Deguee 3 Bezier carre - Exarple
A particle starts at $\langle 0,0\rangle \in \mathbb{R}^{2}$ with velucity $\langle 3,0\rangle$ at time $u=0$, endsup at $\langle 3,3\rangle$ with veleery $\langle 3,3\rangle$ at time $u=1$. If is follung a degree 3 cauve.
Give a degree 3 Berier that desenbes th metion of the particle, - By specifying its 4 cantrol puint

$$
\begin{align*}
& \vec{p}_{0}=\langle 0,0\rangle \\
& \vec{p}_{1}=\langle 1,0\rangle \\
& \vec{p}_{2}=\langle 2,2\rangle \\
& \vec{p}_{3}=\langle 3,3\rangle
\end{align*}
$$

$$
p_{2}=p_{3}
$$

$$
3\left(\vec{p}_{1}-\vec{p}_{0}\right)=\left(\text { intral reluc }^{2}(x):\langle 3,0\rangle\right.
$$

$$
\begin{aligned}
3\left(P_{3}-P_{2}\right) & =(\text { find } \text { velued) } \\
\left(P_{3}-P_{2}\right) & =\langle 3,3) \\
& =\langle 1,1\rangle)
\end{aligned}
$$

So

$$
\begin{aligned}
\vec{g}(u)=(1-u)^{3}\langle 0,0\rangle+3 u(1-u)^{2}\langle 1,0\rangle & +3 u^{2}(1-u)\langle 2,2\rangle \\
& +u^{3}\langle 3,3\rangle \\
= & \underbrace{\left\langle u(1-u)^{2}+3 u^{2}(1-u) 2+3 u^{3}\right.}_{x(u)}, \underbrace{\left.3 u^{2}(1-u) \cdot 2+3 u^{3}\right\rangle}_{y(a)}
\end{aligned}
$$

Both degree 3 polynomials,
Definition: A degree d polynomial curve in \mathbb{R}^{k} is a function of the form

$$
\vec{q}(n)=\left\langle q_{1}(n), q_{2}(n), \ldots, q_{k}(n)\right\rangle
$$

where each $g_{i}(a)$ is a polynomial of degree $\leq d$.

Theorem (3) Every degree 2 (respectively, 3) Bearer curve is a degree 2 (respectively 3) polynomial curve.

- Conversely, ency degree 2 (resp. 3) polynomid pareve is a degree 2 (resp. 3) Bezier curve.
Example Define $\vec{g}(u)=\left\langle 2 u, 4 u^{2}\right\rangle$, for $u \in[0,1]$.

$$
\begin{aligned}
& \vec{g}(0)=(0,0) \\
& \overrightarrow{8}(1)=\langle 2,4\rangle \\
& \text { Problem } \\
& \text { a degree } \\
& 2 \text { Beer } \\
& \text { carry }
\end{aligned}
$$

$$
\left.\begin{array}{ll}
2\left(\vec{p}_{1}-\vec{p}_{0}\right)=\vec{q}^{\prime}(0) \\
2\left(\vec{p}_{2}-\vec{p}_{1}\right)=\vec{q}^{\prime}(1)
\end{array}\right\} \begin{array}{ll}
\vec{p}_{1}=\langle 1,0\rangle & p_{1}-p_{2}=\langle 1,0\rangle \\
\begin{array}{l}
\vec{p}_{1} \text { is the wigue print } \\
\text { at the intersection of the tangent liner }
\end{array} & p_{3}-p_{2}=\langle 1, y\rangle
\end{array}
$$

Continuing the example - express $\vec{g}(c)$ as a degree 3
Bearer curve, wi th control points $\vec{r}_{0}, \vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}$
To lift a degree 2 Bezier to a degree 3 Bezier are

$$
\begin{array}{ll}
\vec{r}_{0}=\vec{p}_{0} & \vec{r}_{1}=\operatorname{levp}\left(\vec{p}_{0}, \vec{p}_{1}, \frac{2}{3}\right) \\
\vec{r}_{3}=\vec{p}_{2} & \vec{r}_{2}=\operatorname{lerp}\left(\vec{p}_{2}, \vec{p}_{1}, \frac{2}{3}\right)=\operatorname{levp}\left(\vec{p}_{1}, \vec{p}_{c}, 1 / 3\right) \\
\vec{r}_{1}=\frac{2}{3}\langle 1,0\rangle=\left\langle\frac{2}{3}, 0\right\rangle & p_{0}=r_{0} \\
\vec{r}_{1}=\frac{1}{3}\langle 2,4\rangle+\frac{2}{3}\langle 1,0\rangle=\left\langle\frac{4}{3}, \frac{4}{3}\right\rangle & p_{2}=r_{1}
\end{array}
$$

Drawing circuilar acs w/ degree 2 Bézier an homegeneous courdinates.

