Name:

PID:
Bilinear interpolation is used to define a surface $\mathbf{u}(\alpha, \beta)$ from four points $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w}$ in \mathbb{R}^{2}. E.g., $\mathbf{u}(0,0)=\mathbf{x}$ and $\mathbf{u}(0,1)=\mathbf{w}$.

1. What are the values of
(a) $\mathbf{u}(1,0)$?
(b) $\mathbf{u}\left(0, \frac{1}{2}\right)$?
(c) $\mathbf{u}\left(1, \frac{1}{2}\right)$?
(d) $\mathbf{u}\left(\frac{1}{2}, \frac{1}{2}\right) ?$
2. Fill in the six blanks with α or β so as to give two formulas that correctly define $\mathbf{u}(\alpha, \beta)$.
(a) $\mathbf{u}(\alpha, \beta)=\operatorname{Lerp}(\operatorname{Lerp}(\mathbf{x}, \mathbf{y}$, \qquad $), \operatorname{Lerp}(\mathbf{w}, \mathbf{z}$, \qquad), \qquad).
(b) $\mathbf{u}(\alpha, \beta)=\operatorname{Lerp}(\operatorname{Lerp}(\mathbf{x}, \mathbf{w}$, \qquad $), \operatorname{Lerp}(\mathbf{y}, \mathbf{z}$, \qquad), \qquad).
3. For $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w}$ as in problem 1, what are the values of
(a) $\frac{\partial \mathbf{u}}{\partial \alpha}\left(\frac{1}{2}, 0\right)$?
(b) $\frac{\partial \mathbf{u}}{\partial \beta}\left(\frac{1}{2}, 0\right)$?
