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Abstract

It is generally conjectured that there is an exponential separation
between Frege and extended Frege systems. This paper reviews and
introduces some candidates for families of combinatorial tautologies
for which Frege proofs might need to be superpolynomially longer
than extended Frege proofs. Surprisingly, we conclude that no
particularly good or convincing examples are known. The examples
of combinatorial tautologies that we consider seem to give at most
a quasipolynomial speed-up of extended Frege proofs over Frege
proofs, with the sole possible exception of tautologies based on a
theorem of Frankl.

It is shown that Bondy’s theorem and a version of the
Kruskal-Katona theorem actually have polynomial-size Frege proofs.
Bondy’s theorem is shown to have constant-depth, polynomial-size
proofs in Frege+PHP, and to be equivalent in I∆0 to the pigeonhole
principle.

1 Introduction

Frege systems are schematic, propositional proof systems; for instance, a
Frege system can have modus ponens as its sole rule of inference. Extended
Frege systems are Frege systems augmented with the ability to introduce
new variables which abbreviate long formulas. As usual, the length of
a propositional proof is defined to be equal to the number of symbols
appearing in the proof. Most researchers conjecture that a Frege system
cannot polynomially simulate an extended Frege system; that is to say,
that there is no polynomial p(n) so that for every extended Frege proof of
length n there is a Frege proof of the same conclusion with length ≤ p(n).
Indeed, the usual conjecture is that there is an exponential separation of
Frege and extended Frege systems; more precisely, that for some ε > 0,
there are extended Frege proofs of arbitrarily large length n , so that any
Frege proof of the same conclusion requires length at least 2nε

. On the
other hand, no super-linear lower bounds on Frege proof lengths have yet
been established for any tautology. See [11, 12, 31] for background material
on Frege and extended Frege proof systems.
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Although the authors tend to support these conjectures on the
separation of Frege and extended Frege systems, the purpose of this
paper is to cast doubt on these conjectures by pointing out that there are
hardly any good examples to support them. This is in marked contrast
to the situation for analogous open questions in computational complexity
such as “P =?NP ” and “NC =?P ”. For these open questions, there are
a large number of candidates which are conjectured to separate the two
classes. In particular, there are a large number of combinatorial problems
that are known to be NP -complete (or P -complete) and therefore are not
in P (or not in NC , respectively) if P 6= NP (or NC 6= P , respectively).
In fact, the widely accepted conjecture that NC , P and NP are distinct
is largely based upon the existence and apparent intractability of these
combinatorial problems.

Consider also the problem of separating constant-depth Frege proofs
from Frege proofs. In this situation, there are several natural combina-
torial principles, including the pigeonhole principle and various matching
principles, which are known to have polynomial-size Frege proofs and yet
require exponential-size constant-depth Frege proofs [4, 1, 27, 19].

It is thus desirable to seek natural, combinatorial problems that are
candidates for separating Frege and extended Frege proof systems. By
this we mean tautologies based on combinatorial principles which are
known to have polynomial-size extended Frege proofs, and for which the
shortest known Frege proofs are exponential (or at least superpolynomial)
in length. In addition, we wish the tautologies to be “natural”; of course,
the naturalness of a family of tautologies is a matter of personal opinion, but
at the very least it should mean that they are uniform in some strong sense,
such as being polynomial-time recognizable, or, even better, the family of
tautologies should consist of the propositional translations of an arithmetic
formula with existential, universal and/or counting (bounded) quantifiers.
The latter kind of uniform tautologies can sometimes have strongly uniform
proofs which are obtained from proofs in bounded arithmetic: in particular,
Paris-Wilkie [25] gave a translation of I∆0 -proofs into polynomial-size
(quasipolynomial-size), constant depth Frege proofs; Cook [10] gave a
translation of PV -proofs (and thus S1

2 -proofs, by conservativity) into
polynomial-size extended Frege proofs; and Kraj́ıček [17] gave a translation
of U1

1 -proofs into quasipolynomial-size Frege proofs.

In order to give a superpolynomial separation of Frege and extended
Frege proofs, it is of course necessary to give superpolynomial lower bounds
for Frege proofs. Already, the problem of finding natural, combinatorial
principles which require superpolynomial-size Frege proofs seems difficult.
It is well-known that there are tautologies that require superpolynomial
Frege (and extended Frege) proofs, unless NP = coNP [11]. However,
the set of all tautologies does not yield a natural, combinatorial family
of candidates for superpolynomial Frege proofs; because it is neither



Hard Examples for Frege Systems 3

combinatorial nor believed to be a polynomial-time recognizable set.

A number of authors have already investigated the problem of finding
natural, combinatorial tautologies which separate Frege and extended Frege
systems. Foremost among these is the pigeon-hole principle introduced
in [12, 20]: in [12] is was shown to have polynomial-size extended Frege
proofs and only later, in [4], was it shown to have polynomial-size Frege
proofs. Krishnamurthy and Noll [22] suggested the Ramsey theorem as
a source of hard tautologies and Krishnamurthy [21] established that a
version of Ramsey’s theorem has polynomial-size extended Frege proofs.
Recently, Pudlák has shown that a version of Ramsey’s theorem also has
polynomial-size Frege proofs [28]. Krishnamurthy [21] also showed that a
number of other tautologies, such as the parity principle, have polynomial-
size extended Frege proofs; however, it is now known that these also have
polynomial-size Frege proofs (using the counting techniques of [4]). Thus
none of these examples provide any evidence for an exponential separation
of Frege and extended Frege proof systems.

There is a well-known analogy between the question of separating Frege
and extended Frege systems and the question of separating NC1 from P .
Namely, the lines in a polynomial-size Frege proof consist of polynomial-size
propositional formulas and it is known that polynomial-size formulas can
express precisely properties in (nonuniform) NC1 [30, 3, 7, 6]. Likewise,
because of the ability to use abbreviations for long formulas, the lines
in a polynomial-size extended Frege proof are essentially polynomial-size
circuits and thus can express properties that are in nonuniform P [23].
Thus, one can intuitively view polynomial-size Frege proofs as proofs with
polynomially many steps which can reason with NC1 properties; whereas
polynomial-size extended Frege proofs are proofs with polynomially many
steps which can reason with properties in nonuniform P . Of course this
analogy between Frege and extended Frege systems and NC1 and P does
not entail any actual implication, that is to say it is possible that Frege and
extended Frege are polynomially equivalent and NC1 and P are unequal
(or vice-versa). Nonetheless, one might be able to use this analogy to
search for combinatorial principles which can be conjectured to separate
Frege and extended Frege systems; namely, by considering combinatorial
principles whose proofs depend on properties that are P -complete.

