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Abstract
The bounded arithmetic theory S2 is finitely axiomatized if and

only if the polynomial hierarchy provably collapses. If T i
2 equals Si+1

2

then T i
2 is equal to S2 and proves that the polynomial time hierarchy

collapses to Σp
i+3 , and, in fact, to the Boolean hierarchy over Σp

i+2

and to Σp
i+1/poly .

1 Introduction

Theories of bounded arithmetic are theories of arithmetic obtained by putting

restrictions on induction axioms; namely, allowing induction only for certain

classes, Σb
i , of bounded formulas, and using polynomial, or length, induction

(PIND or LIND) in place of successor induction (IND). The most important

subtheories of bounded arithmetic are the theories Si
2 , axiomatized with Σb

i -

PIND (or equivalently, Σb
i -LIND, if i ≥ 1), and the theories T i

2 , axiomatized

by Σb
i -IND. The following inclusions are known for these theories:

S0
2 ( T 0

2 ⊆ S1
2 ⊆ T 1

2 ⊆ S2
2 ⊆ T 2

2 ⊆ · · ·
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and their union is the theory S2 = T2 [1]. However, with the exception

of S0
2 6= T 0

2 (see [13]), it is not known whether the rest of the theories of

bounded arithmetic are distinct. It is a well-known fact that Si
2 and T i

2 are

finitely axiomatized for i > 0, and thus it is immediate that this hierarchy

of theories collapses if and only if S2 is finitely axiomatized. This latter

condition is equivalent to I∆0 +Ω1 being finitely axiomatized (see Parikh [11]

and Wilkie-Paris [14] for this alternate, and original, approach to bounded

arithmetic).

There are close connections between theories of bounded arithmetic and

the polynomial hierarchy. First, the class of predicates definable by Σb
i

(or Πb
i ) formulas is precisely the class of predicates in the i-th level Σp

i (or

Πp
i , respectively) of the polynomial hierarchy. For instance, S1

2 and T 1
2 are

axiomatized with their induction axioms restricted to NP-predicates (since

NP = Σp
1 is the class of predicates definable by Σb

1 -formulas). Second, it is

known that the Σb
i -definable functions of Si

1 are precisely the p
i -functions,

which are the functions which are polynomial time computable with an oracle

for Σb
i−1 . For instance, the Σb

1 -definable functions of S1
2 are precisely the

polynomial time computable functions.

Since it is open whether the polynomial time hierarchy collapses, it is

natural to ask whether there is any connection between the possible collapses

of the hierarchy of bounded arithmetic theories and the polynomial hierarchy.

This question has already been partially answered by the work of Kraj́ıček-

Pudlák-Takeuti [10] who showed that if T i
2 = Si+1

2 for any i ≥ 1, then the

polynomial hierarchy collapses with Σp
i+2 = Πp

i+2 (in fact, they show that in

this case, Σp
i+1 ⊂ ∆p

i /poly ).

The main results of this paper strengthen the results of Kraj́ıček-Pudlák-

Takeuti by proving that if T i
2 = Si+1

2 holds, then the following conditions

must hold: (1) T i
2 = S2 , so that the hierarchy of bounded arithmetic theories

collapses, and (2) T i
2 can prove that the polynomial time hierarchy collapses to

B(Σp
i+2) and to Σp

i+1/poly , where B(Σp
i+2) is the class of Boolean combinations

of Σb
i+2 -predicates. Our proofs are easier, in a combinatorial sense, than the

proofs of [10] and this makes it possible to formalize them in T i
2 .

We believe that the results of this paper are nearly the strongest that are

obtainable relating the possibility that T i
2 = Si+1

2 to the possible collapse of
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the polynomial time hierarchy — at least with current techniques. To support

this belief, consider the three conditions:

(α)The polynomial hierarchy collapses

(β)S2 proves that the polynomial hierarchy collapses

(γ)S2 is finitely axiomatized

Our results show that (β) and (γ) are equivalent; however, we do not expect

to show that (α) is equivalent to (γ) using current techniques. The reason

for this is that (α) is a Σ0
2 -condition whereas, since (β) is a Σ0

1 -condition,

the results of the current paper show that (γ) is a Σ0
1 -condition; and, based

on the history of attempts to solve the P versus NP problem, it seems to be

difficult even to establish that the collapse of the polynomial time hierarchy

is equivalent to a natural Σ0
1 -condition like (γ).

