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Abstract

A grid graph has rectangularly arranged vertices with edges permit-
ted only between orthogonally adjacent vertices. The st -connectivity
principle states that it is not possible to have a red path of edges and
a green path of edges which connect diagonally opposite corners of the
grid graph unless the paths cross somewhere.

We prove that the propositional tautologies which encode the
st -connectivity principle have polynomial size Frege proofs and poly-
nomial size TC0 -Frege proofs. For bounded width grid graphs, the
st -connectivity tautologies have polynomial size resolution proofs. A
key part of the proof is to show that the group with two generators,
both of order two, has word problem in alternating logtime (Alogtime)
and even in TC0 .

Conversely, we show that constant depth Frege proofs of the
st -connectivity tautologies require near-exponential size. The proof
uses a reduction from the pigeonhole principle, via tautologies that
express a “directed single source” principle SINK, which is related to
Papadimitriou’s search classes PPAD and PPADS (or, PSK).

The st -connectivity principle is related to Urquhart’s propositional
Hex tautologies, and we establish the same upper and lower bounds
on proof complexity for the Hex tautologies. In addition, the Hex
tautology is shown to be equivalent to the SINK tautologies and to
the one-to-one onto pigeonhole principle.

∗Supported in part by NSF grants DMS-0100589 and DMS-0400848.
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1 Introduction

This paper presents upper and lower bounds on proof lengths of propositional
tautologies that express st-connectivity properties on grid graphs and of
propositional tautologies based on the game of Hex. The st-connectivity
tautologies state that two paths that cross each other, must actually cross
at some point (somewhat like a generalized intermediate value theorem).
Namely, if there are two paths of edges in a rectangular grid graph that
begin and end at diagonally opposite edges, then the two paths must intersect
somewhere.

The st-connectivity problem is the decision problem of, given a finite
graph and two vertices s and t in the graph, determining whether there is a
path from s to t . A grid graph is a graph in which vertices are rectangularly
arranged and in which edges may join only vertices that are vertically
or horizontally adjacent. Barrington et al. [2] studied the computational
complexity of st-connectivity in constant-width grid graphs; they proved
that in graphs of width d , the st-connectivity problem is complete for the
circuit class Πd of unbounded fan-in Boolean circuits of depth d . Since
the AC0 -hierarchy is the union of the classes Πd , these st-connectivity
problems give a natural characterization of fragments of AC0 . D. Barrington
(in unpublished work) has also investigated the low-level complexity of a
number of variations of the st-connectivity problem. He considered, among
other things, undirected and directed graphs and graphs in which edges were
constrained to go in certain directions.

Our st-connectivity tautologies, called STCONN, will be formulated
in terms of an undirected graph with all vertices of degree at most two.
This undirected graph consists of two subgraphs, the green subgraph and
the red subgraph; the intuition is that these subgraphs form a path of
green edges and a path of red edges, and the st-connectivity tautologies
state that the two graphs cannot cross without intersecting. The undirected
st-connectivity tautologies are formulated in terms of propositional variables
ge and re that indicate the presence or absence of the undirected edge e in
the two paths. We also formulate tautologies DSTCONN which express the
st-connectivity principle for directed graphs. The DSTCONN tautologies
are apparently weaker than the STCONN tautologies.

S. Cook and C. Rackoff [12] earlier considered a different formulation
of st-connectivity that assumed that the graph is directed and that
furthermore, the vertices along each path are enumerated by a function.
They formulated st-connectivity tautologies with variables gv,i and rv,i that
indicate whether vertex v is the i-th vertex along the green or red path.
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Cook and Rackoff gave polynomial size Frege proofs of these tautologies.
The idea of their Frege proofs is based on the concept of winding number.
The proofs are proofs by contradiction and work by considering the i-th
node along the green path and computing the winding number of the red
path around that point. The proof shows that the winding number around
the (i + 1)-st vertex of the path is equal to the winding number around the
i-th vertex. Then (brute-force) induction on i is used to argue that the
winding number is the same at the first point of the green path as at the last
point. From this, a contradiction is reached.

The motivations for the work of the present paper arose from a desire to
prove lower bounds on the complexity of propositional proofs. The Σd -Frege
proof systems are Frege systems restricted to use only Σd -formulas. (See
the next section for more background on Frege systems.) It has been open
for some time whether there are depth two tautologies, or more generally
tautologies of constant depth ≤ d , which superpolynomially separate Σd -
Frege proof from Σd+1 -Frege systems. N. Segerlind suggested that the
st-connectivity problem for width d grid graphs could be good candidate
for this, since the st-connectivity principles can be readily expressed as
tautologies in disjunctive normal form (see Section 3 below), and since
the most obvious proofs of the st-connectivity tautologies are based on
expressing st-connectivity in the width d grid graph, which by [2] is known
to require Πd -formulas to express in polynomial size.

At first, we were convinced that this suggestion had some possibility
of succeeding, but in the end, the results are negative. Indeed, we prove
that the st-connectivity principle tautologies have polynomial size Frege
proofs, and even polynomial size TC0 -Frege proofs. Our proofs improve
on the above-mentioned proofs of Cook and Rackoff, since we do not
need to assume that the graph is directed or that the vertices in the
paths are enumerated. Secondly, we prove that, for bounded width grid
graphs, there are polynomial size resolution proofs of the st-connectivity
principles. As a consequence, there are polynomial size, depth two Frege
proofs of the st-connectivity principles for bounded width grid graphs. Thus,
the st-connectivity principles cannot be used to give superpolynomial size
separations of Σd -Frege and Σd+1 -Frege systems.

On the other hand, for general (non-bounded width) grid graphs, we show
that bounded depth Frege proofs of the st-connectivity tautologies require
exponential size. This is proved in Section 6 via a reduction from the one-to-
one, onto pigeonhole tautologies PHP, using the fact that these pigeonhole
tautologies require exponential size bounded depth Frege proofs [21, 17].
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Urquhart [22] proposed propositional tautologies based on the game of
Hex. The game of Hex was independently developed by P. Hein and J. Nash
(see Browne [7] for more information about Hex). The Hex tautologies
express the fact that a completed Hex game must have a winner. The
related Hex decision problem is the problem of deciding who has won the
game. Barrington proved that the Hex decision problem is equivalent to
several versions of the st-connectivity problems on grid graphs. Section 7
describes the Hex tautologies, and proves they are equivalent to a grid
graph tautology, SINK, which states that a directed path cannot have one
source and zero sinks. We obtain as a corollary that the Hex tautologies
are equivalent to the one-to-one onto PHP tautologies. Consequently, the
Hex tautologies can be proved with polynomial size Frege proofs, but require
exponential size bounded depth Frege proofs.

The following definition is widely used for the comparing the proof
complexity of different families of tautologies.

Definition Let Q and T be families of propositional formulas. Let F + T
denote a Frege system augmented to include all substitution instances of
formulas from T . Then, we say Q 4cdF T holds provided that the formulas
from Q have polynomial size, constant depth proofs in the proof system
F + T .

We write Q ≡cdF T to mean that both Q 4cdF T and T 4cdF Q .