Lift to a degree 3 Bevier carve, with control pounts $\vec{r}_{3}, \vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}$

$$
\begin{aligned}
\vec{r}_{0}=\vec{p}_{0} \quad \overrightarrow{r_{3}}=\vec{p}_{2} \quad \overrightarrow{r_{1}} & =\operatorname{levp}\left(p_{j}, p_{1}, 2(3)=\right. \\
& =\frac{1}{3}\langle 0,1,1\rangle+\frac{2}{3}\langle 1,0,0\rangle \\
& =\left\langle\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right\rangle \quad \text { repre sents }\langle 2,1\rangle \in \mathbb{R}^{2}
\end{aligned}
$$

Likecase $\stackrel{1}{r}_{2}=\operatorname{lerp}\left(p_{2}, p, 2 / 3\right)=\left\langle\frac{2}{3}, \frac{-1}{3}, \frac{1}{3}\right)$, repvesentr $\begin{gathered}\text { (2,-1 }\end{gathered}$
 $\langle 2,-1\rangle$

Why is $\langle 1,0,0\rangle$ a port at infinity?
Think of the limit of

$$
\langle 1,0,1\rangle,\left\langle 1,0, \frac{1}{2}\right\rangle,\langle 1,0,1 / 3\rangle,\langle 1,0,1 / 4\rangle \ldots\langle 1,0,1 / n\rangle \ldots
$$

seems to converge to $\langle 1,0,0\rangle$
They represent $\langle 1,0\rangle,\langle 2,0\rangle,\langle 3,0\rangle,\langle 4,0\rangle \ldots\langle n, 0\rangle \ldots$ which could reasmbly be sid to connery $\downarrow \sim c$ point at infriot.
(Note $\langle-1,0,0)$ is the some how a different of the same pout at in finis)

This $\vec{p}_{0}, \vec{n}_{1} \vec{p}_{2}$ defines an ellipse of radius 2 in x-direction and radius 1 in th y-directer.
Multiplying the arigind semicirde by the affine frarstor nation $S_{\langle 2,1,1\rangle}=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & j & 1\end{array}\right)$. old caitiol point $\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)$

$$
\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & j & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \quad\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
j & j & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right) \quad\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
-1 \\
-1
\end{array}\right)
$$

What the canto points to this semicircle?
Trauskicion $\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right)=T_{(2,2 s}$

$$
\begin{aligned}
& T_{\langle 2,2)}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right)=\vec{S}_{0} \quad T_{(2,2)}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\overrightarrow{S_{1}} \\
& T_{(2,2)}\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)=\vec{s}_{2}
\end{aligned}
$$

Similar construction work for all conic sections. using ration Bezier curves (ration splines)

Piece-wise Bezier curves

Combining 2 came 5 to waler a single

2 common goals:
(1) Carve is continuous.

Let $\vec{g}(\omega)= \begin{cases}q_{1}(u) & \text { if } u \in\{a 1\} \\ \left.q_{2} / n-1\right) & \text { if } u \in[1,2\}\end{cases}$
Si $\vec{g}(r)$ has olomein $[0,2]$.
Need $\vec{p}_{3}=\vec{V}_{\delta}$ for continuity
(2) C^{\prime}-continuity continuous $1^{\text {sT }}$-derivativity

Need $\bar{\sigma}^{\prime}(1)=\bar{q}_{2}^{\prime}(0)$

$$
\begin{aligned}
3\left(\vec{p}_{3}-\vec{p}_{2}\right) & =3\left(\vec{r}_{1}-\vec{r}_{0}\right) \\
\vec{p}_{3}-\vec{p}_{2} & =\vec{r}_{1}-\vec{r}_{0}
\end{aligned}
$$

$\bar{r}_{0}=\vec{p}_{3}$ is the midpoint of \bar{p}_{2} and \bar{v}_{1}
or I $^{\prime}$) G'-continuits - Geanetrie continuity (of jot dervintal Ending slope of g, is equal to the starting slope of \bar{g}_{2}
For this $\vec{p}_{3}-\vec{p}_{2}=\alpha \cdot\left(\vec{r}_{1}-\vec{r}_{0}\right)$ for sure $\alpha>0$.
is sufficient

