Name: PID: Answer Key

1. These questions concern composition of the transformations $R_{\pi / 3,-\mathbf{k}}$ and $T_{\mathbf{i}}$. (Note the minus sign on the " $-\mathbf{k}$ " in the subscript.)
(a) Give the 4×4 matrix that represents $T_{\mathbf{i}} \circ R_{\pi / 3,-\mathbf{k}}$ over homogeneous coordinates.

$$
\begin{aligned}
& T_{i}\left(R_{\pi / 3},-k\right. \\
& \left.R_{\pi / 3},-\overline{0} \text { o the same }\right)=\binom{1}{0}
\end{aligned}
$$

$$
\operatorname{sis}-\frac{\pi}{3}, \vec{k}
$$

(b) Give the 4×4 matrix that represents $R_{\pi / 3,-\mathbf{k}} \circ T_{\mathbf{i}}$ over homogeneous coordinates.

$$
\left(\begin{array}{cccc}
1 / 2 & \sqrt{3} / 2 & 0 & 1 / 2 \\
-\sqrt{3} / 2 & 1 / 2 & 0 & -\frac{\sqrt{2}}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

