Name: Ρ

1. A cone C is defined by $y = 2\sqrt{x^2 + z^2}$, so that it is centered around the positive y-axis. It can equivalently be defined as

$$\mathcal{C} = \{ \langle y^2 = x^2 + z^2 \rangle : y \ge 0 \}.$$

Suppose $\langle x, y, z \rangle$ lies on \mathcal{C} . Give a formula for a normal vector (not necessarily a unit vector) at $\langle x, y, z \rangle$ on C. Choose the direction of the normal vector to point outward from the cone, i.e., away from the *y*-axis and somewhat downward.

W

2. A parametric surface is defined by $\mathbf{f}(u, v) = \langle u, uv, v \rangle$. Give a formula for a normal vector at the point f(u, v). Your answer does not need to be a unit vector.

Answers
$$\langle V, -1, u \rangle$$
 e or any non-zero multiple
 $\frac{\partial f}{\partial u} = \langle 1, V, 0 \rangle$ $\frac{\partial f}{\partial v} = \langle 0, u, 1 \rangle$