Name:

PID:

Bilinear interpolation is used to define a surface $\mathbf{u}(\alpha, \beta)$ from four points $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w}$ in \mathbb{R}^2 . E.g., $\mathbf{u}(0,0) = \mathbf{x}$ and $\mathbf{u}(0,1) = \mathbf{w}$.

- **1.** What are the values of
 - (a) u(1,0)?
 - (b) $\mathbf{u}(0,\frac{1}{2})?$
 - (c) $\mathbf{u}(1,\frac{1}{2})?$
 - (d) $\mathbf{u}(\frac{1}{2}, \frac{1}{2})?$
- **2.** Fill in the six blanks with α or β so as to give two formulas that correctly define $\mathbf{u}(\alpha, \beta)$.
 - (a) $\mathbf{u}(\alpha,\beta) = Lerp(Lerp(\mathbf{x},\mathbf{y},\underline{}), Lerp(\mathbf{w},\mathbf{z},\underline{}),\underline{}).$
 - (b) $\mathbf{u}(\alpha,\beta) = Lerp(Lerp(\mathbf{x},\mathbf{w},\underline{\ }),Lerp(\mathbf{y},\mathbf{z},\underline{\ }),\underline{\ }).$
- **3.** For $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w}$ as in problem 1, what are the values of
 - (a) $\frac{\partial \mathbf{u}}{\partial \alpha}(\frac{1}{2},0)$?
 - (b) $\frac{\partial \mathbf{u}}{\partial \beta}(\frac{1}{2},0)$?