The following relationships will be established for the tautologies used in
this paper:

PHP ≡cdF HEX ≡cdF SINK ≡cdF 2SINK (1)
4cdF DSTCONN ≡cdF 2DSTCONN 4cdF STCONN

The tautologies 2SINK and 2DSTCONN are variants of SINK and
DSTCONN that allow vertices to have in- and out-degrees which are equal
and greater than one; they will be described in Section 3.2.

We will also introduce an undirected version of SINK, called USINK.
Here we can prove that

SINK 4cdF Mod2 ≡cdF USINK 4cdF STCONN.

The tautology Mod2 is the parity principle, or counting mod 2 tautologies.
From this, we deduce that STCONN 64cdF SINK.
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2 Preliminaries

This section quickly reviews the propositional proof systems used in this
paper. For a more in-depth discussion, see [16].

2.1 Frege systems and TC0 -Frege systems

The first system we use is the Frege proof systems, which are the common
‘textbook’ proof systems for propositional logic based on modus ponens [13].
The lines in a Frege proof consist of propositional formulas built from
variables pi and from the connectives ¬ , ∧ , ∨ and → . There is a finite set
of axiom schemes for Frege systems, for example, ϕ ∧ ψ → ϕ is a possible
axiom scheme. The only rule of inference is (w.l.o.g.) modus ponens. Frege
systems are sound and implicationally complete,

There are several common restrictions that can be put on Frege systems;
for example, bounded depth Frege systems restrict lines to be formulas with
negations only on variables and with a bounded number of alternations of
∨ ’s and ∧ ’s (and do not permit the connective →). When the formulas
are restricted to be Σd , that is, to have d alternating levels of ∨ ’s and ∧ ’s
(starting with ∨ ’s), then the system is called a Σd -Frege system.

Other methods of restricting Frege systems arise naturally from compu-
tational complexity. One can work with bounded depth Frege systems over
a larger set of connectives, such as parity gates (Mod-2 gates), Mod-k gates,
or threshold gates. The TC0 -Frege systems are defined to be bounded depth
Frege systems in a language which has the Boolean connectives ¬ , ∨ and
∧ , and the threshold gates Tk(x1, . . . , xn). The Tk predicate is true when at
least k of its inputs are true. Two different, but equivalent, formalizations
of TC0 -Frege proof systems are given by [9] and [6].

In all the various Frege systems, a proof consists of a sequence of formulas.
Each formula must either be an instance of an axiom, or be inferred from
earlier formulas by a valid rule of inference. The final line in the proof is the
formula proved. The length, or size, of a proof is defined to equal the total
number of symbols that occur in the proof. A family of tautologies ϕi is
said to have proofs of size f(n) provided each ϕi has a proof of size at most
f(|ϕi|), where |ϕi| denotes the number of symbols in ϕi .

There are several major open problems about the lengths of the proposi-
tional proofs, related to open problems such as whether NP = coNP . First,
there is the question as to whether Frege systems or TC0 -Frege systems
have polynomial size proofs of all tautologies. Also open is the question
of whether Frege proofs can be superpolynomially shorter than TC0 -Frege
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proofs; although, it is known that Frege proofs can polynomially simulate
TC0 -proofs.

For bounded depth systems, Kraj́ıček [15] defined a notion of Σ-depth d
formulas (essentially, Σd formulas augmented with an additional bottom
level of logarithmic fanin), and he gave a superpolynomial size separation
of Σ-depth d LK proofs and Σ-depth (d + 1)-LK proofs. However, his
separation applies only to refuting sequents of Σ-depth d formulas, and it
is unknown whether similar results holds for smaller depth formulas.

The corresponding problem for Frege systems is whether there are
constants k ≤ d such that there is a family of tautologies which are
Σk -formulas for which the shortest Σd -Frege proofs are super-exponentially
larger than the shortest Σd+1 -Frege proofs. This open question was the
motivation for studying the st-connectivity tautologies, as was discussed in
the introduction. The hope was that polynomial size Frege proofs of the
st-connectivity tautologies (which can be expressed in as polynomial-size
formulas of depth k = 2) might necessarily involve formulas which express
st-connectivity properties, and hence be of complexity Πd . Somewhat
disappointingly, we prove that this is not the case. In fact, when d is
constant, there are polynomial size resolution proofs of the st-connectivity
principles.

We also prove that the st-connectivity tautologies have polynomial size
Frege proofs, as well as polynomial size TC0 -Frege proofs, even if the width d
of the graph is not constant.

2.2 Resolution systems

Resolution is a widely used proof system for refuting sets of clauses. Only the
propositional fragment of resolution is used in this paper. A literal is defined
to be either a propositional variable p , or the negation of a propositional
variable, p . A clause is a set of literals; the intended meaning of a clause is
the disjunction of its literals. We assume, w.l.o.g., that no clause C contains
both p and p for any variable p . Finally a set of clauses is identified with
the conjunction of the clauses.

Resolution is a refutation system, in that it is used to prove the
unsatisfiability of a set Γ of clauses. A resolution refutation of Γ is a
sequence of clauses ending with the empty clause. Each clause in the
refutation must either be from Γ, or must be inferred from two earlier
clauses by the resolution rule:

C ∪ {x} D ∪ {x}
C ∪ D

.
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The size of a resolution refutation is defined to equal the total number of
occurrences of literals in the refutation. The width of a refutation is the
maximum number of literals in any clause in the refutation.

Sometimes a weakening (or subsumption rule) is also permitted:

C

C ∪ D

It is well-known that any resolution refutation R with weakening can
converted into a resolution refutation R′ without weakening. Furthermore
the size (and number of steps) in R′ is less than that of R . Therefore, we
shall henceforth allow the weakening rule in our resolution proofs.

Resolution is complete, that is, if Γ is an unsatisfiable set of clauses, then
there is resolution refutation of Γ. Furthermore, resolution (with weakening)
is also implicationally complete. Let Γ be a set of clauses and C be a clause.
We write Γ ² C to mean that every truth assignment satisfying Γ also
satisfies C . The following well-known theorem (called Lee’s Theorem) states
that resolution is implicationally complete.

Theorem 1 Suppose Γ ² C . Then there is a resolution derivation of C
from Γ (possibly requiring the use of the weakening rule).

By definition, a resolution derivation of C is the same as a resolution
refutation except that it ends with the clause C instead of with the empty
clause.

A set Γ of clauses is equivalent to a CNF (conjunctive normal form)
formula ϕΓ . Γ is unsatisfiable if and only if ¬ϕΓ is a tautology. Therefore,
a resolution refutation of Γ can be viewed as a proof of ¬ϕΓ . The next
section will define a tautology STCONN which expresses the st-connectivity
tautologies by first defining a set STCONNc of clauses that express the
negation of the st-connectivity principle. Thus, STCONNc plays the role of
the Γ and STCONN the role of the formula ¬ϕΓ .