We consider in this paper various candidates for separating Frege
and extend Frege and discuss their relative merits and disadvantages.
In section 2, we consider tautologies based on consistency statements.
In section 3.1, we discuss a number of combinatorial properties whose
proofs are based on linear algebra: since matrix inversion and determinant
computation are not known to be in NC1 , these are thus candidates for a
superpolynomial separation of Frege and extended Frege systems. However,
since matrix inverses and determinates are in NC2 , these candidates are
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conjectured to have quasipolynomial-size Frege proofs, where ‘quasipoly-
nomial’ means 2(log n)O(1)

. Note that quasipolynomial-sizes are both
subexponential and superpolynomial. In section 3.2, we introduce Frankl’s
theorem; this is the only example we have of combinatorial tautologies
which are known to have polynomial-size extended Frege proofs and for
which we have no reason to suspect that they have subexponential-size
Frege proofs. In section 3.3, some tautologies based on a formalization
of the “P vs. NP” problem are discussed. In section 4, we approach the
problem in a different direction, by giving polynomial-size Frege proofs
for some combinatorial tautologies, thereby showing they are not good
examples for separating Frege and extended Frege systems. In section 4.1,
we give a polynomial-size Frege proofs for Bondy’s principle. Bondy’s
principle was originally suggested to us by Kraj́ıček [16, 9] as a candidate
for an exponential separation between Frege and extended Frege systems;
however, we give a new proof of Bondy’s theorem which, unlike prior
proofs, translates into polynomial-size Frege proofs. In section 4.2, we
further discuss Frankl’s theorem, which is a generalization of Bondy’s
theorem. Although we have been unable to find polynomial-size Frege
proofs of Frankl’s theorem, we are able to give polynomial-size Frege
proofs of a version of the Kruskal-Katona theorem which is used in the
usual proof of Frankl’s theorem.

2 Hard examples based on Consistency

Given any propositional proof system, S , one can write out a tautology,
ConS(n), which expresses the partial consistency of S in a natural fashion;
namely, this tautology expresses the fact that there are no proofs of
length at most n in S of a contradiction. For commonly used proof
systems, a partial consistency statement is expressed as a tautology by
letting a proof of length n be encoded as a string of binary digits of
length O(n); the tautology contains propositional variables representing
the bits in the encoded string and expresses the property that the bits
do not encode a correct S -proof ending with a contradiction. Since
valid S -proofs are, by definition, recognizable in polynomial time, the
partial consistency tautologies can always be formulated to have length
polynomially bounded by n . Partial consistency tautologies of this type
for propositional logic were first described by Cook [10] in the setting of
extended Frege provability. Cook established that if S is any schematic
propositional proof system such that there are polynomial-size extended
Frege proofs of ConS(n), then extended Frege systems can polynomially
simulate S . Later, one of the authors extended this theorem to apply to
Frege systems as well, by establishing that the existence of polynomial-size
Frege proofs of ConS(n) implies that a Frege system can polynomially
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simulate S [5]. These theorems establish that for sufficiently powerful
proof systems such as Frege systems, there are sparse families of complete
tautologies (see also [18]). In particular, we have that the family of
tautologies ConeF (n) are complete tautologies for Frege systems with
respect to extended Frege systems:

Theorem 1 [5] There are polynomial-size Frege proofs of the tautologies
ConeF (n) if and only if Frege systems can polynomially simulate extended
Frege systems.

Cook showed that the statements ConeF (n) have polynomial-size
extended Frege proofs, thus Theorem 1 implies that the partial consistency
statements ConeF (n) separate Frege and extended Frege systems, unless
the systems are actually equivalent. In fact, it is clear that, up to
polynomial factors, these tautologies provide the best separation of Frege
and extended Frege systems that is possible. However, we do not view
these tautologies as providing evidence for a superpolynomial separation of
Frege and extended Frege systems. Instead, we are seeking more natural,
combinatorial principles which are hard for Frege systems but not extended
Frege systems. Of course, it is possible to take any coNP -complete
combinatorial property and encode a tautology as an instance of that
combinatorial property; for instance, one can encode a tautology as a
graph which is not 3-colorable, then reexpress the non-3-colorability of
this graph as a tautology. But, this is not what we consider a natural
combinatorial problem.

3 Hard Combinatorial Candidates

3.1 Examples based on Linear Programming

There are several combinatorial theorems which are simple to state, but all
known proofs rely on the powerful tools of linear algebra. These theorems
are prime candidates for tautologies that should require superpolynomial-
size Frege proofs. Many examples from this section, including Theorems 2-
8, can be found in the excellent expository monograph by Babai and
Frankl [2].

3.1.1 The Odd-town Theorem

The Odd-town Theorem is perhaps the original example of the power of
linear algebra in combinatorics:
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Theorem 2 Suppose a town has n citizens and that there is a set of
clubs, each consisting of citizens, such that each club has an odd number of
members and such that every two clubs have an even number of members
in common. Then there are no more than n clubs.

To express this theorem propositionally for a particular n , we use
underlying variables vj

i , i ≤ n + 1, j ≤ n , where the n -bit vector vi is
intended to describe the ith club. The propositional formula OTn states
that either some vector contains an even number of 1’s, or there are two
vectors with an odd number of 1’s in common. (This formula requires
nonconstant depth to express, but the size is still polynomial in n .)

The simplest proof of this theorem uses linear algebra. Assume there
are m clubs, C1, . . . , Cm . We represent the m clubs by an n by m
incidence matrix, M , where the ith row vector, vi , is the incidence vector
for club Ci . The inner product modulo 2 of vi and vj , 〈vi, vj〉 , is equal to 1
if size of the intersection of Ci and Cj is odd, and is equal to 0 otherwise.
According to the Odd-town rules, 〈vi, vj〉 is odd whenever i = j , and
〈vi, vj〉 is even whenever i 6= j . We claim that the vectors v1, . . . , vm must
therefore be linearly independent. If not, there exist numbers λi such that
λ1v1 +λ2v2 + · · ·+λmvm = 0 with some λk 6= 0. Taking the inner product
of both sides of the equation with vk , it follows that λk = 0, which is a
contradiction. Since the vi ’s are linearly independent, m is at most n .

The key point of the above proof is that it relies on linear algebra,
and despite considerable effort, there are no known simpler proofs that
circumvent the use of linear algebra. In order to carry out the above
proof propositionally, one would need to prove the fact that if m > n ,
m vectors cannot be linearly independent. In the most straightforward
approach, this would involve giving polynomial-size formulas defining the
values λi in terms of entries of the incidence vectors. Furthermore, the
smallest known formulas defining these values are quasipolynomial-size, i.e.,
2(log n)O(1)

size, since operations such as finding determinants and matrix
inverses are in NC , but are not known to be in NC1 . Thus, our conjecture
is that the Odd-town Theorem tautologies have quasipolynomial-size Frege
proofs. This is only a conjecture, since we have not verified that Frege
proofs can formalize properties about the NC -computable functions of
linear algebra.

On the other hand, there are polynomial-size extended Frege proofs of
the propositional tautologies expressing the Odd-town Theorem. This is
because an extended Frege system can easily simulate Gaussian elimination
on a matrix, and thereby can prove that m > n vectors must be linearly
dependent.

The Odd-town Theorem thus serves as a good combinatorial candidate
for quasipolynomially separating Frege and extended Frege systems. There
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has reportedly been a great deal of effort made to find proofs that do not
depend on linear algebra; and this provides at least some evidence that
the shortest Frege proofs of the Odd-town Theorem tautologies require
quasipolynomial-size.

In sections 3.1.2-3.1.4, we give a number of combinatorial principles
that have proofs based on linear algebra. Like the Odd-town Theorem, the
tautologies based on these combinatorial principles all have polynomial-size
extended Frege proofs and we conjecture that they have quasipolynomial-
size Frege proofs.

3.1.2 The Graham-Pollak Theorem

This candidate was suggested to us by Mauricio Karchmer (personal
communication).

