Math 155A - Fall 2022- Quiz \#12 - November 3
Name: Answer Key PID:

1. For all questions on this quiz, let $\mathbf{x}=\langle 1,0,0\rangle$ and $\mathbf{y}=\langle 1,2,3\rangle$.
(a) What is $\operatorname{Lerp}\left(\mathbf{x}, \mathbf{y}, \frac{1}{3}\right)$ equal to?

$$
\left\langle 1, \frac{2}{3}, 1\right\rangle
$$

(b) What is $\operatorname{Lerp}\left(\mathbf{y}, \mathbf{x}, \frac{1}{3}\right)$ equal to? (note the reversed order of arguments)

$$
\left\langle 1, \frac{4}{3}, 2\right\rangle
$$

(c) What is $\operatorname{Lerp}(\mathbf{x}, \mathbf{y},-2)$ equal to?

$$
\langle 1,-4,-6\rangle
$$

2. Let \mathbf{x} and \mathbf{y} be as above. What is the point \mathbf{v} on the line containing \mathbf{x} and \mathbf{y} that is closest to the point $\mathbf{w}=\langle 1,2,0\rangle$? For what value α is $\mathbf{v}=\operatorname{Lerp}(\mathbf{x}, \mathbf{y}, \alpha)$?

$$
\begin{aligned}
& \alpha=\frac{(\vec{v}-\bar{x}) \cdot(\vec{y}-\vec{x})}{(\vec{y}-\vec{x}) \cdot(y-\vec{x})}=\frac{4}{13} \\
& \vec{v}=\left\langle 1, \frac{4}{13}, \frac{8}{13}\right\rangle
\end{aligned}
$$