It is known that Si+1
2 is conservative over T i

2 with respect to ∀Σb
i+1 -

sentences [2]. On the other hand, the axioms of Si+1
2 can be expressed

as ∀Πb
i+2 -sentences (in this formulation, an induction axiom of Si+1

2 will

become a ∀Πb
i+2 -formula with a sharply bounded existential quantifier in

its outermost block of bounded universal quantifiers). Thus saying Si+1
2 is

Πb
i+2 -conservative over T i

2 is equivalent to saying that Si+1
2 = T i

2 .

An open problem is to try to relate the condition Si
2 = T i

2 to the possible

collapse of the polynomial hierarchy. Kraj́ıček [9] shows that if Si
2 = T i

2 , then

the set ≤p
tt(Σ

p
i ) of predicates logspace, Turing reducible to Σp

i is equal to the

set ≤p
T (Σp

i ) of predicates polynomial time, Turing reducible to Σp
i . However, it

is open whether this last condition implies the polynomial hierarchy collapses.

See [5, 4, 6] for more on this connection.

The prerequisites for reading this paper are a basic knowledge of bounded

arithmetic theories as contained in [1]. The reader would also benefit from

knowledge of [10] and [2]. In the next section we will review the necessary

background material needed from [10].

After preparing the first draft of this paper, we learned that D. Zambella

has independently discovered the main results of this paper [15].
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2 The KPT Witnessing Theorem for T i
2

There are two important witnessing theorems for T i
2 . The first follows from

the ‘Main Theorem’ for Si+1
2 and the fact that Si+1

2 is Σb
i+1 -conservative

over T i
2 : this witnessing theorem states that the Σb

i+1 -definable functions

of T i
2 are precisely the functions which can be computed in polynomial time

with a Σb
i -oracle (i.e., the p

i+1 -functions). The second witnessing theorem

puts a necessary condition on the Σb
i+2 - and Σb

i+3 -definable functions of T i
2 ;

we call this the ‘KPT witnessing theorem’. It is this latter witnessing theorem

that we need for our proofs:

Theorem 1 Let i ≥ 1. Suppose T i
2 ` (∀x)(∃y)(∀z)B(x, y, z), where B is

a ∃Πb
i -formula, with only x, y, z as free variables. There exists k > 0 and

functions f1, . . . , fk such that each fm is m-ary and is Σb
i+1 -definable by T i

2

and such that

T i
2`B(a, f1(a), b1) ∨ B(a, f2(a, b1), b2) ∨ B(a, f3(a, b1, b2), b3) ∨ · · ·

· · · ∨ B(a, fk(a, b1, b2, . . . , bk−1), bk).

For i = 0, the same result holds for PV1 in place of T 0
2 . As usual, PV1

denotes the conservative extension of PV to first-order logic, or equivalently,

PV1 is S0
2 or T 0

2 enlarged to have function symbols and their defining equations

for all polynomial time functions.

Note that since the functions fm are Σb
i+1 -definable by T i

2 , they must be
p
i+1 -functions.

Theorem 1 is due to [10]; some later, related results can be found in

[8, 12, 3]. We do not include a proof here.

We next use Theorem 1 to establish a consequence of the condition

T i
2 = Si+1

2 . We assume that i ≥ 0 and work with the theory T i
2 ; when

i = 0 our results are intended to hold for PV1 in place of T 0
2 .

Definition A quantified Boolean formula is a formula constructed from

Boolean connectives (say, ∧ , ∨ and ¬) and quantifiers ranging over Boolean

values. A quantifier (∀p) or (∃p) indicates quantification allowing p to range

over the values True and False.
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Given a truth assignment to the free variables of a quantified Boolean formula,

it is obvious how the truth value of the formula should be defined. A quantified

Boolean formula is satisfiable if there is some truth assignment to its free

variables which gives it value True. A ΠB
i -formula is a quantified Boolean

formula which is in prenex form with i blocks of like quantifiers starting with

a universal block. It is well-known that the set of satisfiable ΠB
i -formulas is

Σp
i+1 -complete.

Definition Let i ≥ 0. TRUi and SATi are bounded arithmetic formulas

which express:

TRUi(ϕ,w)⇔ϕ codes a ΠB
i -formula and w codes a satisfying

assignment of ϕ

SATi(ϕ)⇔(∃w ≤ ϕ)TRUi(ϕ,w).