3 The st-connectivity tautologies

3.1 Tautologies on undirected graphs

The vertices of a d×n grid graph are the ordered pairs (i, j) for i = 1, 2, . . . , d
and j = 1, 2, . . . , n . The vertices are viewed as being in a rectangular array
with d rows and n columns, with the vertex 〈1, 1〉 as the upper left corner.
By convention, grid graphs contain undirected edges. Two kinds of edges
are allowed in the grid graph. First, there can be horizontal edges, which
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connect two vertices (i, j) and (i, j +1). Second, there can be vertical edges
that connect two vertices (i, j) and (i + 1, j). Formally, a (potential) edge
is an unordered pair {u, v} where u and v are vertices which are either
vertically or horizontally adjacent. Thus, the (potential) edges in a d × n
grid graph are the edges

{(i, j), (i, j + 1)} for i = 1, . . . , d and j = 1, . . . , n − 1,

{(i, j), (i + 1, j)} for i = 1, . . . , d − 1 and j = 1, . . . , n.

The set of potential edges is called E . We use variables e , e1 , e2 , etc. to
denote members of E .

The st-connectivity principle will be stated in terms of two graphs, G
and R . The intuition is that G is a graph of “green” edges that form a path
from (1, 1) to (d, n), and R is a graph of “red” edges that form a path from
(d, 1) to (1, n). Variables ge are used to encode G by letting ge have value
True if e is an edge in G . Similarly, the variables re encode the red graph.

We shall define sets of clauses that describe the conditions satisfied by
the green and red paths, but first we define three methods of constructing
sets of clauses.

Definition Let x1, x2, x3, x4 be variables. The set OneOf(x1, x2) is the set
of clauses which is satisfied by a truth assignment τ iff τ assigns the value
True exactly one of x1 and x2 ; namely,

OneOf(x1, x2) = { {x1, x2}, {x1, x2} }.
The set ZeroOrTwoOf(x1, x2, x3) is the set of clauses that is satisfied by
exactly that those truth assignments that assign True to an even number of
the three variables; namely,

ZeroOrTwoOf(x1, x2, x3) = { {x1, x2, x3}, {x1, x2, x3},
{x1, x2, x3}, {x1, x2, x3} }.

Similarly, we define ZeroOrTwoOf(x1, x2, x3, x4) to be a set of clauses which
is satisfied by exactly the truth assignments that assign True to either zero
or two of the four variables. Namely,

ZeroOrTwoOf(x1, x2, x3, x4) = { {x1, x2, x3, x4} , {x1, x2, x3, x4} ,

{x1, x2, x3, x4} , {x1, x2, x3, x4} , {x1, x2, x3} ,

{x1, x2, x4} , {x1, x3, x4} , {x2, x3, x4} }.
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The definition of ZeroOrTwoOf is “overloaded” as it depends on
whether it has three or four arguments. Our notation will further exploit
this overloading by writing ZeroOrTwoOf(X), where X must be a set
containing either three or four literals. The meaning of this notation is
clear; in particular, the clauses in ZeroOrTwoOf(X) are invariant under
permutations of the literals in X .

We now define a set GC = GC(d, n) of clauses which describes the
conditions on the green edges as represented by the variables ge . GC is the
union of the following sets of clauses:

1. OneOf({ge : (1, 1) ∈ e}).
2. OneOf({ge : (d, n) ∈ e}).
3. ZeroOrTwoOf({ge : v ∈ e}), for all vertices v except for v = (1, 1)

and v = (d, n).

Clearly, a truth assignment to the variables ge will satisfy the clauses
in GC if and only if it defines a graph which contains a simple path from
(1, 1) to (d, n) as well as zero or more simple cycles, with the path and the
cycles (if any) all vertex disjoint. (A path or a cycle is called “simple” if no
vertex appears in it twice.) The path will be called the green path.

Similarly, the set RC = RC(d, n) of clauses describes the red graph and
is the union of the following sets of clauses:

1. OneOf({re : (d, 1) ∈ e}).
2. OneOf({re : (1, n) ∈ e}).
3. ZeroOrTwoOf({re : v ∈ e}), for all vertices v except for v = (d, 1)

and v = (1, n).

The clauses in RC state that the variables re define a red graph containing
a simple path from (d, 1) to (1, n) and zero or more simple cycles, with the
path and the cycles vertex disjoint.

The set GRDISJ(d, n) expresses the condition that the red and green
graphs are vertex disjoint, and contains the clauses

{ge, rf},
for all edges e, f such that e ∩ f 6= ∅ .

The set STCONNc = STCONNc(d, n) is union of of the sets GC(d, n),
RC(d, n), and GRDISJ(d, n). This set of clauses expresses (the negation of)
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the st-connectivity condition for d×n grid graphs. Indeed, it is easy to verify
that STCONNc is unsatisfiable, since any green path and red path must
intersect in at least one vertex. The superscript “c” in the notation stands
for either “clauses” or “complement”, and indicates that that satisfiability of
the set of clauses is equivalent to the failure of the st-connectivity principle.

In order to work with Frege proof systems, we also define a propositional
tautology STCONN that expresses the st-connectivity. STCONNc is a
set of clauses, and thus is equivalent to a CNF formula. We define
STCONN to be the DNF (disjunctive normal form) formula which is
equivalent to the negation of that CNF formula. Then, STCONN expresses
the st-connectivity principle directly and therefore is a tautology.

As it will simplify our proofs, we shall work with a slightly modified
version of the st-connectivity principle, called STCONN+ . In the modified
version we assume that the first (leftmost) edges of the green and red paths
are both horizontal, and that there are no other edges incident on any vertex
(i, 1) from the leftmost column of vertices. Similarly, we assume that the last
(rightmost) edges of both paths are also horizontal, and again that there are
no other edges incident on any vertex (i, n) in the rightmost column. These
assumptions can be made without loss of generality since one could always
add additional single columns of vertices at both the left- and right-hand
sides; and add horizontal edges outward from the corners of of the original
grid graph.

This modified st-connectivity principle is defined as follows: Let
STCONNc

+ be the set STCONNc augmented to include the unit clauses

{ge} and {re} such that (i, 1) ∈ e or (i, n) ∈ e for 2 ≤ i < n .

The propositional tautologies STCONN+ are the DNF formulas obtained
from the (negation of the) STCONNc

+ clauses.
Note that the size of the formulas STCONN and STCONN+ is polyno-

mially bounded by d and n . The next three theorems are proved in Sections
4 and 5 and give upper bounds on the propositional proof complexity of
st-connectivity.

Theorem 2 There are polynomial size Frege proofs of the formulas
STCONN(d, n).

Theorem 3 There are polynomial size TC0 -Frege proofs of the formulas
STCONN(d, n).

10



The polynomial bounds in the above two theorems depend only on the
size of the formulas STCONN(d, n).

Theorem 4 Let d0 be a fixed constant. Then there are polynomial size,
constant width resolution refutations of STCONNc(d0, n).

It will suffice to prove these theorems for the STCONN+ principles instead
of the STCONN principles.

Conversely, Section 6 will establish the following theorem, which gives
an exponential lower bound on the size of bounded depth Frege proofs of the
st-connectivity principle.

Theorem 5 Let d ≥ 1. There is a constant ε, such that any Σd -Frege proof
of STCONN(n, n) requires size Ω(2nε

).