Theorem 3 [15] The number of edge disjoint, complete bipartite graphs
needed to edge cover Kn (the complete graph on n vertices) is at least
n − 1 .

To express this theorem propositionally, we introduce 2n(n − 2)
propositional variables, Ai

j , B
i
j , i ≤ n , j ≤ n−2, where for each j ≤ n−2,

the pair of vectors Aj and Bj describe the jth bipartite graph. (The
edge (k1, k2) is present in the jth bipartite graph if and only if Ak1

j ∧Bk2
j

or Ak2
j ∧ Bk1

j .) The Graham-Pollak tautology for a fixed n , GPn , states
(informally) that either: (1) one of the pairs Aj , Bj does not describe a
proper bipartite graph; or (2) there exists i, j ≤ n − 2, i 6= j and an edge
e such that e is present both in (Ai, Bi) and in (Aj , Bj); or (3) there
exists an edge e that is not present in any (Ai, Bi), i ≤ n − 2. It can be
verified that this tautology has size O(n4).

The known proof of the Graham-Pollak theorem, presented below,
does not seem to be formalizable with polynomial-size Frege proofs.

Proof Associate with each vertex i of Kn a variable xi . Assume (Ai, Bi)
i = 1, .., r are the bipartite graphs partitioning Kn and r ≤ n − 2. Then
we have

(
∑

i

xi)2 = (
∑

i

x2
i ) + 2(

∑
i<j

xixj), (1)

= (
∑

i

x2
i ) + 2[

∑
`

(
∑
i∈A`

xi)(
∑
j∈B`

xj)]. (2)

Now consider the following system of r + 1 linear equations:
(a)

∑
i xi = 0 and (b)

∑
i∈A`

xi = 0 for ` = 1, .., r , r ≤ n − 2. The
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number of underlying variables is n , and the number of equations is r + 1
which is less than n . Therefore, there exists a nontrivial solution. But
this cannot be since the left hand side of (2) is zero, and the second term
of the right hand side of (2) is zero, but a nontrivial solution would imply
that the remaining term,

∑
i x2

i is not equal to zero. 2

3.1.3 The Fisher Inequality

Theorem 4 (Fischer Inequality) Let F1, . . . , Fm be a system of dis-
tinct, nonempty subsets of {1, .., n} such that for all Fi, Fj , |Fi ∩ Fj | = k ,
for some fixed k . Then m ≤ n .

Proof Associate a vector vi with each Fi , where vi is the incidence
vector of Fi . Let 〈vi, vj〉 denote the inner product of vi and vj . The
inner product will equal the size of Fi ∩ Fj . Therefore when i 6= j ,
〈vi, vj〉 = k , and when i = j , then 〈vi, vi〉 equals the size of Fi . Without
loss of generality, we can assume that |Fi| > k > 0, for all i , and therefore
〈vi, vi〉 = k + γi , where γi > 0.

Claim: The vectors v1, .., vm are linearly independent.

Proof of claim: Assume for sake of contradiction that the claim does not
hold. Then

∑
i αivi = 0, where not all αi ’s are zero. But then we

have
∑n

k=1〈αkvk, vj〉 = 0. This can be written as βk + αjγj = 0, where
β =

∑
i αi . Now if β is zero, then αj = 0 for all j , which contradicts our

assumption. Therefore, β 6= 0; but since k, γi > 0, we have that each αj

is non-zero and has sign opposite the sign of β . This is impossible since
β =

∑
i αi .

It follows from the above claim that m ≤ n . 2

3.1.4 Ray-Chaudhuri–Wilson theorem

The following theorem is a generalization of the Fischer Inequality. Let
[n] denote {1, . . . , n} . Let F be a set of subsets of [n] , and let L ⊂ [n] ,
|L| = s . F is L-intersecting if for all F1 6= F2 , |F1 ∩ F2| ∈ L . For
example, in the previous Fischer theorem, L = {k} .

Theorem 5 (Nonuniform Ray-Chaudhuri–Wilson) For any L ⊂ Z ,
|L| = s , if F is L-intersecting, then |F | ≤ ∑s

i=0

(
n
i

)
.

We say that F is k -uniform provided every member of F has
cardinality k . In this case, we get a better upper bound on the size
of F :
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Theorem 6 (Uniform Ray-Chaudhuri–Wilson) Let L be a set of
integers, |L| = s , and F be an L-intersecting k -uniform family. Then
|F | ≤ (

n
s

)
.

The following theorem is a modular form of the Ray-Chaudhuri–Wilson
theorem.

Theorem 7 (Modular Ray-Chaudhuri–Wilson) Let p be a prime
number and L ⊂ {0, . . . , p − 1} have cardinality s ≤ p − 1 . Let 0 ≤ k < p
be an integer, k 6∈ L . Let F be a family of subsets of n elements,
n ≥ s + k , such that for all i , |Fi| ≡ k mod p , and for all i 6= j ,
(|Fi ∩ Fj | mod p) ∈ L . Then |F | ≤ (

n
s

)
.

Note that the Odd-town Theorem is a special case of the above theorem
where p = 2, k = 0 and L = {1} . Our final potentially hard tautology
based on linear algebra proofs is a generalization of the Odd-town Theorem.
This example was suggested to us by L. Babai.

Theorem 8 (Skew Odd-town Theorem) Suppose there are m red clubs
R1, . . . , Rm , and m blue clubs, B1, . . . , Bm in a town of n citizens. Assume
that these clubs satisfy: (a) |Ri ∩ Bi| is odd for every i ; (b) |Ri ∩ Bj | is
even for 1 ≤ i < j ≤ m . Then m ≤ n .

3.1.5 When can linear algebra be avoided?

While all known proofs of the above theorems rely on linear algebra at
some point, it appears to be a difficult problem to determine when a
theorem inherently requires the use of linear algebra. In fact, it may be
that all of the above examples actually have short, direct proofs. The
following theorem, known as the Friendship Theorem, is another example
of a combinatorial principle whose standard proof relies on linear algebra.
In fact, the authors originally believed that this was another potentially
hard example.

Theorem 9 [13] In a party of n people, suppose that every pair of people
has exactly one friend in common. Then there is a person at the party who
is friends with everyone.

For a fixed n , we encode the Friendship Theorem using n(n − 1)
propositional variables, Fij , 1 ≤ i < j ≤ n , where Fij indicates whether
or not persons i and j are friends. The propositional Friendship Theorem,
Friendn , states that either there exists two people with zero or more than
1 friend in common, or there exists a person who is friends with everyone.
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The original proof of this theorem is due to Erdős, Rényi and
Sós [13]. This proof relies heavily on linear algebra and is not known
to be formalizable with polynomial-size Frege proofs. For some years, no
completely elementary proof was known, despite considerable effort. But
in 1972, such a proof was found by Longyear and Parsons [24]. This
proof builds upon an earlier paper of Herbert Wilf [32] where it is shown
that the the negation of the Friendship Theorem implies that the group
of friends forms a finite projective geometry. Then using elementary
properties of finite projective geometry, the Friendship Theorem can be
reduced to the special case where every person has the same number of
friends. This case is simpler, and in [24], it is shown using elementary
reasoning that if every person has the same number of friends, then the
conditions of the Friendship Theorem fail to hold. Because this proof only
uses direct reasoning, and a counting argument, it can be formalized with
polynomial-size Frege proofs.

