Name:

PID:

1. Recall that $\mathbf{k} = \langle 0, 0, 1 \rangle$. Also, \mathbf{k}^{T} is the transpose of \mathbf{k} . Give explicitly the 3 × 3 matrices that represent the following four linear maps on \mathbb{R}^3 .

(a) $\mathbf{x} \mapsto \operatorname{Proj}_{\mathbf{k}}(\mathbf{x}) = (\mathbf{k} \mathbf{k}^{\mathrm{T}})\mathbf{x}$. (The projection of \mathbf{x} onto \mathbf{k} .)

(b) $\mathbf{x} \mapsto \mathbf{x} - (\mathbf{k} \mathbf{k}^T) \mathbf{x}$. (The component of of \mathbf{x} perpendicular to \mathbf{k} .)

(c) $\mathbf{x} \mapsto \mathbf{x} \times \mathbf{k}$.

(d) $x \mapsto k \times (x \times k)$.