3.2 The DSTCONN and SINK tautologies

When proving Theorem 5, we will actually establish the same result for di-
rected versions of the st-connectivity principles, and for a “SINK” principle
about paths. Since the directed graph principles are defined similarly to the
undirected ones, we shall only briefly describe their definitions. A d × n
directed grid graph has vertices (i, j), for i ∈ {1, . . . , d} and j ∈ {1, . . . , n} .
Its potential edges are the ordered pairs 〈u, v〉 for u and v vertices that are
horizontally or vertically adjacent. The graph has red and green edges and
the variables re and ge , indicate whether the directed edge e is present.

DSTCONNc uses clauses EqualCardZeroOrOne(X, Y ) where X and Y
are sets of at most four variables. This set of clauses is satisfied precisely
when either all the members of X and Y are false, or when exactly one
variable from each of X and Y is true.

The set DGC = DGC(d, n) of clauses expresses the conditions that the
green edges must satisfy; they are:

1. OneOf{ge : tail(e) = (1, 1)} .

2. OneOf{ge : head(e) = (d, n)} .

3. {ge} , where head(e) = (1, 1) or tail(e) = (d, n).

3. EqualCardZeroOrOne(X, Y ), where X = {ge : head(e) = u} and
Y = {ge : tail(e) = u} , for every vertex u except u = (1, 1) and
u = (d, n).
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These clauses will be satisfied provided the the green edge variables ge define
a simple path starting at (1, 1) and ending at (d, n), plus zero or more simple
cycles. The DRC clauses for the red graph are defined similarly.

The set DSTCONNc(d, n) of clauses is the set DGC ∪ DRC ∪ GRDISJ.
Obviously, DSTCONNc is unsatisfiable. We also let DSTCONN be the
DNF formula which expresses the negation of the DSTCONNc clauses.
DSTCONN is of course a tautology expressing the directed st-connectivity
principle.

We next define a generalized version of the DSTCONN tautologies
that allows a vertex to have in- and out-degrees greater than one, as long
as the in- and out-degree are equal. For this, we define the set of clauses
EqualCard(X, Y ), which is satisfied by an assignment iff it sets equal numbers
of the variables in X and Y true. We then define 2DSTCONN exactly like
DSTCONN except we replace the clause sets EqualCardZeroOrOne(X, Y )
by EqualCard(X, Y ). (We use the notation “2DSTCONN” because, after
opposing edges are removed, each vertex has in- and out-degree at most
two.)

2DSTCONN is probably not of independent interest, but will be
convenient later for the proof of Theorem 5. However, it is useful to observe
that there is a simple reduction from the 2DSTCONN tautologies to the
DSTCONN tautologies that can be formalized with polynomial size Frege
proofs. For this, fix some instance of 2DSTCONN(d, n) and some truth
assignment that encodes a directed d × n grid graph G that is purported
to falsify the 2DSTCONN formula. We argue informally, with a proof that
can be formalized in a bounded depth Frege, that from this we can construct
a graph that falsifies an instance of DSTCONN. First, if there are any
opposing edges e1 = (u, v) and e2 = (v, u) that are both in G , we just
remove them from the graph. Now, each vertex in the green subgraph has
in- and out-degrees at most two. To reduce the in- and out-degrees to be at
most one, we triple the dimensions of the grid graph to be 3d × 3n . Each
edge in G splits into three sub-edges, and the vertices of in- and out-degree
two are transformed according to the construction shown in Figure 1. The
result is a grid graph that falsifies the DSTCONN principle.

We have proved:

Theorem 6 2DSTCONN 4cdF DSTCONN.

It is clear that the converse to the theorem holds too, so
2DSTCONN ≡cdF DSTCONN. In addition, it is simple to see that
DSTCONN 4cdF STCONN, since, to reduce DSTCONN to STCONN,
one can merely replace the directed edges with undirected edges.
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⇒

⇒

Figure 1: On the left are shown vertices in a directed graph with in- and
out-degree equal to two. On the right, the graph’s dimensions have been
tripled, and the resulting graph has in- and out-degree at most one at every
vertex.

We now define tautologies SINK = SINK(d, n) which express the fact
that if every vertex in a directed graph has in- and out-degrees bounded
by 1 and if there is a source node, then there must be a sink node. These
tautologies are formalized with variables xe , for e any potential edge in a
d × n directed grid graph. The SINKc clauses state that: (a) vertex (1, 1)
has in-degree zero and out-degree one, (b) every other vertex either has no
incoming or outgoing edge, or has in- and out-degree both equal to 1. The
formulas SINK are the DNF tautologies which express the negation of the
conjunction of the SINKc clauses.

The terminology “SINK” is adopted from [3] who used this name for
a decision procedure from the search class PPADS. PPADS is a search
class for finding a sink in a directed graph; this class was first defined by
Papadimitriou under the name PSK [19, 20]. [3] also defined a search
problem called ”SOURCE.OR.SINK”, in which the problem is to find either
a source or sink in a graph other than a given known sink; this latter search
problem corresponds to Papadimitriou’s class PPAD. Our SINK tautologies
are actually closer to the SINK.OR.SOURCE search problem than to the
SINK search problem.

The 2SINK tautologies are defined similarly to the SINK tautologies,
except that condition (b) is relaxed to: (b ′ ) every vertex other than (1, 1)
has in-degree equal to out-degree. After removing opposing edges, there are
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Source

Source

Red instance of
SINK

Sink

Sink

Green instance of
reversed SINK

Green instance of
SINK

Red instance of
reversed SINK

Figure 2: Showing the reduction from SINK to DSTCONN. The four copies
of the instance of SINK are oriented so that the node with one edge is at
the position indicated.

at most four edges adjacent to any given vertex, so the in- and out-degrees
are ≤ 2. Similarly to the argument that 2DSTCONN ≡cdF DSTCONN, it
can be shown that 2SINK ≡cdF SINK.

Theorem 7 SINK 4cdF DSTCONN.

Proof Assume that there is a truth assignment τ that falsifies the
SINK(d, n) tautology. We then define a truth assignment that violates
the DSTCONN(2d, 2n) tautology. Namely, we create four copies of the
graph defined by the truth assignment τ . In two of the copies, we color the
edges green, and in the other two copies, the edges are colored red. Then,
in one of the green copies and one of the red copies, the edge directions are
reversed, so that those two graphs have a sink, but no source. Then, the
four copies are placed as shown in Figure 2 to create a graph that falsifies
the DSTCONN(2d, 2n) tautology.

It is easy to verify that this construction can be formalized with constant
depth, polynomial size Frege proofs. 2

We define PHP = PHP(n) to be the tautology that expresses the
pigeonhole principle that there is no one-to-one and onto mapping from
[n + 1] to [n] , where [n] = {0, 1, . . . , n − 1} . As usual, the variables used in
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PHP are xi,j expressing the condition that i is mapped to j . Thus, unlike
the other tautologies, PHP is a not a grid graph tautology.

Theorem 8 SINK 4cdF PHP.

Proof We use a construction from [3, §2.4]. Suppose we are given a graph
which (purportedly) falsifies the SINK(d, n) tautology. We construct a 1-1,
onto mapping f that falsifies the PHP(d · n − 1) tautology. Identifying the
d · n vertices with [nd] , we define the function f as follows. If there is a
directed edge from u to v in the graph, then f(u) = v . If there is no edge
outgoing from u , then f(u) = u . This construction can be carried out in
constant-depth Frege. We leave the rest of the details to the reader. 2 .