3.2 Frankl’s Theorem

Another potential hard example is the propositional version of Frankl’s
theorem [14] stated next.

Theorem 10 Let t be a positive integer and let m ≤ n (2t−1)
t . Then for

any m × n matrix of distinct rows of 0 ’s and 1 ’s, there is a column such
that, if this column is deleted, the resulting m× (n− 1) matrix will contain
at most 2t−1 − 1 pairs of equal rows.

The tautologies based on Frankl’s theorem do have polynomial-size
extended Frege proofs; however, it is an open question whether they
have polynomial- or quasipolynomial-size Frege l-oofs. The only proof of
Frankl’s Theorem that we know of is due to Frankl [14], and a brief outline
of his proof can be given as follows. Define a 0/1 matrix to be hereditary
if all its rows are distinct and changing any 1 entry to a 0 causes two
rows to become identical. Frankl first argues that it suffices to prove
Theorem 10 for hereditary matrices by proving that any matrix violating
the theorem can be transformed into a hereditary matrix violating the
theorem (this is Theorem 1 of [14]). He then gives a proof of the theorem
for hereditary matrices, based a corollary to the Kruskal-Katona theorem
and on a counting argument.

We have examined Frankl’s proof carefully, and have been able to
show that the propositional tautologies based on the corollary to the
Kruskal-Katona theorem do have polynomial-size Frege proofs (we present
this in detail in section 4.2 below), and the counting argument likewise
has a polynomial-size Frege proofs. Thus there are polynomial-size Frege
proofs of Theorem 10 under the extra assumption that the matrix is
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hereditary. However, the reduction to hereditary matrices is readily
seen to be formalizable in extended Frege proofs, but we see no way
in which a Frege proof can formalize this reduction (Theorem 1 of [14])
with subexponential-size proofs. The difficult aspect of the reduction to
hereditary matrices is that it involves a sequential process of changing
1’s to 0’s in a column-by-column fashion, repeated until the matrix is
hereditary. The sequential nature of this reduction makes it easy to
express with polynomial-size extended Frege proofs, but not with small
Frege proofs.

There are two special cases of Frankl’s theorem worth mentioning. The
first is when t = 1 and m ≤ n ; this case is Bondy’s theorem and is shown
in section 4.1 to have polynomial-size Frege proofs. The second is when
t = 2 and m ≤ 3n/2: we have not been able to find subexponential-size
Frege proofs even for this case.

3.3 Formalizing circuit lower bounds

Our last example comes from tautologies which formalize circuit lower
bounds. It has recently been observed by several people [29, 26] that
all explicit circuit lower bounds seem to require proof strength that is
strictly greater than the circuit family under consideration. Loosely, it
can be shown that known lower bounds for a particular circuit class C
require reasoning about formulas with complexity greater than C . These
observations lead one to ask whether the family of tautologies expressing
P 6= NC1 require superpolynomial-size Frege proofs, and similarly,
whether the tautologies expressing P 6= NP require superpolynomial-size
extended Frege proofs. In this section, we address this possibility.

The first issue is how to express circuit lower bounds such as P 6= NP ,
propositionally. The following approach was suggested by Steve Cook.
NP has polynomial circuit size if and only if there is a function fSAT

computable with polynomial-size circuits such that given any satisfiable
formula F (we can assume that F is in 3CNF ), fSAT (F ) is a truth
assignment which satisfies F .

To code the above statement, we will code 3SAT on n variables using
O(n3) propositional variables, each variable corresponding to the presence
or absence of a particular 3-clause in the formula. We will code a size O(m)
circuit, m = nc , (c > 3), with propositional variables pi

j , i ≤ 2 log m ,
j ≤ m , where variables p0

j , . . . , p
2 log m
j describe the j th gate of the circuit.

We can then express “fSAT does not have polynomial-size circuits” as
follows: For all x , |x| = n , for all C , |C| ≤ nc , there exists a pair (F, T )
such that: (a) F codes a 3CNF formula with n variables, (b) T is a
satisfying assignment to F , and (c) The circuit coded by C on input F
does not output a satisfying truth assignment (i.e., C does not compute
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fSAT (F ).)

In order to translate this statement into a propositional statement,
we need to replace the existentially quantified variable (the pair (F, T ))
by the disjunction of all possible values for (F, T ). In other words, the
tautology expressing “fSAT does not have polynomial-size circuits” has
underlying variables pi

j , 0 ≤ i ≤ 2 log m , j ≤ m , and the formula states
that if the pi

j ’s code a proper circuit, C , then there exists a formula
coded by f1, . . . , fn′ , with satisfying truth assignment x1, . . . , xn , such
that when we evaluate C on f1, . . . , fn′ , it does not output a satisfying
truth assignment. Because the total number of 3CNF formulas on n
variables is roughly 2n3

, this takes about 2O(n3) symbols; thus the entire
tautology is expressible in 2O(n3) symbols. Let us call the above family of
tautologies NOTPOLYn , where n is the number of underlying variables.

The obvious way to prove this tautology is to go through all possible
circuits of size m , and for each of them, check all possible 3CNF formulas
on n variables, and exhaustively check that for each one, the circuit errs on
some input. But this proof requires 2m symbols, which is superpolynomial
in the input length (O(2n3

), for m > n3 . Recently, Razborov and
Rudich proved that under certain cryptographic assumptions, a class
of proofs of NOTPOLYn require superpolynomial-size extended Frege
proofs. Proofs in this class are defined to be proofs satisfying certain
natural properties, and hence are called “natural proofs”. But it is
still open whether “unnatural proofs” also require superpolynomial-size
extended Frege proofs.

In a similar manner, we can generate the tautology which expresses
“P does not have polynomial-size formulas”, and this family of tautologies
is a potential hard candidate for Frege systems.

4 Short Frege proofs for some Combinatorial
Principles

In this section, we give new polynomial-size Frege proofs for two families
of tautologies for which the previously known proofs were exponential-size.
The first family of tautologies are based on Bondy’s theorem, and the
second family on a variant of the Kruskal-Katona theorem which is used
in the proof of Frankl’s theorem.

4.1 Bondy’s Theorem and the Pigeonhole Principle

Bondy’s theorem was suggested by Kraj́ıček [16, 9] as a possible candidate
for a combinatorial tautology with polynomial-size extended Frege proofs
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but with no Frege proofs. However, we give below a new, elementary
proof of Bondy’s theorem, which can be translated into the setting of
propositional logic. This shows that the tautologies expressing Bondy’s
theorem actually do have polynomial-size Frege proofs. In fact, our proof
shows an even stronger result; namely, that there are constant-depth
polynomial-size proofs of the Bondy theorem tautologies in a Frege proof
system augmented with additional axioms expressing the pigeonhole prin-
ciple. Since the pigeonhole principle has polynomial-size Frege proofs [4],
this implies that the Bondy’s theorem tautologies have polynomial-size
proofs.∗

Bondy’s theorem states that, in any n×n matrix containing n pairwise
distinct rows, there exists a column such that, if the column is deleted, the
resulting (n−1)×n matrix still has n pairwise distinct rows. Without loss
of generality, we shall formulate Bondy’s theorem for 0-1 matrices only
(our arguments easily adapt to the general case, anyway). The version
of the pigeonhole principle that we use states that, for a > 0, there is
no one-to-one mapping from [a] to [a − 1], where [a] denotes the set
{1, 2, 3, . . . , a} .

