,1]
$$

$$
B_{0}(u)+B_{1}(u)+B_{2}(u)+B_{3}(u)=1
$$

(Easy to check)
So $\vec{q}(u)$ is a weighted average of $\vec{p}_{0}, \vec{p}_{1}, \vec{p}_{2}, \vec{P}_{3}$ for $u \in[0,1]$
In fact $\vec{g}(n)$ or affine combination of $\vec{p}_{0}, \vec{p}_{1}, \vec{p}_{2}, \vec{P}_{B}$ for all n.

Defuntin A setS in \mathbb{R}^{k} is convex if it is "closed under line segments; noe. if $\vec{p}, \vec{q} \in S$ and $\alpha \in[0,1]$, meas $\operatorname{lerp}(\vec{p}, \vec{g}, \alpha) \in S$.

Connery

Theorem: If Sin convex, any weighted average of member of S is also $\mathrm{m} S$.

Definition the convexhull of a set S is the smallest convex Set containing S.

Theorem Far $u \in[0,1], \vec{g}$-a degree 3 Bearer cares $\vec{g}(u)$ is in the convex hall of its control points.

As recursively subdivide, the convex hulk of the control points get closer to lying on a line
cur $\frac{8}{8}(r)$ - lines in the
caver Ines in the of the first facer point
caver hull of circled in real

Bezier canes under affine tranefurmatios,
Recall $\vec{g}(u)$ is an affine combination of $\vec{p}_{0}, \vec{p}_{1}, \vec{p}_{2}, \vec{\beta}$
Helpful principle = Let A be an affine transformation
Form $A(\vec{g} / n))$ as a new carve.
$A(g(a))_{1}$ isth degree 3 Bezier curve with cantolyoint

$$
A(\vec{p}), A\left(\vec{p}_{1}\right), A\left(\vec{p}_{2}\right), A\left(\vec{p}_{3}\right) .
$$

Proof ir based on: Let \vec{x} be an affine cmbinatic

$$
\bar{x}=\sum \alpha_{i} \vec{y}_{i} \quad \text { of } \vec{y}_{1} . . \quad \bar{y}_{k} \quad \alpha_{1}+\alpha_{2}+\alpha \alpha_{k}=1
$$

Let A be an affine traustormal.

$$
\left.A(\vec{x})=A \mid \sum \alpha_{1} \vec{y}_{i}\right)=\sum \alpha_{i} A\left(\vec{y}_{i}\right)
$$

$$
12 x=10
$$, mapurant)

Proof of this last claim:
Let $A(\vec{x})=B(\vec{x})+\overrightarrow{4} \quad B-$ s linear

$$
\begin{aligned}
A\left(\sum \alpha_{i} \vec{y}_{i}\right) & =B\left(\sum \alpha_{i} \vec{y}_{i}\right)+\vec{A} \\
& =B\left(\sum \alpha_{i} \vec{y}_{i}\right)+\sum \alpha_{1} \vec{t} \quad \text { Since } \sum \alpha_{i}=1 \\
& =\sum \alpha_{i} B\left(\vec{y}_{i}\right)+\sum \alpha_{i} \overrightarrow{7} \quad \text { Bis lin ea } \\
& \left.=\sum \alpha_{i}\left(B \mid y_{i}\right)+\vec{t}\right)=\sum \alpha_{i} A\left(\vec{y}_{i}\right)
\end{aligned}
$$

Lifting a degree 2 Bezier cure to a degree 3 Bearer carve

Recall a degree 2 Bézrer carve has

$$
\begin{aligned}
& \vec{q}(u)=(1-u)^{2} \vec{p}_{0}+2 u(1-w) \vec{p}_{1}+u^{2} \vec{p}_{2} \\
& \vec{q}(u)=\vec{p}_{0} \quad \vec{q}^{\prime}(0)=2\left(\vec{p}_{1}-\vec{p}_{0}\right) \\
& \vec{q}(1)=\vec{p}_{2} \quad \vec{p}_{1}^{\prime}
\end{aligned}
$$

Lets find $\vec{p}_{0}^{*}, \vec{p}_{1}^{*}, \vec{p}_{2}^{*}, \vec{p}_{3}^{*}$ that defoe g as a degree 3 Bearer curve.

Use $\quad \vec{p}_{0}^{*}=\vec{p}_{0} \quad$ Since $z^{\prime}(0)=\vec{p}_{0}$.

$$
\begin{aligned}
& p_{3}^{*}=\vec{p}_{2} \\
& \vec{p}_{1}^{*}=\vec{p}_{0}^{*}+\frac{1}{3}\left(2\left(\vec{p}_{1}-\vec{p}_{0}\right)\right)= \quad p_{0}+\frac{\varepsilon}{3}(1)=\vec{p}_{2} \\
&\left.=\frac{1}{3} \vec{p}_{0}+\frac{2}{3} \vec{p}_{0}\right)=\operatorname{lerp}\left(\vec{p}_{0}, \vec{p}_{1}, \frac{2}{3}\right) \\
& \vec{p}_{2}^{+}=\operatorname{lev}\left(\vec{p}_{2}, \vec{p}_{1}, 2,3\right)=\operatorname{lerp}\left(\vec{p}_{1}, \vec{p}_{2}, \frac{1}{3}\right)
\end{aligned}
$$