Below, Theorem 9 will establish that PHP 4cdF SINK and Section 7 will
prove that HEX ≡cdF SINK. These will suffice to prove the relationships
among the various tautologies that are claimed in (1) at the end of the
introduction. By (1), the upper bounds on the lengths of Frege proofs of the
STCONN tautologies, which are proved in the next section, immediately
imply that all of these tautologies have polynomial size Frege proofs. In
addition, once Theorem 9 has been proved, the known exponential lower
bounds for constant depth Frege proofs of PHP immediately imply similar
exponential lower bounds for the other tautologies in (1).

4 The Frege and TC0-Frege proofs

4.1 Vertical paths and crossing sequences

The general idea of the proofs of the STCONN formulas is as follows. We
begin by assuming that STCONN is false, and we have red and green graphs
that falsify the STCONN tautology. Then, for each j0 , we consider the
j0 -th column of horizontal edges, namely the set of edges {(i, j0), (i, j0 + 1)}
for i = 1, . . . , d . Each edge in E is labeled with one of the symbols “g”,
“r”, or “e” depending on the whether the edge is in the green graph, the
red graph, or in neither graph. Reading down the column, we form a word w
containing the d symbols labeling the d edges in the column. (There is a
different w for each column.) The word w contains the symbols g , r , and e ,
and is called a “crossing sequence” since it lists the order in the which the
red and green paths (and cycles) cross the column.

We then consider the following finitely presented group:

G = 〈g, r; g2 = 1, r2 = 1〉.

15



This notation means that the group G has two generators g and r , that
satisfy the relations g2 = 1 and r2 = 1, and that no other equalities hold in G
beyond those implied by these two relations (see [18] for more information
on finitely presented groups). The elements of G are represented by strings
over the alphabet g and r .1 The group operation is concatenation, and the
empty string ε is the identity element 1. However, each group element has
multiple representations, for example, ε , gg , rr , rggr , etc., all represent the
identity element. It is well-known that there is a very simple normal form for
elements of G : Let v be any string over the alphabet g and r representing an
element of G . The normal form of v is obtained by repeatedly removing any
substring gg or rr , until no such substring is present. The resulting string
is the unique normal form representation for that element of G . (The fact
that this process yields a unique normal form can be proved by showing that
reduction steps that remove substrings gg and rr satisfy the Church-Rosser
property. Alternately, it can be proved from the decision procedure described
in Section 4.2.)

The strings w over the alphabet g , r , and e can also be viewed as
representations of members of G . The symbol e is identified with the empty
string, and then w becomes a string of g ’s and r ’s and represents an element
in G .

The informal idea of the proof the STCONN tautologies can now be
explained as follows. We assume, for sake of contradiction, that STCONN+

fails. If w is the string from the first column where j0 = 1, then w represents
the element gr ∈ G . If w is the string from the last column with j = n − 1,
then w represents the string rg ∈ G . In addition, if w and w′ are the string
from two adjacent columns j0 and j′0 = j0 +1, then w and w′ represent the
same element from G . This is a contradiction, so thus STCONN+ cannot
be false.

The crux of the proof is of course proving that the two crossing sequence
words w and w′ represent the the same element of G . The intuition for
this is shown in Figure 3, which shows two columns j0 and j′0 and their
associated strings w and w′ . Going from column j0 to column j′0 , a pair
of r ’s are removed from w , and two pairs of g ’s are added to w′ . Thus
w and w′ represent the same element of G , namely gr . The intuition is
that crossing sequences changes only in this way, namely by adding and/or
removing pairs gg or rr .

In order to simplify the proof of the G -equivalence of w and w′ , we define
a more general notion of crossing sequence strings. Instead of dealing with

1We do not need to use the symbols g−1 and r−1 since g−1 = g and r−1 = r .
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(d, 1)

(1, 1)

r

g

j0 j′0

g

r
g

g

Figure 3: The crossing sequence expressions associated with the columns
j0 and j′0 are w = grrr and w′ = gggrgg (reading from top to bottom,
omitting the e ’s). The labels g and r indicate the colors of the paths. We
have drawn the paths as curves, but in the grid graph they would actually
by composed of straight edges. The arrows do not indicate that the paths
are directed, but only that the paths continue on.

only crossing sequences for columns, we also deal with crossing sequences for
paths that are nearly vertical, but contain up to one jog to the left. Formally,
let i ∈ {0, . . . , d} and j ∈ {1, . . . , n} . Then the path πi,j is as shown in
Figure 4: It crosses the edges

{(1, j), (1, j + 1)}
...

{(i, j), (i, j + 1)}


 i horizontal edges

{(i, j), (i + 1, j)} one vertical edge
{(i + 1, j − 1), (i + 1, j)}

...
{(d, j − 1), (d, j)}


 d − i horizontal edges.

Note that the cases i = 0 and i = d need to be handled separately.
When i = 0, the first “edge” crossed by the path is {(0, j), (1, j)} which is
not a true edge. This is instead treated as a extra virtual potential edge: of
course the virtual potential edge does not appear in either the green or red
graph. Likewise, when i = d , the last “edge,” {(d, j), (d + 1, j)} , is only a
virtual potential edge. The discussion below glosses over the possibility of
virtual edges, but of course, these cases need special handling. It should be
kept in mind that πd,j and π0,j+1 are essentially the same path.
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πi,j

d

i + 2

i + 1

i

1
1 j−1 j j+1 n

Figure 4: The path πi,j . Edges crossed by πi,j are solid lines, other edges
are drawn dotted.

If i < d , the path πi+1,j is said to immediately succeed the path πi,j . We
consider the paths as being sequentially ordered, starting with the leftmost
column π0,2 (or, πd,1 ), ending with the rightmost column π0,n (or, πd,n−1 ),
and each path being immediately succeeded by a path that differs only
slightly from the previous path (c.f. Figure 5).

Suppose we have a truth assignment that falsifies STCONN+ (for sake
of contradiction). Consider a path πi,j . It crosses d + 1 edges, in the order
listed above. If e is the k -th such edge, define αi,j,k to be the symbol “g”
if ge is true, to be the symbol “r” if re is true, and to be the symbol “e” if
neither is true. Then, define wi,j to be the word αi,j,1αi,j,2 · · ·αi,j,d+1 .

We also define a “reduced” crossing sequence, w∗
i,j ; this is obtained

from wi,j by removing all occurrences of e . Namely, w∗
i,j is a string of g ’s

and r ’s; its length equals the total number of g ’s and r ’s in wi,j , and the
k -th symbol, βi,j,k , of w∗

i,j is equal to the k -th non-“e” symbol of wi,j .
Clearly, w∗

i,j represents an element, vi,j , of G .

4.2 A simpler decision procedure for G
As discussed above, a word v representing an element in G can be converted
to a unique normal form by repeatedly cancelling out pairs “gg” and “rr”.
Unfortunately, this iterative process is not known to be directly formalizable
in weak propositional proof systems such as Frege systems and TC0 -Frege
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πi,j &πi+1,j

d

i + 2

i + 1

i

1
1 j−1 j j+1 n

Figure 5: The path πi,j and its immediate successor πi+1,j differ only in
which two of the four edges incident on (i, j) are crossed. The path πi,j

contains the doubled dotted line segments, and in πi+1,j this portion is
replaced by the double solid line segments.

systems. Therefore, we must give a simpler method for solving the word
problem for G .