In the definition of TRUi and SATi we presume that quantified Boolean

formulas and truth assignments are coded in some natural and efficient way

by integers; we use Greek letters ϕ, . . . as variables that range over integers

which are intended to code quantified Boolean formulas. Since the code of

a truth assignment can w.l.o.g. always be less than the code of a formula,

SATi(ϕ) expresses the condition that ϕ is satisfiable. Standard bootstrapping

techniques allow TRUi to be a ∆b
i+1 -formula with respect to the theory T i

2 ;

in fact, for i ≥ 1, TRUi is a Πb
i -formula. Hence SATi is a Σb

i+1 -formula.

Also, T i
2 can prove basic properties of the TRUi and SATi predicates. Most

importantly, T i
2 can prove that SATi is many-one complete for Σb

i+1 -formulas;

i.e., for any Σb
i+1 -formula A(~b), there is a polynomial time function f so that

A(~b) is T i
2 -provably equivalent to SATi(f(~b)).

As an application of Theorem 1, consider the formula

∀〈ϕ0, . . . , ϕn〉(∃` ≤ n)(∃〈w0, . . . , w`〉) (1)
[
(∀j ≤ `)TRUi(ϕj, wj) ∧ (` < n → ¬(∃w`+1)TRUi(ϕ`+1, w`+1))

]
.

The meaning of formula (1) requires some explanation. First, a notation

like (∀〈ϕ0, . . . , ϕn〉)B(~ϕ, `) means the same as “there is an integer ϕ∗ which

codes a sequence of ΠB
i -formulas ϕ0, . . . , ϕ` so that B(~ϕ, `) holds”. The
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quantifier (∃` ≤ n) is a sharply bounded quantifier since ` can be bounded

by the length of the code for 〈~ϕ〉 , and the quantifiers (∃〈~w〉) and (∃w`+1) are

bounded quantifiers since each wj may be bounded by ϕj . By using prenex

operations and using the fact that ` can be computed from 〈w0, . . . , w`〉 ,
formula (1) is equivalent to the formula

(∀〈ϕ0, . . . , ϕn〉)(∃〈w0, . . . , w`〉)(∀w`+1) (2)
[
(∀j ≤ `)TRUi(ϕj, wj) ∧ (` < n → ¬TRUi(ϕ`+1, w`+1))

]
.

which is a ∀∃≤∀≤∆b
i+1 -formula.

The intuitive meaning of formula (1) or (2) is, of course, that every se-

quence ϕ0, . . . , ϕn of ΠB
i -formulas has an initial sequence of maximal length `

of satisfiable formulas. Furthermore, the formula (1) is a theorem of Si+1
2 .

This is because Si+1
2 can use length induction on the Σb

i+1 -formula S(〈~ϕ〉, `)
expressing the condition that the first ` formulas of the sequence are

satisfiable. (An equivalent way to see this is to note that Si+1
2 can prove

the Σb
i+1 -length-maximization principle.)

Now suppose T i
2 is equal to Si+1

2 ; in particular, T i
2 proves the formula (2).

By Theorem 1, this means that there is an integer k ≥ 0 and there are

Σb
i+1 -defined functions f0, . . . , fk so that, letting A(〈~ϕ〉, 〈~w〉, w`+1) be the

subformula of (2) enclosed in square brackets, we have that

T i
2 ` (∀〈~ϕ〉)[A(〈~ϕ〉, f0(〈~ϕ〉), b0) ∨ A(〈~ϕ〉, f1(〈~ϕ〉, b0), b1) ∨ · · · (3)

· · · ∨ A(〈~ϕ〉, fk(〈~ϕ〉, b0, b1, . . . , bk−1), bk)]

We henceforth shall use (3) restricted to the case where n = k , so that the

sequence ~ϕ is ϕ0, . . . , ϕk .

Without loss of generality, each fj satisfies the following property (prov-

ably in T i
2 ): whenever TRU i(ϕr, br) holds for r = 0, . . . , j−1, then the value

fj(〈~ϕ〉, b0, . . . , bj−1) is the Gödel number of a sequence 〈v0, . . . , v`−1〉 of length

` ≥ j so that TRU i(ϕr, vr) holds for all r = 0, . . . , ` − 1.

