Math 155A - Fall 2022 - Quiz \#15 - November 22
Name: Answer Key

1. Let $\mathbf{x}=\langle-2,0,4\rangle$ and $\mathbf{y}=\langle 4,6,-2\rangle$ be points in \mathbb{R}^{3}. Let $\mathbf{u}=\langle-4,0,8,2\rangle$ and $\mathbf{v}=\langle 12,18,-6,3\rangle$ be homogeneous representions of \mathbf{x} and \mathbf{y} (respectively). Find scalars α and β so that $\alpha+\beta=1$ and so that $\mathbf{w}=\alpha \mathbf{u}+\beta \mathbf{v}$ is a homogeneous representation of the midpoint of \mathbf{x} and \mathbf{y}. In other words, \mathbf{w} is an affine combination of \mathbf{u} and \mathbf{v}, and a homogeneous representation of $\frac{1}{2}(\mathbf{x}+\mathbf{y})$.

$$
\begin{aligned}
& \qquad \alpha=\frac{3}{5}, \beta=\frac{2}{5} \\
& \text { (To solve then, just pay attention to } \\
& \text { the weights } 2 \text { and } 3 \text { of } \vec{u} \text { and } \vec{v} \text {. } \\
& \text { Need } \alpha \approx \frac{1}{3}, \beta \alpha \frac{1}{3} \text { and } \alpha+\beta=1 \text { ".) }
\end{aligned}
$$

2. A triangle in \mathbb{R}^{2} has three vertices $\mathbf{x}=\langle 0,0\rangle, \mathbf{y}=\langle 3,3\rangle$ and $\mathbf{z}=\langle 6,0\rangle$. The point $\mathbf{a}=\langle 3,1\rangle$ has barycentric coordinates $\alpha=\frac{1}{3}, \beta=\frac{1}{3}$, and $\gamma=\frac{1}{3}$.

Let $\mathbf{u}=\langle 2 \mathbf{x} ; 2\rangle, \mathbf{v}=\langle\mathbf{y} ; 1\rangle$ and $\mathbf{w}=\langle 2 \mathbf{z} ; 2\rangle$ be homogeneous representations of \mathbf{x}, \mathbf{y} and \mathbf{z}, respectively.

Find values $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ so that the affine combination $\alpha^{\prime} \mathbf{u}+\beta^{\prime} \mathbf{v}+\gamma^{\prime} \mathbf{w}$ is a homogeneous representalion of \mathbf{u}.

$$
\alpha^{\prime}=\frac{1}{4}, \beta^{\prime}=\frac{2}{4}, \gamma^{\prime}=\frac{1}{4} .
$$

This was easy to solve since $\alpha=\beta=\gamma=1 / 3$.

$$
\text { Need } \quad \alpha^{\prime}=\frac{\alpha / \omega_{x}}{\alpha / \omega_{x}+\beta / \omega_{y}+\gamma / \omega_{z}}
$$

where $\omega_{x}, \omega_{y}, \omega_{z}$ and the wieght of $\omega_{x}, \omega_{y}, \omega_{z}$ Alternatively: $\alpha^{\prime} \alpha \alpha / \omega_{x} \beta^{\prime} \propto \beta / \omega_{y}, \gamma^{\prime} \alpha \gamma / \omega_{z}$.