For w ∈ G , the notation wi means the i-fold multiplication of w with
itself. Also, w0 = ε and w−i = (w−1)i . In particular,

rg = (gr)−1, and rr = gg = ε = (gr)0, (2)

where the equalities denote equality as members of G .
Assume that v is of even length, v = β0β1β2 · · ·β2n−1 , with each βi ∈

{g, r} . Define c` for ` = 0, . . . , n − 1 by

c` =




1 if β2` = g and β2`+1 = r
−1 if β2` = r and β2`+1 = g
0 if β2` = β2`+1.

Then, by (2),

v = (gr)c0(gr)c1 · · · (gr)cn−1 = (gr)
∑

` c` .

In particular, v = gr if and only if v has even length and
∑

` c` = 1.
This decision procedure for G can be made even more transparent by

defining the quantities d` by

d` =

{
1 if ` is even and β` = g, or if ` is odd and β` = r

0 otherwise.
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Then, it is clear by inspection, that d2` + d2`+1 = 2c` . Thus, v = gr holds
if and only if∑

`

d` = 2. (3)

This is the characterization we will use to express the condition that
(reduced) crossing sequences represent the element “gr” in G . The condition
that

∑
i di = 2 can be expressed with a polynomial size formula in terms of

the values of the di ’s. Simple properties of this summation can be proved in
with Frege proofs and TC0 -Frege proofs (by the constructions in [8, 6]).

4.3 A proof formalizable in Frege and (TC0 -)Frege

The Frege and TC0 -Frege proofs of the st-connectivity tautologies proceed
as follows:

1. Assume, for sake of a contradiction, that STCONN+ is false.

2. For each path πi,j , define the crossing sequence expression wi,j .

3. For each wi,j , define the reduced crossing sequence expression w∗
i,j .

4. Prove that w∗
d,1 is the word “gr” and that w∗

0,n is the word “rg”.

5. By “brute force induction,” prove that each w∗
i,j represents the element

“gr”. The argument starts with wd,1 , and then proves that if the
condition holds for w∗

i,j , then it holds for the immediately succeeding
reduced crossing sequence.

6. Obtain a contradiction, since w∗
0,n cannot both equal “rg” and

represent “gr”.

We wish to argue that each of these six steps can be carried out with Frege
or TC0 -Frege proofs.

First, in steps 2 and 3, what “define an expression” means is that
propositional formulas are given that define the presence of a symbol in
a given position in the word. Thus, the word wi,j is defined by a set of
formulas ϕi,j,k,α , for k = 1, . . . , d + 1 and α ∈ {g, r, e} : the meaning of the
formula ϕi,j,k,α is that the k -th symbol in wi,j is the symbol α . Likewise,
w∗

i,j is defined with formulas ψi,j,k,β . Now the formulas ϕi,j,k,α are trivial
to define in terms of the variables ge and re . The formulas ψi,j,k,β are more
complicated, but can be defined from the the fact that the k -th symbol of
w∗

i,j is the k -th symbol (if any) of wi,j which is not equal to e . Thus ψi,j,k,β
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would be defined so to say that there is a position k′ such that ϕi,j,k′,β
holds and such that there are exactly k − 1 values k′′ less than k′ such
that ϕi,j,k′′,α holds with α ∈ {g, r} . Both Frege and TC0 -Frege proofs can
formalize straightforward facts about counting [8, 6]; in fact, since k is from
the range 1 to d + 1, the threshold gates Tk are sufficiently strong for the
counting needed.

Second, in step 5, the brute-force induction step requires arguing about
how wi,j can differ from wi+1,j . From Figure 5, we see that these two
strings differ in at most a single pair of symbols. In fact, letting α1α2 be the
substring in wi,j that is replaced by a substring α3α4 in wi+1,j , we have the
following possible cases (since STCONN+ is assumed to be false):

Value of “α1α2” Possible values of “α3α4”
“ee” “ee”, “gg”, or “rr”

“eg” or “ge” “eg”, or “ge”
“er” or “re” “er”, or “re”

“gg” “ee”
“rr” “ee”

The argument that if w∗
i.j represents “gr”, then so does w∗

i+1,j splits
into the cases as permitted in the table. The cases are all similar, so we shall
examine just the case where “ee” has been replaced by “gg”. In this case,
the reduced word w∗

i+1,j differs from w∗
i,j in that an extra substring gg has

been inserted:

w∗
i,j = u1u2 and w∗

i+1,j = u1ggu2,

for strings u1 and u2 . In the summation (3), one of the new g ’s is at an
even position and the other at an odd position. Hence the values d` and
d`+1 for the two new g ’s are opposites, one equals 1 and the other −1. The
symbols in u2 have their positions shifted by two, so the other terms in the
summation (3) are unchanged. Thus the summation (3) is unchanged by
the insertion of the substring gg . The other cases from the table are proved
similarly.

It is well known that the kind of reasoning used above can all be
formalized with Frege and TC0 -Frege proofs. Thus, we have completed
the proofs of Theorems 2 and 3.

5 Resolution and the constant width case.

We now prove Theorem 4 about the existence of bounded-width resolution
refutations of STCONNc , for constant d . In the constant d case, the
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resolution refutations are actually conceptually simpler than the Frege proof
discussed in the previous section, since we have the luxury of using a
proof which has size exponential in d . In fact, the properties of the group
presentation G are no longer important; instead, the resolution proof exploits
the fact that the change from w∗

i,j to w∗
i+1,j is only local.

Recall that each path πi,j crosses a set of d + 1 edges. The 2(d + 1)
variables ge and re for edges e which are crossed by πi,j are called the
(i, j)-variables. The word wi,j was defined from truth values of the (i, j)-
variables. A truth assignment to the (i, j)-variables said to be banned if the
corresponding word wi,j does not represent the element gr in G . For each
banned (i, j)-assignment τ , let Bτ be the clause of size 2(d + 1) that is
falsified exactly by τ ; that is,

Bτ = {ge : τ(ge) = F} ∪ {ge : τ(ge) = T}
∪{re : τ(re) = F} ∪ {re : τ(re) = T}.

Then, let Bi,j be the set of clauses

Bi,j = {Bτ : τ is a banned (i, j)-assignment}.
The resolution refutation of STCONNc

+ proceeds as follows. It first
derives all the clauses in B(d,1) , which is easily done from the unit clauses
in STCONNc

+ (using the weakening rule). Then, having derived all the
clauses in Bi.j , it then derives all the clauses in Bi+1,j , by the method
described below. At the end, it uses resolution with unit clauses in
STCONNc

+ to derive a contradiction from a clause in B0,n , namely the
clause that contains the literals r(1,n−1),(1,n) and g(d,n−1),(d,n) and contains
the rest of the (0, n)-variables unnegated.