Recall that β represents the Gödel β function so that β(i, w) is equal to

the i-th integer in the sequence coded by w . Define

gj(ϕ0, . . . , ϕk, w0, . . . , wj−1) = β(j + 1, fj(〈ϕ0, . . . , ϕk〉, w0, . . . , wj−1)).
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Suppose that ϕ0, . . . , ϕk are codes for satisfiable ΠB
i -Boolean formulas and let

w0, . . . , wk be satisfying assignments. Define b0, b1, . . . inductively as follows:

if fj(〈~ϕ〉, b0, . . . , bj−1) is a sequence of length ` + 1 ≤ k , then let bj equal w`+1 .

It is obvious that whenever fj(〈~ϕ〉, b0, . . . , bj−1) has length ` + 1 ≤ k then bj

gives a “counterexample” so that A(〈~ϕ〉, fj(〈~ϕ〉, b0, . . . , bj−1), bj) is false. Now,

by (2), there is some j ≤ k for which fj(〈~ϕ〉, b0, . . . , bj−1) has length k + 1.

Let j0 be the least value such that fj0(〈~ϕ〉, b0, . . . , bj−1) has length ≥ j0 + 1.

It must be that TRUi(ϕj0 , gj0(~ϕ,w0, . . . , wj0−1)) holds. This argument

formalizes in T i
2 and thus we have proven:

Lemma 2 Suppose T i
2 = Si+1

2 . Then there is k ≥ 0 and there are Σb
i+1 -

definable functions g0, . . . , gk of T i
2 so that

T i
2 ` (∀ϕ0, . . . , ϕk)(∀w0, . . . , wk)

[ k∧∧
j=0

TRUi(ϕj, wj)

→ TRUi(ϕ0, g0(~ϕ))

∨ TRUi(ϕ1, g1(~ϕ,w0))

∨ TRUi(ϕ2, g2(~ϕ,w0, w1))

∨ · · · ∨ TRUi(ϕk, gk(~ϕ,w0, . . . , wk−1))
]

3 Collapsing Bounded Arithmetic

In this and the next section, we examine consequences of the condition

T i
2 = Si+1

2 . In this section we show that this implies that S2 collapses to

T i
2 .

Our point of departure is Lemma 2 above; we henceforth fix k and

g0, . . . , gk . This lemma states that at least one of the functions gj can

find a satisfying assignment for ϕj using only the vector ~ϕ and arbitrary

satisfying assignments w0, . . . , wj−1 . However, it need not always be the

same gj that succeeds in this way; different vectors of formulas ~ϕ and

even different witnesses ~w may cause different gj ’s to succeed. We define

SucceedBy(`, ~ϕ, ~w) to be the following formula which states that one of the

7



first ` + 1 g ’s succeeds in this way; namely, it is defined as

SucceedBy(`, ~ϕ, ~w) ⇐⇒
k∨∨

j=0

[
j ≤ ` ∧ TRUi(ϕj, gj(~ϕ,w0, . . . , wj−1))

]
.

Our first goal is to show that Σp
i+1 = Πp

i+1/poly where the “poly”

means that polynomial amount of advice is needed. As a preliminary

to defining what constitutes advice, we define “preadvice” by letting

PreAdvicei(a, 〈ϕ`+1, . . . , ϕk〉) be the formula

k∧∧
j=0

(` < j → ϕj < 2|a|)∧
(∀〈ϕ0, . . . , ϕ`〉)(∀〈w0, . . . , w`〉)

[
VTRUi(〈~ϕ〉, 〈~w〉, a) → SucceedBy(`, ~ϕ, ~w)

]
,

where VTRUi(〈ϕ0, . . . , ϕk〉, 〈w0, . . . , w`〉, a) abbreviates

(∀j ≤ `)(TRUi(ϕj, wj) ∧ wj ≤ ϕj ∧ ϕj < 2|a|).

Several points to note are: firstly, in defining PreAdvice we are continuing

our practice of letting variables ϕj represent integers that must code ΠB
i

formulas; secondly, the value of ` is determined by the second argument to

PreAdvice (k is fixed and ` varies, namely, ` equals k + 1 minus the length

of the sequence coded by the second argument of PreAdvicei ); thirdly, the

quantifiers are bounded quantifiers since the ϕj ’s and wj ’s are bounded by

2|a| . The reason for bounding everything by 2|a| is that we need only define

“advice” that works for ϕ ’s with |ϕ| ≤ a for a an arbitrary integer. Also

note that PreAdvicei is a Πb
i+1 -formula.

