Name:
PID:

1. Let f be the linear transformation of \mathbb{R}^{2} defined by

$$
f(\langle x, y\rangle)=\left(\begin{array}{ll}
2 & 0 \\
1 & 3
\end{array}\right)\binom{x}{y}
$$

Suppose $\mathbf{p}=\langle 0,3\rangle$ and that $\langle 2,-1\rangle$ is normal to \mathcal{C} at \mathbf{p}. Give a vector \mathbf{m} that is normal to the point $f(\mathbf{p})$ on the transformed curve $f(\mathcal{C})$. (It does not need to be a unit vector.)

$$
\begin{gathered}
\left(M^{-1}\right)^{\top}=\left(\begin{array}{cc}
1 / 2 & -1 / 6 \\
0 & 1 / 3
\end{array}\right) \\
\vec{m}=\left(\begin{array}{cc}
1 / 2 & -1 / 6 \\
0 & 1 / 3
\end{array}\right)\binom{2}{-1}=\binom{7 / 6}{-1 / 3}
\end{gathered}
$$

2. Now let g be the affine transformation of \mathbb{R}^{2} defined by

$$
f(\langle x, y\rangle)=\left(\begin{array}{ll}
2 & 0 \\
1 & 3
\end{array}\right)\binom{x}{y}+\binom{0}{2}
$$

(So g is the composition of f and a translation.) Again suppose $\mathbf{p}=\langle 0,3\rangle$ lies on a curve \mathcal{C} and that $\langle 2,-1\rangle$ is normal to \mathcal{C} at \mathbf{p}. Give a vector \mathbf{m} that is normal to the point $g(\mathbf{p})$ on the transformed curve $f(\mathcal{C})$.
Translations do not affect normals

$$
\vec{m}=\binom{7 / 6}{-1 / 3}
$$