Definition The propositional pigeonhole principle is stated with proposi-
tional variables pi,j which are intended to denote the property of pigeon i
being mapped to hole j . The propositional pigeonhole principle is the
family of tautologies of the form

(
n+1∧
i=1

n∨
k=1

pi,k

)
→


 n∨

i=1

n+1∨
j=i+1

n∨
k=1

(pi,k ∧ pj,k)




which state that there is no one-to-one mapping from [n + 1] to [n] .

The tautologies expressing Bondy’s theorem have propositional vari-
ables pi,j which have value True or False depending on whether a 1 or a 0
is in the (i, j) entry of the n × n matrix. These tautologies are:


n−1∧

i=1

n∧
j=i+1

n∨
k=1

¬(pi,k ↔ pj,k)


 →


 n∨

k0=1

n−1∧
i=1

n∧
j=i+1

∨
1≤k≤n
k 6=k0

¬(pi,k ↔ pj,k)




We let PHP denote all substitution instances of the propositional
pigeonhole principle tautologies; that is to say, PHP contains every formula
obtained from a pigeonhole tautology with the variables pi,j uniformly
replaced by arbitrary formulas Ai,j . Similarly BONDY denotes all
substitution instances of the propositional tautologies expressing Bondy’s

∗ We have been informed that that T. Arai has independently obtained the results
of Theorems 11 and 12.
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theorem. F + PHP and F + BONDY denote the propositional proof
systems obtained by adding all PHP -formulas, or all BONDY -formulas,
respectively, as additional axioms to the Frege system F .

Theorem 11 The tautologies (with variables pi,j ) expressing Bondy’s
theorem have constant-depth, polynomial-size proofs in F + PHP. Con-
versely, the pigeonhole tautologies (with variables pi,j ) have constant-depth,
polynomial-size proofs in F + BONDY.

Recall from [8] that the depth of a propositional formula is defined by
counting the alternations of AND’s and OR’s in the formula (assuming that
→ has been expressed in terms of OR and NOT and that negations are
pushed down to the leaves of the formula). A family of proofs is said to be
constant-depth if there is a constant bounding the depths of all formulas
appearing in the proofs. There is a well-known construction of Paris-
Wilkie [25, Theorem 26] which translates proofs in bounded arithmetic into
constant-depth Frege proofs; so instead of proving Theorem 11 directly,
we shall state and prove the corresponding (and stronger) theorem for
bounded arithmetic.

We now consider the equivalence between Bondy’s principle and the
pigeonhole principle in the setting of provability in I∆0 . Recall that I∆0

is a first-order theory of bounded arithmetic with language containing the
non-logical symbols 0, S,+, ·,≤ , which is axiomatized with a finite set of
bounded formulas defining the non-logical symbols, plus induction for all
bounded formulas. To formulate Bondy’s theorem in I∆0 , we suppose
that there is an a × amatrix M with entries given by a binary relation
g(x, y). The relation g(i, j) is intended to be true iff the (i, j) entry in M
is 1. Bondy’s principle for g is thus the following formula Bondy(g):

(∀x < a)(∀y < a)(x 6= y → (∃z < a)(¬(g(x, z) ↔ g(y, z)))) →
(∃z0 < a)(∀x < a)(∀y < a)(x 6= y

→ (∃z < a)(z 6= z0 ∧ ¬(g(x, z) ↔ g(y, z)))).

The pigeonhole principle is stated for a unary function h by the following
formula PHP(h):

(∀x < a)(h(x) < a − 1) → (∃x < a)(∃y < a)(h(x) = h(y) ∧ x 6= y).

Definition The first-order theory I∆0 + ∆0-Bondy is defined to be the
theory I∆0 plus Bondy(g) for every ∆0 -formula g . The first-order theory
I∆0 + ∆0-PHP is defined to be the theory I∆0 plus PHP(h) for every
∆0 -defined function h .

Theorem 12 The theories I∆0 + ∆0-Bondy and I∆0 + ∆0-PHP are
equivalent.



Hard Examples for Frege Systems 15

Proof We first show the easier direction that the ∆0 pigeonhole principle
is provable in I∆0 + ∆0-Bondy (this was first noted by Kraj́ıček [16]).
Suppose that h is a function with graph defined by a ∆0 -formula which
maps [a] one-to-one into [a − 1]. Define an a × a matrix A by letting
its (i, j)-entry equal 1 if and only if h(j + 1) = i + 1. (Note that we
are indexing the columns and rows of A starting with zero, so 0 ≤ i < a
and 0 ≤ j < a .) Then A violates Bondy’s principle. Thus we have
shown that if the pigeonhole principle fails, then Bondy’s theorem fails.
This argument is clearly formalizable in I∆0 , and thus I∆0 + ∆0-Bondy
proves PHP (f).

We now prove the harder direction that the Bondy principle Bondy(g),
for g a ∆0 -predicate, is provable in I∆0 + ∆0-PHP . For 0 ≤ x, z < a ,
we have g(x, z) is true iff the (x, z) entry of the matrix is equal to 1 (now
numbering rows and columns of the matrix starting from zero). We think
of each row as a string of 0’s and 1’s, which read from left-to-right, is the
binary representation of a non-negative integer. We write x ≺ y to denote
the condition that the number coded by row x is less than the number
coded by row y ; or formally, x ≺ y abbreviates the ∆0 -formula

(∃z < a)[g(y, z) ∧ ¬g(x, z) ∧ (∀z′ < z)(g(x, z′) ↔ g(y, z′))].

We write x 4 y as an abbreviation for

x ≺ y ∨ (∀z < a)(g(x, z) ↔ g(y, z)).

The intuitive idea of our proof of Bondy’s theorem is that if the
n rows of the matrix are sorted according to ≺ , and if, for each row
except the first, we choose the first column where that row differs from the
immediately preceding row, then those n−1 columns suffice to distinguish
all n rows. We show next that this intuitive proof can be carried out in
I∆0 + ∆0-PHP ; for this, we must avoid sorting the rows, but can still
talk about the immediately ≺ -preceding row.

Lemma 13 Let P (x) be a ∆0 -property, possibly with additional free
variables. Then I∆0 can prove

(a) (∃x < a)P (x) → (∃x < a)(P (x) ∧ (∀y < a)(P (y) → x 4 y) , and

(b) (∃x < a)P (x) → (∃x < a)(P (x) ∧ (∀y < a)(P (y) → y 4 x) .

Of course this lemma says that I∆0 can prove the maximiza-
tion/minimization properties of ∆0 -predicates w.r.t. the 4 ordering
of the rows.

Proof of Lemma 13. To prove part (a), let M(a) denote the formula to
be proved. Clearly M(a) is a ∆0 -formula, and it is easy to see that I∆0
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can prove M(1) and (∀u)(M(u) → M(u + 1)). Thus, by induction, I∆0

can prove M(a). Part (b) is proved similarly. 2

To prove Theorem 12, we shall argue informally in I∆0 + ∆0-PHP ,
assuming that the hypothesis of Bondy(g) holds:

(∀x < a)(∀y < a)(x 6= y → (∃z < a)(¬(g(x, z) ↔ g(y, z)))).