We can now define “advice” for formulas of length ≤ |a| by

Advicei(a, 〈ϕ`+1, . . . , ϕk〉) ⇔
PreAdvicei(a, 〈ϕ`+1, . . . , ϕk〉) ∧ ¬(∃ϕ`)PreAdvicei(a, 〈ϕ`, . . . , ϕk〉).

Note that ϕ` is bounded by 2|a| ; thus Advicei is a Πb
i+2 formula. The next

lemma shows that T i
2 can prove that there always does exist advice:

Lemma 3 Suppose T i
2 = Si+1

2 . Then

T i
2 ` (∀a)(∃〈~ϕ〉)Advicei(a, 〈~ϕ〉).
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Proof First, note that Lemma 2 implies that T i
2 proves that

PreAdvicei(a, 〈〉) holds. Since k is a constant, it follows (without using in-

duction) that there is a least ` such that (∃〈ϕ`+1, . . . , ϕk〉)PreAdvicei(a, 〈~ϕ〉)
holds. For this ` , any ‘preadvice’ is actually advice. 2

Next we give the key lemma that shows how ‘advice’ can be used to make

Σb
i+1 -IND hold and the polynomial time hierarchy collapse, provably in T i

2 .

Lemma 4 Suppose T i
2 = Si+1

2 . Then T i
2 proves

Advicei(a, 〈ϕ`+1, . . . , ϕk〉) ∧ ϕ` < 2|a| →
[
¬SATi(ϕ`) ↔ (∃〈ϕ0, . . . , ϕ`−1〉)(∃〈w0, . . . , w`−1〉)

{
VTRUi(〈~ϕ〉, 〈w0, . . . , w`−1〉, a)

∧¬SucceedBy(` − 1, ~ϕ, ~w)

∧¬TRUi(ϕ`, g`(ϕ0, . . . , ϕk, w0, . . . , w`−1))
}]

.

Proof Let RHS(ϕ`, 〈ϕ`+1, . . . , ϕk〉, a)) denote the formula on the righthand

side of the ↔ connective in the formula above; we often suppress the variables

ϕ`+1, . . . , ϕk and a that occur freely in RHS and write just RHS(ϕ`).

We shall argue informally in T i
2 to prove the lemma. Suppose

ϕ`, . . . , ϕk ≤ 2|a| are formulas and that Advicei(a, 〈ϕ`+1, . . . , ϕk〉) holds. The

latter condition obviously implies that ¬PreAdvicei(a, 〈ϕ`, . . . , ϕk〉). By the

definition of PreAdvice , there must exist ΠB
i -formulas ϕ0, . . . , ϕ`−1 satisfied

by witnesses w0, . . . , w`−1 such that SucceedBy(` − 1, ~ϕ, ~w) is forced to be

false. First suppose that ϕ` is not satisfiable. Then clearly TRUi(ϕ`, g`(~ϕ, ~w))

must be false. Thus RHS(ϕ`) follows from ¬SATi(ϕ`). Second, suppose

that ϕ` is satisfiable. By PreAdvicei(a, 〈ϕ`+1, . . . , ϕk〉), it must be that

SucceedBy(`, ~ϕ, ~w) holds. On the other hand, SucceedBy(` − 1, ~ϕ, ~w) is

false. Thus TRUi(ϕ`, g`(~ϕ, ~w)) is forced to be true and we have shown that

SATi(ϕ`) implies ¬RHS(ϕ`). 2

In the subformula RHS , the leading existential quantifiers are actually
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bounded existential quantifiers since the formulas ϕj and their witnesses wj

are bounded by 2|a| . This means that RHS(ϕ`) is a Σb
i+1 -formula.

Lemma 5 Suppose T i
2 = Si+1

2 . Then T i
2 ` Σb

i+1 -IND and T i
2 = T i+1

2 .

Proof The proof is based on the fact that SATi(· · ·) is complete for

Σb
i+1 -formulas and is also equivalent on bounded ranges to the Πb

i+1 -formula

¬RHS(· · ·) (under the assumption that T i
2 = Si+1

2 , as always). Indeed, for

any Σb
i+1 -formula B(c, ~d), there is a polynomial time and Σb

1 -computable

function f(c, ~d) so that B(c, ~d) is T i
2 -provably equivalent to SATi(f(c, ~d)).

The induction axiom for the formula B(c, ~d) can be expressed as

B(0, ~d) ∧ (∀x)(B(x, ~d) → B(x + 1, ~d)) → B(c, ~d).