The method by which the Bi+1,j clauses are derived from Bi,j deserves
more explanation. The path πi+1,j differs from the path πi,j in only the
four edges

e1 = {(i, j), (i + 1, j)} e3 = {(i + 1, j), (i + 1, j + 1)}
e2 = {(i + 1, j − 1), (i + 1, j) e4 = {(i + 1, j), (i + 2, j)}

(see Figure 5). Thus, the (i, j)-variables differ from the (i + 1, j)-variables
only in that the former include the four variables ge1 , ge2 , re1 and re2 , and
that the latter include the four variables ge3 , ge4 , re3 and re4 . We let Di,j

be the set of eight variables gei , rei ; and let Ci,j be the set of variables which
are both (i, j)- and (i + 1, j)-variables. Consider a particular Bτ ∈ Bi+1,j .
We let B−τ be the set of clauses Bσ for all banned (i, j)-assignments σ that
agree with τ on the variables Ci,j . B−τ contains at most sixteen clauses,
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since there is only sixteen ways to set the values of σ on the four variables
ge1 , ge2 , re1 and re2 .

Using the reasoning used in the proof in the previous section, we know
that

B−τ ∪ STCONN ² Bτ .

In fact, letting STCONNi,j be the clauses in STCONN that involve only
the variables in Di,j ,

B−τ ∪ STCONNi,j ² Bτ .

By the implicational completeness of resolution, it follows that there is a
derivation of Bτ from the clauses in B−τ and the clauses in STCONNi,j .

Putting all these resolution derivations together gives the derivation of
all the Bi+1,j clauses. Also, by inspection, the width of the clauses in the
resolution refutation is only d+O(1). Thus, the overall resolution refutation
of STCONNc(d, n) has polynomial size and uses only clauses with width at
most d + O(1).

6 Lower bounds for constant depth Frege proofs

This section establishes the exponential lower bound of Theorem 5. Since
similar exponential lower bounds for the pigeonhole principle tautologies
PHP have already been proved by [21, 17], it will suffice to will suffice to
prove that PHP 4cdF 2SINK.

Theorem 9 PHP 4cdF 2SINK.

Proof We describe informally a construction that will translate a violation
of the PHP(n) tautology into a a directed grid graph that violates the
2SINK(2n+1, 2n+2) tautology. Our construction is shown in Figure 6 and
will be carried out informally. We leave it to the reader to verify that the
construction can be defined with bounded depth formulas and that constant
depth Frege proofs can prove all the relevant properties of the construction.

Assume that f : [n + 1] → [n] is one-to-one and onto. We use f to
construct a (2n + 1) × (2n + 2) grid graph G which violates the 2SINK
principle. The central column of G contains the vertices (1, n+1), (2, n+1),
. . . , (2n + 1, n + 1). Our intuition is that we identify (i, n + 1) for i =
1, . . . , n + 1 with the domain elements of f by letting vertex (i + 1, n + 1)
correspond to i ∈ [n + 1] in the domain of f ; in keeping with this intuition,
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we let Di = (i + 1, n + 1). The remaining vertices in the central column can
be identified with elements in the range of f by letting (n + 2 + i, n + 1)
correspond to i ∈ [n] ; we thus let Ri = (n + 2 + i, n + 1). The edges of G
are set as follows.

(a) G contains a path with goes horizontally from (1, 1) to D0 = (1, n+1).
Namely, it contains the edges 〈(1, i), (1, i + 1)〉 for i = 1, . . . , n . This
is the path starting in the upper right corner of Figure 6.

(b) For each i ∈ [n] , G has a directed path from Ri to Dn−i . This path
starts at Ri = (n + 2 + i, n + 1) and proceeds horizontally leftward to
(n+2+ i, n− i), it then proceeds vertically up to (n+1− i, n− i), and
from there proceeds horizontally rightward to Dn−i = (n+1−i, n+1).
These are the other paths in the left half of Figure 6.

(c) For each i ∈ [n+1], G has a path from Di to Rj , where j = f(i). This
path starts at Di = (i+1, n+1) and proceeds horizontally rightward to
(i+1, n+2+i); it then proceeds vertically down to (n+2+j, n+2+i),
and finally goes horizontally leftward to Rj = (n+2+ j, n+1). These
are the paths in the right half of Figure 6.

Examination of Figure 6 shows the correctness of the reduction from
PHP to SINK. We claim that the reduction is definable with constant
depth polynomial size formulas. For this, we need to find formulas that
define the edges’ values ge in terms of the PHP variables xi,j . The edges
that are not in the lower right quadrant of G are fixed, and independent
of the function f , hence, the variables ge , for e an edge not in the lower
right quadrant are just constants True or False. Consider a variable ge for
an edge in the lower right quadrant. The edge e either is vertical and of the
form e = 〈(n + 1 + j, n + 2 + i), (n + 2 + j, n + 2 + i)〉 , or is horizontal and
of the form e′ = 〈(n + 2 + j, n + 2 + i), (n + 2 + j, n + 1 + i)〉 . The vertical
edge, e , is present in G if and only if f(i) ≥ j . Thus the variable ge of
SINK can be defined by

ge ⇔
∨

j≤k<n

xi,k.

Similarly, the horizontal edge is present in G if and only if f−1(j) ≥ i , so

ge′ ⇔
∨

i≤k≤n

xk,j .

Furthermore, polynomial-size, constant depth Frege proofs can prove the
correctness of the reduction from the instance of PHP to the instance of
SINKc . 2
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?

Figure 6: How to build an instance of 2SINK from an instance of PHP.
The dotted path from D4 would connect back up to a Ri point if we had a
contradiction to the pigeonhole principle.

Consequently, there are exponential lower bounds on the size of constant
depth Frege proofs for all the graph tautologies we have considered.

It is open whether the reductions SINK 4cdF DSTCONN 4cdF
STCONN are strict. However, we are able to prove that
SINK 6≡cdF STCONN by a proof that we only sketch here.

Let Modp be the family of tautologies that express the counting modulo p
principle [1, 5]. It is well-known that PHP 4cdF Modp , for all p . (As
throughout this paper, PHP means the one-to-one, onto version of the
pigeonhole principle.) Thus, SINK 4cdF Modp for all p .

Let USINK be the undirected analogue of SINK that states that an
undirected grid graph cannot have a single vertex of degree one with the
rest of the nodes of degree either zero or two. Clearly, SINK 4cdF USINK.
Also, similarly to the proof of Theorem 7, it can be shown that USINK 4cdF
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STCONN. In addition, by using a construction similar to the proof of
Theorem 9, Mod2 4cdF USINK. Then, if USINK ≡cdF SINK were valid,
we would have Mod2 4cdF Modp for all p . But this has been shown to
be false by [4, 11, 10]. Thus we have USINK 64cdF SINK, and hence
STCONN 64cdF PHP.

It also can be shown that USINK 4cdF Mod2 , and thus
USINK ≡cdF Mod2 . The reduction USINK 4cdF Mod2 can be proved with
the construction used by [3, §2.5] to prove that the search problem LEAF
is many-one reducible to the search problem LONELY. They also proved
the equivalence of LEAF and LONELY, and these two search problems can
be viewed as analogues of the USINK and Mod2 tautologies, but with the
important difference that USINK is formulated in terms of a grid graph.

