Name:
PID:

1. A light source is placed at $\langle-9,0,0\rangle$ and it casts shadows onto the plane P defined by $x=3$. The $x=3$ plane is parallel to the $y z$-plane and acts like an infinite wall.

When $\langle x, y, z\rangle$ is a point in \mathbb{R}^{3} with $-9<x \leq 3$, define $A(\langle x, y, z\rangle)$ to be the position of the shadow of the point on the $y z$-plane. For example, $A(\langle-3,2,1\rangle)=\langle 3,4,2\rangle$, and $A(\langle-6,2,1\rangle)=\langle 3,6,3\rangle$.
(a) Working in ordinary coordinates (not homogeneous) give the formula expressing the mapping $A(\langle x, y, z\rangle)=\left\langle x^{\prime}, y^{\prime}, z^{\prime}\right\rangle$. That is, give formulas for $x^{\prime}, y^{\prime}, z^{\prime}$ in terms of x, y, z.

$$
\begin{aligned}
x^{\prime} & =3 \\
y^{\prime} & =\frac{12 y}{x+9} \\
z^{\prime} & =\frac{12 z}{x+9} \\
\langle x, y, z\rangle & \mapsto\left\langle 3, \frac{12 \cdot y}{x+9}, \frac{12 \cdot z}{x+9}\right\rangle
\end{aligned}
$$

(b) Give a 4×4-matrix that represents the transformation A over homogeneous coordinates.

$$
\langle x, y, 2,1\rangle \mapsto\langle 3 x+27,12 \cdot y, 12 \cdot 2, x+9\rangle
$$