Let us prove this by reasoning informally in T i
2 which is presumed to equal

Si+1
2 . Considering particular values for c and ~d , there is a value a so

that f(x, ~d) < 2|a| for all x ≤ c . Let ϕ`+1, . . . , ϕk be formulas such that

Advicei(a, 〈ϕ`+1, . . . , ϕk〉) holds. Then, with these parameters, Lemma 4,

we have that the Σb
i+1 -formula B(x, ~d) is equivalent to the Πb

i+1 -formula

¬RHS(f(x, ~d)) for all x ≤ c . Now, it is known that Si+1
2 proves ∆b

i+1 -IND

and the usual proof (see Theorem 2.22 of [1]) shows that T i
2 = Si+1

2 proves

induction for B , since B is “∆b
i+1 with parameters” on the range 0 ≤ x ≤ c .

2

Iterating the method of this proof, we obtain:

Theorem 6 If T i
2 = Si+1

2 , then T i
2 = S2 . Thus, if T i

2 = Si+1
2 , then S2 is

finitely axiomatized.

Also, if PV1 = S1
2(PV ), then PV1 = S2(PV ).

Proof Analogous to the method of proof of Lemma 5, we must show that any

bounded formula is equivalent to a Σb
i+1 -formula with parameters, where the

parameters vary with the range of the induction variable. From this, using

Lemma 5, it will follow that T i
2 proves induction for any bounded formula.

We do the case of B(c, ~d) ∈ Σb
i+2 in some detail. We may suppose that

B(x, ~d) is of the form (∃y ≤ t(x, ~d))C(x, y, ~d) for some Πb
i+1 -formula C .
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We argue informally in T i
2 . By the method of Lemma 5, there is an a ,

given by a polynomial time function a = a(c, ~d) of c and ~d , and there is a

polynomial time function f , so that for all x ≤ c , and y ≤ t(x, ~d) and for

advice 〈~ϕ〉 satisfying Advicei , the Πb
i+1 -formula C(x, y, ~d) is equivalent to

the Σb
i+1 -formula RHS(f(x, y, ~d), 〈~ϕ〉, a(c, ~d)). Thus, for 0 ≤ x ≤ c , B(x, ~d)

is equivalent to a Σb
i+1 -formula, and full induction holds for B up to c by

Lemma 5. Hence T i
2 = T i+2

2 .

A slight modification of the construction of the last paragraph shows

that if A(~x) is a Σb
i+2 -formula (respectively, a Πb

i+2 -formula, then there is

a polynomial growth rate function a(c) and a Σb
i+1 -formula (respectively,

Πb
i+1 -formula) A∗(~x, ϕ∗, a(c)) such that for all ~x such that max{~x} ≤ c and

all 〈~ϕ〉 such that Advicei(a(c), 〈~ϕ〉), A(~x) is equivalent to A∗(~x, 〈~ϕ〉, a(c)),

provably in T i
2 . This further implies that if A(~x) is a Σb

i+3 -formula, then A∗

may be taken to be a Σi+2 -formula, because, if A(~x) is (∃y ≤ t(~x))B(~x, y),

then there is a Σb
i+2 -formula B∗ so that A(~x) will be equivalent to

(∃y ≤ t(~x))B∗(~x, 〈~ϕ〉, a) for a given by a polynomial growth rate function

of c ≥ max ~x and for 〈~ϕ〉 such that Advicei(a, 〈~ϕ〉). This fact is sufficient to

imply that T i
2 = T i+3

2 .

By iterating the above method of proof, one can show that T i
2 is equal to all

of S2 . We shall leave the details of this to the reader, and remark instead that

an alternative proof is given by Theorem 7 below where it is shown that T i
2

can prove that every bounded formula is equivalent to a Boolean combination

of Σb
i+2 -formulas without any additional parameters or advice. Then since

T i
2 = T i+2

2 = Si+2
2 and Si+2

2 proves induction for Boolean combinations of

Σb
i+2 -formulas [2], it follows that T i

2 = S2 . 2

4 Collapsing the Polynomial Hierarchy

All the work of this section is predicated on the condition that T i
2 = Si+1

2 .