First, using Lemma 13(a), there must be a row x0 so that
(∀x < a)(x0 4 x). Using Lemma 13(b), we see that for all rows x 6= x0 ,
there is a unique row y so that y ≺ x and so that there is no row y′ such
that y ≺ y′ ≺ x . We define Pred(x) to be equal to this y . If we further
define Pred(x0) = x0 , then Pred(x) is a total, ∆0 -defined function.

Let x 6= x0 ; clearly there exists at least one column z such that

¬(g(x, z) ↔ g(Pred(x), z)).

We define Col(x) to be equal to the least such column z . We let Col(x0)
be undefined. We write z ∈ Col as an abbreviation for the ∆0 -formula

(∃x < a)(x 6= x0 ∧ z = Col(x)).

Claim: There is a z0 < a so that z0 /∈ Col .

Proof of claim: Suppose that the claim fails. Then a total function h(z)
can be ∆0 -defined by letting h(z) equal the least x < a such that
z = Col(x). But then h is a one-to-one map from {0, 1, . . . , a − 1} into
{0, 1, . . . , a − 1} \ {x0} , which is easily seen to contradict the ∆0-PHP .

We are now ready to prove the conclusion of Bondy(g). Let z0

be the column from the claim. Let x, y be two rows with y ≺ x .
We must show that there is a column z such that z 6= z0 and
such that ¬(g(x, z) ↔ g(y, z)) . Let z be the least value such that
¬(g(x, z) ↔ g(y, z)) : we must show z 6= z0 . By Lemma 13(a), there
is 4 -minimum x′ < a such that

(∀u ≤ z)(g(x′, u) ↔ g(x, u))

holds, since x itself satisfies this condition. Note that y ≺ x′ . In particular,

y 4 Pred(x′) ≺ x′ 4 x.

Since (∀u < z)(g(y, u) ↔ g(x, u)), we have also

(∀u < z)(g(Pred(x′), u) ↔ g(x′, u).

Thus, from the definition of x′ , we have g(x′, u) and ¬g(Pred(x′), u);
which implies that z = Col(x′), so z ∈ Col and z 6= z0 . 2
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Theorem 11 follows from Theorem 12 by the general Paris-Wilkie
method of translating proofs in bounded arithmetic into polynomial-size,
constant-depth Frege proofs. The essential idea of this translation in that
universal and existential bounded quantifiers become conjunctions and
disjunctions, respectively, and that a use of induction becomes a series
of uses of modus ponens. In this way, our proof of Theorem 12 can be
translated into a direct proof of Theorem 11.

4.2 Kruskal-Katona Theorem

In this section, we give polynomial-size Frege proofs of the corollary to the
Kruskal-Katona Theorem that is used in the proof of Frankl’s Theorem. We
begin by stating the full Kruskal-Katona theorem, and state the corollary
as Theorem 15.

Definition The antilexicographic ordering of subsets of [n] is given by

A ≺ B ⇔ A ⊂ B or (A + B and max{i : i ∈ A\B} < max{i : i ∈ B\A})

Thus, for instance, {2, 3, 4} ≺ {1, 2, 5} .

Definition We can represent a set {S1, . . . , Sm} of subsets of [n] by an
m × n matrix {aij}ij of 0’s and 1’s by letting aij = 1 if j ∈ Si and
aij = 0 if j 6∈ Si . This matrix is called incidence matrix of {S1, . . . , Sm} .
A row representing a subset is called the incidence vector of the subset.

For the rest of this section matrices will have rows ordered from top
to bottom in antilexicographical order, but will have columns in reverse
order from right to left starting with column one. So, column one is
the rightmost one and column n the leftmost one. With the columns
of the incidence matrix ordered in this way, each incidence vector can be
viewed as the binary representation of an integer, and the antilexicographic
ordering corresponds to the usual ordering on the integers. For instance,
the subset {1, 2, 5} of {1, 2, 3, 4, 5} is identified with the number with
binary representation (10011)2 , which is 19 in base 10. Also, {2, 3, 4}
would be the integer with binary representation (01110)2 , which is 14 in
base 10. Thus, {2, 3, 4} ≺ {1, 2, 5} holds since the former is less than the
latter.

In this way a set of m subsets of [n] can be represented as the set of
integers {b1, . . . , bm} , where bi is the number with binary representation
equal to the i-th row of the incidence matrix.

Notation The size of a row (incidence vector) is the number of 1’s in
the row. For an integer corresponding to such a row, we let the size of
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an integer be the number of ones in its binary representation. We write
|{b1, . . . , bm}|≤k to denote the number of bi ’s of size ≤ k .

Definition A family of sets X is called hereditary if, whenever S is in X ,
then all subsets of S are also in X . A matrix is hereditary if it is the
incidence matrix of a hereditary family of sets.

Theorem 14 (Kruskal-Katona) Let 0 < ` < k . Let A be a collection
of k sets of size m . Let B denote the first k sets of size m in the
antilexicographic ordering. Then, the number of sets of size ` which are
subsets of members of A is at least as large as the number of sets of size `
which are subsets of members of B .

An important point is that the Kruskal-Katona theorem stated in the
above form cannot be formalized with short propositional formulas; since
there may be exponentially many sets of size ` which are subsets of mem-
bers of A and B . However, the following corollary of the Kruskal-Katona
theorem can be expressed with polynomial-size propositional formulas.
Moreover, we will present a new proof of this second theorem and argue
that our proof can be formalized by a uniform polynomial-size Frege proof.

Theorem 15 Let 0 ≤ k ≤ n . Let X be a hereditary family of subsets
of [n] of cardinality m . Then

|X|≤k ≥ |{0, . . . , m − 1}|≤k

We will first explain how to express Theorem 15 propositionally as a
family of tautologies KKn

m . Let X be a family of subsets of [n] . We encode
X with the underlying variables pij , i ≤ m and j ≤ n , where pij has the
value True or False depending on whether a 1 or a 0 is in the (i, j) entry
of the incidence matrix of X . The propositional formula, KKn

m , states
that either the set of subsets (described by the pij ’s) is not hereditary, or
two subsets are the same, or for all k ≤ n , |X|≤k ≥ |{0, . . . , m − 1}|≤k .
We can express the fact that the pij ’s represent a hereditary family by the
following formula:∧

1≤i≤m

∧
1≤j≤n

(pij →
∨

1≤`≤m
` 6=i

(¬p`j ∧
∧

1≤k≤n
k 6=j

p`k ↔ pik))

The quantities |X|≤k , and |{0, . . . , m − 1}|≤k can be expressed by small
propositional formulas, using counting formulas (see [4]). Thus, the
tautologies KKn

m are expressible by polynomial-size formulas.

We next give a new, elementary proof of Theorem 15 based on the
next two lemmas.
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Lemma 16 For all i, j and k ,

|{0, . . . , i − 1}|≤k ≥ |{j, . . . , j + i − 1}|≤k

Proof by induction on i . The base case i = 1 is obvious. Suppose now
that the lemma holds for all integers < i . To show the lemma for i , we
have two cases depending on whether the sets of sequences {0, . . . , i − 1}
and {j, . . . , j + i − 1} intersect or not.

Case 1: j < i . It clearly suffices to discard the intersection of {0, . . . , i−
1} and {j, . . . , j + i − 1} and show that

|{0, . . . , j − 1}|≤k ≥ |{i, . . . , i + j − 1}|≤k

But this is immediate by the induction hypothesis since j < i .