7 The Hex tautologies

Urquhart [22] proposed tautologies based on the game of Hex, which express
the fact that any end configuration of a game of Hex must have a winner.
We will very briefly review the game of Hex; for more information, consult
Browne [7]. The game of Hex is played on an m × n parallelogram tiled
with hexagons, of the type shown in Figure 7. Two players alternate placing
stones into hexagons; one player places red stones, the other blue stones.
Each hexagon can hold only one stone. The player with red stones (resp.,
blue stones) wins if he builds a path of red (resp. blue) stones that connects
a hexagon in the top row with a hexagon in the bottom row (resp, the left
column and the right column).

The Hex tautologies express the fact that, once the board has been
completely filled, one of the two players has won. In the spirit of Urquhart’s
suggestion,2 the propositional variables for the Hex game are Rh , Bh , Mh ,
and Ch , for each hexagon h . The names R, B, M, C are mnemonics for
“red,”, “blue,” “magenta,” and “cyan.” The intent is that the difference
between red and magenta hexagons is that red ones are connected to the top
row, and the magenta ones to the bottom row. Likewise, the intent is that
the blue hexagons are connected to the left border and the cyan ones to the
right border. The general idea of the Hex tautologies is that it is impossible
that there is both no red hexagon adjacent to a magenta hexagon and no
blue hexagon adjacent to a cyan one.

To formally define the HEX = HEX(n) tautologies, we use a slightly
larger Hex game board which is size (n + 2) × (n + 2). (See Figure 8.)

2Our formulation is similar to Urquhart’s and is equivalent in the sense of ≡cdF .
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Figure 7: An empty 5 × 5 Hex board.
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Key

R - Red

M - Magenta

B - Blue

C - Cyan

Figure 8: A 7 × 7 Hex board with border colors filled in.

On this augmented board, the upper row is forced to be red, the lower row
magenta, the left column blue, and the right column cyan. The rest of the
board is the usual n × n Hex game. The HEXc clauses include:

1. Unit clauses expressing the conditions that each border hexagon has
its correct color. For example, the unit clauses {Rh} for each red
hexagon h along the top border.

2. Clauses OneOf(Rh, Mh, Bh, Ch) stating that exactly one of the four
variables in true, i.e., that each hexagon h has exactly one color.

3. Clauses saying that no red and magenta hexagons are adjacent, and
no blue and cyan hexagons are adjacent. These are {Rh, Mh′} and
{Bh, Ch′} , for each pair of h, h′ of adjacent hexagons.

As usual, the tautology HEX is the DNF formula which is equivalent to
the negation of the HEXc clauses.

It is, of course, a well-known fact that a completely filled in Hex game has
a winner; thus the formula HEX is indeed a tautology. The simplest proof
that Hex always has a winner involves a reduction to the SINK principle.

Theorem 10 HEX 4cdF SINK.
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Proof The proof of Gale [14] (see also Browne [7, Appendix D]) can be
formalized as a reduction to SINK. Suppose we are given a truth assignment
that falsifies the HEX(n) formula. We construct a directed graph G which
is a counterexample to the SINK principle. The potential edges in G are
the edges of the hexagons in the augmented Hex board. The edges that are
actually present are the edges between blue (B) and magenta (M), oriented
so that blue is on the left side of the edge and magenta on the right. This
graph has a source at the lower left corner of the augmented Hex board. In
addition, we claim every other node has in-degree equal to out-degree. To
verify this, note that if a vertex v is the head of an edge e , then v is of
course adjacent to the blue and magenta hexagons on the sides of e . Since
the HEX tautology fails, the third hexagon cannot be red or cyan, and hence
must be blue or magenta. In either case, there is an outgoing edge from v .

Now, G is not a grid graph, but it can be mapped to one by discretizing
to a sufficiently fine rectangular grid. From this, we arrive at an assignment
that falsifies SINK.

We leave it the reader to verify that this can be formalized with
polynomial size, constant depth Frege proofs. 2

The converse to Theorem 10 holds too.

Theorem 11 SINK 4cdF HEX.

Proof We give only a sketch of a proof, which we claim can be formalized
as a polynomial size, constant depth Frege proof. Suppose we are given a
truth assignment that falsifies SINK. That is, there is a d× n directed grid
graph G with a source at (1, 1) that has no sink. The rest of the vertices of
G all have in- and out-degree both equal to zero or to one. By refining G
to have dimensions (4d) × (4n), we can convert the paths (or cycles) in G
into bundles of four paths (or cycles). We do this by splitting each edge into
four parallel edges, and then hooking up the edges where the path makes a
turn, so that there are four paths. The four paths are, of course, completely
disjoint. Note that this construction can all be done locally.

We now color these four paths and their vertices. In order from left to
right, they are assigned colors red, blue, magenta, and cyan. It is clear that
blue vertices lie adjacent only to red, magenta, and blue vertices. Likewise,
magenta vertices lie adjacent only to blue, cyan, and magenta vertices. The
rest of the vertices in the graph can be colored red, and then all the vertices
are colored, with no red and magenta vertices adjacent and no blue and
cyan vertices adjacent. The colors of the vertices on the boundary of the

28



graph are all either cyan or red, with the exception of the four vertices at
the source of the four paths.

We claim that this grid graph with four colored paths is topologically
equivalent to a Hex game with no winner. For this, the rectangular grid
graph of colored vertices is mapped into a parallelogram of hexagons. The
parallelogram is picked to have resolution somewhat finer than the grid
graph (three or four times finer, say), and the grid graph is mapped over
the hexagon by an affine transformation and then the hexagons are colored
with the color of the closest grid graph vertex. Finally, the four paths
are extended to wrap around the outside of the parallelogram. The red
path is extended from its source, to wrap clockwise along the top of the
parallelogram. The cyan path is extended to wrap counterclockwise around
to go down the left side, along the bottom and then up the right boundary.
After that, the magenta path is extended counterclockwise around to cover
the left boundary and the bottom boundary. Finally, the blue path is
extended counterclockwise to cover the left boundary. This results in a
parallogram of colored hexagons that is a Hex game with no winner; that
is, that violates the HEX tautology. This is the desired contradiction to the
HEX tautologies. 2

As the SINK principle has already been proved equivalent to the one-one
onto pigeonhole principle, we also have

Corollary 12 HEX ≡cdF PHP.

Gale [14] also discusses the equivalence of the Hex principle that every
completed game has a winner with the Brower fixed point theorem. In
addition, he mentions that the principle that a Hex game has a single winner
is equivalent to the Jordan curve theorem. However, we do not know any
good way to formulate the principle that a Hex game has only one winner as
a set of clauses or as a simple polynomial-size propositional tautology. The
only methods we know for formulating polynomial-size tautologies that state
that every Hex game has a winner involve introducing extra variables (say, to
indicate hexagons on a path); however, these do not give particularly elegant
formulations of the Hex game winner principle. Papadimitriou [19, 20]
discusses the complexity of a number of principles, including the Brower
fixed point theorem and Sperner’s lemma, and related search problems
are defined by Beame et al. [3]. Possibly these ideas can lead to further
interesting propositional tautologies for proof complexity.

Acknowledgements. I wish to thank A. Beckmann, D. Barrington,
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