We have shown above that if T i
2 = Si+1

2 , then T i
2 proves that the Σp

i+2 -

predicates are contained in Σp
i+1/poly . From this, the methods of Karp-

Lipton [7] imply that the entire polynomial time hierarchy is contained in

Σp
i+1/poly and in Πp

i+1/poly ; furthermore, the proof of this containment can

be formalized in T i
2 . The methods of Karp-Lipton also imply immediately that

11



the polynomial hierarchy collapses to Σp
i+3 = Πp

i+3 . However, we shall prove

an somewhat stronger result; namely, if T i
2 = Si+1

2 , then every polynomial

hierarchy predicate (i.e., bounded formula) is T i
2 -provably equivalent to a

Boolean combination of Σb
i+2 -formulas.

To prove this, it will suffice to prove that every Σb
i+3 -formula is equivalent

to a Boolean combination of Σb
i+2 -formulas. Let A(b) be an arbitrary Σb

i+3 -

formula. From the previous section, we know that T i
2 proves that A(b) is

equivalent to

(∃〈~ϕ〉)[Advicei(a(b), 〈~ϕ〉) ∧ A∗(b, 〈~ϕ〉)] (4)

and to

(∀〈~ϕ〉)[Advicei(a(b), 〈~ϕ〉) → A∗(b, 〈~ϕ〉)], (5)

where A∗ is a Σb
i+2 -formula and a = a(b) is function of sufficiently large

polynomial growth rate. Unfortunately, Advicei is a Πb
i+2 -formula and the

quantifier complexity of these equivalent formulations of A(b) is higher than

we desire; namely, formula (4) is a Σb
i+3 -formula and formula (5) is a Πb

i+3 -

formula. This implies that every bounded formula is ∆b
i+3 with respect to T i

2 ,

but we wish to prove a yet stronger result.

To reduce the complexity of these formulas we would like to use

PreAdvicei in place of Advicei . However, this can not be done directly since

if 〈~ϕ〉 satisfies PreAdvicei , then it is not necessarily true that A∗(b, 〈~ϕ〉) is

equivalent to A(b). Instead, we look for a longest vector 〈~ϕ〉 which satisfies

PreAdvicei ; namely, consider the formula A′(b) defined as:

(∃〈ϕ1, . . . , ϕk〉)
[
PreAdvicei(a(b), 〈ϕ1, . . . , ϕk〉) ∧ A∗(b, 〈ϕ1, . . . , ϕk〉)

]

∨ k∨∨
`=2

{
¬(∃〈ϕ`−1, . . . , ϕk〉)PreAdvicei(a(b), 〈ϕ`−1, . . . , ϕk〉)

∧(∃〈ϕ`, . . . , ϕk〉)[PreAdvicei(a(b), 〈ϕ`, . . . , ϕk〉) ∧ A∗(b, 〈ϕ`, . . . , ϕk〉)]
}

We claim that A′(b) is equivalent to A(b). The proof of this now quite easy.

First, there must exist a least ` ≥ 1 such that there exists 〈ϕ`, . . . , ϕk〉 which

satisfies PreAdvicei . Second, if PreAdvicei(〈ϕ`, . . . , ϕk〉) holds and if there

12



is no 〈ϕ′
`−1, . . . , ϕ

′
k〉 which satisfies PreAdvicei , then clearly 〈ϕ`, . . . , ϕk〉

satisfies Advicei . And for this advice, A∗(b, 〈~ϕ〉) is equivalent to A(b).

Since PreAdvicei is a Πb
i+1 -formula and A∗ is a Σb

i+2 -formula, A′ is a

Boolean combination of Σb
i+2 -formulas. This establishes:

Theorem 7 If T i
2 = Si+1

2 , then every bounded formula is T i
2 -provably equiva-

lent to a Boolean combination of Σb
i+2 formulas. In other words, if T i

2 = Si+1
2 ,

then the polynomial hierarchy T i
2 -provably collapses to (a finite level of) the

Boolean hierarchy over Σb
i+2 . Also, in this case, T i

2 proves that the polynomial

time hierarchy collapses to Σp
i+1/poly .

If PV1 = S1
2(PV ), then every bounded formula is PV1 -provably equivalent

to a Boolean combination of Σb
2 -formulas, so the polynomial time hierarchy

provably collapses to the Boolean hierarchy over Σp
2 . Also, in this case, PV1

proves that the polynomial time hierarchy collapses to NP/poly .

It should be noted again that [10] have shown that if T i+1
2 = Si+2

2 then

the polynomial hierarchy collapses to Σp
i+2 = Πp

i+2 and to ∆p
i+1/poly : we do

not know how to prove that this stronger collapse would be T i
2 -provable.
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