Case 2: j ≥ i . Choose k so that 2k < i ≤ 2k+1 . The incidence matrix
{0, . . . , i − 1} has 0’s in columns k + 2 through n , and in column k + 1
it has 2k 0’s and i− 2k 1’s. Choose ` ≥ k so that 2` ≤ j < 2`+1 . Case 2
divides into two cases depending on whether i + j ≤ 2`+1 or i + j > 2`+1 .

Case 2.1: i + j ≤ 2`+1 . So the sequences {j, . . . , j + i− 1} have 1’s in
column ` + 1, and 0’s in columns ` + 2 through n :

n `+1 k+1 1
0 0· · · 0 0 0· · · 0 0 0· · · 0

...
...

...
...

...
0· · · 0 0 0· · · 0 0 1· · · 1

2k 0· · · 0 0 0· · · 0 1 0· · · 0
...

...
...

...
...

i − 1 0· · · 0 0 0· · · 0 1
...

...
...

...
...

j 0· · · 0 1
...

...
...

...
...

j + i − 1 0· · · 0 1

Applying the induction hypothesis to the first 2k members of {0, . . . , i−1}
and of {j, . . . , j + i − 1} yields

|{0, . . . , 2k − 1}|≤k ≥ |{j, . . . , 2k + j − 1}|≤k (3)

Also, we apply the induction hypothesis to the last i − 2k members of
{0, . . . , i − 1} ignoring the k + 1 column of 1’s, and to the last i − 2k

members of {j, . . . , j + i− 1} ignoring the ` + 1 column of 1’s using k − 1
in place of k . This yields

|{0, . . . , i−2k−1}|≤k−1 ≥ |{(j+2k)−2`, . . . , (j+2k)−2`+(i−2k)−1}|≤k−1
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Hence,
|{2k, . . . , i − 1}|≤k ≥ |{2k + j, . . . , i + j − 1}|≤k

which together with (3) implies this case of the lemma.

Case 2.2: i + j > 2`+1 . Let j2 = i + j − 2`+1 and j1 = i − j2 . Thus,
the last j2 members in {j, . . . , j + i − 1} contain 1’s in column ` + 2,
and the first j1 members have 0’s in columns ` + 2 through n and 1’s in
column ` + 1. Note j2, j1 > 1.

n `+2 `+1 k+1 1
0 0· · · 0 0 0 0· · · 0 0 0· · · 0

...
...

...
...

...
...

0· · · 0 0 0 0· · · 0 0 1· · · 1
2k 0· · · 0 0 0 0· · · 0 1 0· · · 0

...
...

...
...

...
...

i − 1 0· · · 0 0 0 0· · · 0 1
...

...
...

...
...

...
j 0· · · 0 0 1

...
...

...
...

...
...

j + j1 − 1 0· · · 0 0 1 1· · · 1 1 1· · · 1
2`+1 0· · · 0 1 0 0· · · 0 0 0· · · 0

...
...

...
...

...
...

j + i − 1 0· · · 0 1

We consider separately the two cases 2k ≥ j1 and 2k < j1 .

If 2k ≥ j1 , by the induction hypothesis with i = 2k ,

|{0, . . . , 2k − 1}|≤k ≥ |{j, . . . , 2k + j − 1}|≤k

We also apply the induction hypothesis to the last i − 2k members of
{0, . . . , i − 1} ignoring the 1’s in column k + 1 and to the last i − 2k

members of {j, . . . , j + i− 1} ignoring the 1’s in column `+2, using k− 1
in place of k . We obtain,

|{0, . . . , i−2k−1}|≤k−1 ≥ |{(j+2k)−2`+1, . . . , (j+2k)−2`+1+(i−2k)−1}|≤k−1

Hence,
|{2k, . . . , i − 1}|≤k ≥ |{2k + j, . . . , i + j − 1}|≤k

The case 2k < j1 proceeds similarly. Note that if 2k < j1 then
j2 < 2k since j1 + j2 = i ≤ 2k+1 . First we compare the first 2k members
of {0, . . . , i−1} with the last 2k of {j, . . . , j+i−1} . Then we compare the
last i−2k members of {0, . . . , i−1} with the first i−2k of {j, . . . , j+i−1} .
2
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Lemma 17 For all i, j, k, t where i ≤ 2k and 1 ≤ j ≤ i ,

|{2k, . . . , 2k + j − 1}|≤t ≥ |{i, . . . , i + j − 1}|≤t

Proof By induction on j . The base case for j = 1 is obvious. Suppose
that the lemma holds for numbers < j . The induction case has two cases.

Case 1: i = 2` + s and i + j ≤ 2`+1 for some ` < k and 2` > s ≥ 0.
This means that the members of {i, . . . , i+ j−1} have 1’s in column `+1
and 0’s in columns `+2 through n , and the members of {2k, . . . , 2k+j−1}
have 1’s in column k + 1 and 0’s in columns k + 2 through n . Also the
members of {2k, . . . , 2k +j−1} have 0’s in columns `+1 through k , since
j ≤ 2` . Now we apply Lemma 16 with t − 1 to both sets of sequences
reduced to columns 1 through ` and the lemma follows.

Case 2: i = 2` + s and i + j > 2`+1 for 0 ≤ s < 2` and ` < k .
Let j1 = 2`+1 − i and j2 = j − j1 . Thus, j1 is the number of members
of {i, . . . , i + j − 1} with 1’s in column ` + 1 and 0’s in columns ` + 2
through n , and j2 is the number of members of {i, . . . , i + j − 1} with
1’s in column ` + 2 and 0’s in the columns ` + 3 through n . The
argument splits into two cases depending on whether any of the members
of {2k, . . . , 2k + j − 1} have 1’s in the ` + 1 column, i.e., whether j ≤ 2`

or j > 2` .

Case 2.1: j ≤ 2` . In this case there are no 1’s in the ` + 1 column of
{2k, . . . , 2k + j − 1} .

n k+1 `+2 `+1 1
...

...
...

...
...

...
i 0· · · 0 0 0· · · 0 0 1

...
...

...
...

...
...

i + j1 − 1 0· · · 0 0 0· · · 0 0 1 1· · · 1
0· · · 0 0 0· · · 0 1 0 0· · · 0

...
...

...
...

...
...

i + j − 1 0· · · 0 0 0· · · 0 1 0
...

...
...

...
...

...
2k 0· · · 0 1 0· · · 0 0 0 0· · · 0

...
...

...
...

...
...

2k + j − 1 0· · · 0 1 0· · · 0 0 0

Consider the last j2 members of {i, . . . , i+j−1} and the first j2 members
of {2k, . . . , 2k + j − 1} . By the induction hypothesis

|{2k, . . . , 2k + j2 − 1}|≤t ≥ |{i + j1, . . . , i + j − 1}|≤t
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Recall that the columns from ` + 1 to k in {2k, . . . , 2k + j − 1} contain
only 0’s. Now consider the first j1 members of {i, . . . , i + j − 1} and
the last j1 in {2k, . . . , 2k + j − 1} . Transform these by discarding the
columns ` + 1 to n and in the rest of the columns interchanging all 0’s
and 1’s. The incidence vector i + j1 − 1 becomes 0 · · · 0 and i + j1 − 2
becomes 0 · · · 01, etc. This means that {i, . . . , i + j1 − 1} is transformed
into {0, . . . , j1 − 1} and that {2k + j2, . . . , 2k + j − 1} is transformed into
{a, a + 1, . . . , a + j1 − 1} for some a > 0. By Lemma 16, {0, . . . , j1 − 1}
contains fewer members with with ≤ t−1 0’s than {a, a+1, . . . , a+j1−1}
does. When we undo the transformation, by reversing the interchange of
0’s and 1’s, we get that

|{2k + j2, . . . , 2k + j − 1}|≤t ≥ |{i, . . . , i + j1 − 1}|≤t.

