Math 155A - Fall 2022-Quiz \#10-October 27

Name:

PID:

1. A cone \mathcal{C} is defined by $y=2 \sqrt{x^{2}+z^{2}}$, so that it is centered around the positive y-axis. It can equivalently be defined as

$$
\mathcal{C}=\left\{\left\langle y^{2}=x^{2}+z^{2}\right\rangle: y \geq 0\right\} .
$$

Suppose $\langle x, y, z\rangle$ lies on \mathcal{C}. Give a formula for a normal vector (not necessarily a unit vector) at $\langle x, y, z\rangle$ on C. Choose the direction of the normal vector to point outward from the cone, i.e., away from the y-axis and somewhat downward.
2. A parametric surface is defined by $\mathbf{f}(u, v)=\langle u, u v, v\rangle$. Give a formula for a normal vector at the point $\mathbf{f}(u, v)$. Your answer does not need to be a unit vector.

