Name:

PID:

1. Let f be the linear transformation of \mathbb{R}^2 defined by

$$f(\langle x, y \rangle) = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Suppose $\mathbf{p} = (0,3)$ and that (2,-1) is normal to \mathcal{C} at \mathbf{p} . Give a vector \mathbf{m} that is normal to the point $f(\mathbf{p})$ on the transformed curve $f(\mathcal{C})$. (It does not need to be a unit vector.)

$$\begin{pmatrix} M^{-1} \end{pmatrix}^{T} = \begin{pmatrix} 1/2 & -1/6 \\ 0 & 1/3 \end{pmatrix}$$

$$\vec{m} = \begin{pmatrix} 1/2 & -1/6 \\ 0 & 1/3 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 7/6 \\ -1/3 \end{pmatrix}$$

2. Now let g be the affine transformation of \mathbb{R}^2 defined by

$$f(\langle x, y \rangle) = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

(So g is the composition of f and a translation.) Again suppose $\mathbf{p} = \langle 0, 3 \rangle$ lies on a curve \mathcal{C} and that $\langle 2, -1 \rangle$ is normal to \mathcal{C} at \mathbf{p} . Give a vector \mathbf{m} that is normal to the point $g(\mathbf{p})$ on the transformed curve $f(\mathcal{C})$.

Translations do not affect normals

$$\vec{m} = \begin{pmatrix} 7/_6 \\ -1/_3 \end{pmatrix}$$