From the last two displayed inequalities, the desired result follows.

Case 2.2: j > 2` . Choose s′ so that j = 2` +s′ , i = 2` +s and s′ ≤ s .

n k+1 `+2 `+1 1
...

...
...

...
...

...
i 0· · · 0 0 0· · · 0 0 1

...
...

...
...

...
...

i + j1 − 1 0· · · 0 0 0· · · 0 0 1 1· · · 1
0· · · 0 0 0· · · 0 1 0 0· · · 0

...
...

...
...

...
...

i + j − 1 0· · · 0 0 0· · · 0 1 0
...

...
...

...
...

...
2k 0· · · 0 1 0· · · 0 0 0 0· · · 0

...
...

...
...

...
...

2k + 2` − 1 0· · · 0 1 0· · · 0 0 0 1· · · 1
0· · · 0 1 0· · · 0 0 1 0· · · 0

...
...

...
...

...
...

2k + j − 1 0· · · 0 1 0· · · 0 0 1

The argument splits into two subcases depending on whether s′ ≤ j1 .

First suppose s′ ≤ j1 . Consider the last s′ members of
{2k, . . . , 2k + j − 1} and the first s′ of {i, . . . , i + j − 1} . Ignore column
k + 1 of 1’s of {2k, . . . , 2k + j − 1} and column ` + 1 of 1’s in the first s′

members of {i, . . . , i + j − 1} , and apply the induction hypothesis to the
sets

{i − 2`, . . . , i − 2` + s′ − 1} and {2`, . . . , 2` + s′ − 1}
with t − 1. To apply the induction hypothesis, we need s′ ≤ i − 2` ≤ 2` ,
which is easily verified.
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Finally we compare the last 2` members of {i, . . . , i + j − 1} and the
first 2` members of {2k, . . . , 2k + j − 1} . In this case, by the induction
hypothesis,

|{2k, . . . , 2k + 2` − 1}|≤t ≥ |{i + s′, . . . , i + s′ + 2` − 1}|≤t

Here 2` ≤ i + s′ ≤ i + j1 = 2`+1 ≤ 2k .

Now suppose that s′ > j1 .Then s′ ≤ j2 , since otherwise 2s′ > j1+j2 =
j = 2` + s′ , contradicting s′ < 2` . The argument is almost the same as
when s′ ≤ j1 . Take the last s′ members of {2k, . . . , 2k + j − 1} and of
{i, . . . , i+ j−1} and ignore the k +1 column of 1’s in {2k, . . . , 2k + j−1}
and the ` + 2 column of 1’s in {i, . . . , i + j − 1} and apply the induction
hypothesis to the sets

{2`, . . . , 2` + s′ − 1} and {i − 2`, . . . , i − 2` + s′ − 1}
with t−1. To apply the induction hypothesis, we need s′ ≤ i+2`−2`+1 ≤
2` ; which holds since i + 2` − 2`+1 = i − 2` = s ≥ s′ .

Finally we compare the first 2` members of {2k, . . . , 2k + j − 1} with
the first 2` members of {i, . . . , i + j − 1} . In this case by the induction
hypothesis we get

|{2k, . . . , 2k + 2` − 1}|≤t ≥ |{i, . . . , i + 2` − 1}|≤t 2

Now we are ready to complete the proof of Theorem 15.

Proof of Theorem 15. By induction on the size of X . If |X| = 1 it
is obvious. Suppose that the theorem holds for |X| < m . Let ` ∈ [n]
be maximum so that ` is in some set in X . Let X1 be the subset
of X containing those sets of X that do not contain ` , and let X2 be
the set X \ X1 . Let m1 and m2 be the cardinalities of X1 and X2 ,
respectively. Since X is hereditary, m2 ≤ m1 ≤ 2`−1 . Define X∗

2 be
the set {S \ {`} : S ∈ X2} . Note that X∗

2 must be hereditary. By two
applications of the induction hypothesis,

|X1|≤k ≥ |{0, . . . , m1 − 1}|≤k

and
|X∗

2 |≤k−1 ≥ |{0, . . . , m2 − 1}|≤k−1.

Now,

|X|≤k = |X1|≤k + |X∗
2 |≤k−1

≥ |{0, . . . , m1 − 1}|≤k + |{0, . . . , m2 − 1}|≤k−1

≥ |{0, . . . , m1 − 1}|≤k + |{2`−1, . . . , 2`−1 + m2 − 1}|≤k

≥ |{0, . . . , m1 − 1}|≤k + |{m1, . . . , m1 + m2 − 1}|≤k

= |{0, . . . , m − 1}|≤k

The third inequality follows from Lemma 17. 2
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We claim that the above proof can be formalized by polynomial-size
Frege proofs. The easiest way to see this is to first notice that Lemma 17
is expressible by polynomial-size propositional formulas, and the proof of
Theorem 15 from Lemma 17 is also easily formalized by polynomial-size
Frege proofs. The most direct way to see that Lemma 17 has a short
Frege proof, is to notive that, since the lemma is true (by the proof
provided), a Frege proof can be obtained by exhaustively checking that the
formula holds for all possible values of i , j , k and t . Checking that the
lemma holds for a particular value of i, j, k, t is polynomial-length Frege
provable, and there are less than (n+m)4 possible values of i, j, k, t . Thus,
this “brute-force” proof is easily formalizable by a polynomial-size Frege
system. With more work, it can be shown that our entire proof of Theorem
15 is actually formalizable by polynomial-size Frege proofs, and this gives
polynomial-size Frege proofs of KKn

m which are uniform, in the sense that
the proofs can be straightforwardly described without depending on the
truth of the proposition KKn

m being proved.

5 Conclusion

As we have seen above, there is a dearth of good examples of tautologies
that provide convincing evidence of an exponential separation of Frege and
extended Frege proof systems. In fact, the only good combinatorial
candidates we have found are based on Frankl’s theorem (even the
t = 2 case). However, in the past a similar state of affairs has held
for the pigeonhole principle and for Bondy’s theorem and, subsequently,
polynomial-size Frege proofs for these have been found. Thus, it is not
unlikely that further progress will find polynomial-size Frege proofs of the
tautologies based on Frankl’s theorem.

We also have a large number of examples of combinatorial principles,
most notably, the Odd-town Theorem and the Graham-Pollak Theorem,
which have fairly simple linear algebra proofs. These have polynomial-size
extended Frege proofs and we conjecture that they have quasipolynomial-
size Frege proofs. However, combinatorialists have reportedly put signifi-
cant effort into searching for proofs that are not based on linear algebra,
so it may require a significant breakthrough to find polynomial-size Frege
proofs of these principles.

In the course of preparing this paper, we considered several other
examples based on expander graphs and on matching algorithms; however,
none of these ultimately yielded examples which could be conjectured
to provide an exponential separation of Frege and extended Frege proof
systems.
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