Name:

PID:

1. Let $\mathbf{x} = \langle -2, 0, 4 \rangle$ and $\mathbf{y} = \langle 4, 6, -2 \rangle$ be points in \mathbb{R}^3 . Let $\mathbf{u} = \langle -4, 0, 8, 2 \rangle$ and $\mathbf{v} = \langle 12, 18, -6, 3 \rangle$ be homogeneous representations of \mathbf{x} and \mathbf{y} (respectively). Find scalars α and β so that $\alpha + \beta = 1$ and so that $\mathbf{w} = \alpha \mathbf{u} + \beta \mathbf{v}$ is a homogeneous representation of the midpoint of \mathbf{x} and \mathbf{y} . In other words, \mathbf{w} is an affine combination of \mathbf{u} and \mathbf{v} , and a homogeneous representation of $\frac{1}{2}(\mathbf{x} + \mathbf{y})$.

2. A triangle in \mathbb{R}^2 has three vertices $\mathbf{x} = \langle 0, 0 \rangle$, $\mathbf{y} = \langle 3, 3 \rangle$ and $\mathbf{z} = \langle 6, 0 \rangle$. The point $\mathbf{a} = \langle 3, 1 \rangle$ has barycentric coordinates $\alpha = \frac{1}{3}$, $\beta = \frac{1}{3}$, and $\gamma = \frac{1}{3}$.

Let $\mathbf{u} = \langle 2\mathbf{x}; 2 \rangle$, $\mathbf{v} = \langle \mathbf{y}; 1 \rangle$ and $\mathbf{w} = \langle 2\mathbf{z}; 2 \rangle$ be homogeneous representations of \mathbf{x} , \mathbf{y} and \mathbf{z} , respectively.

Find values α', β', γ' so that the affine combination $\alpha' \mathbf{u} + \beta' \mathbf{v} + \gamma' \mathbf{w}$ is a homogeneous representation of \mathbf{u} .