Name:

PID:

1. A light source is placed at $\langle -9, 0, 0 \rangle$ and it casts shadows onto the plane P defined by x = 3. The x = 3 plane is parallel to the yz-plane and acts like an infinite wall.

When $\langle x, y, z \rangle$ is a point in \mathbb{R}^3 with $-9 < x \le 3$, define $A(\langle x, y, z \rangle)$ to be the position of the shadow of the point on the *yz*-plane. For example, $A(\langle -3, 2, 1 \rangle) = \langle 3, 4, 2 \rangle$, and $A(\langle -6, 2, 1 \rangle) = \langle 3, 8, 4 \rangle$.

(a) Working in ordinary coordinates (not homogeneous) give the formula expressing the mapping $A(\langle x, y, z \rangle) = \langle x', y', z' \rangle$. That is, give formulas for x', y', z' in terms of x, y, z.

(b) Give a 4×4 -matrix that represents the transformation A over homogeneous coordinates.