12-fold enumeration Math 475 Instructor: Steven Sam

We have k balls and n boxes. We want to count the number of assignments f of balls to boxes. We considered 3 conditions on f: arbitrary (no conditions at all), injective (no box receives more than one ball), surjective (every box has to receive at least one ball). We also considered conditions on the balls: indistinguishable (we can't tell the balls apart) and distinguishable (we can tell the balls apart) and similarly for the boxes: they can be distinguishable or indistinguishable.

balls/boxes	f arbitrary	f injective	f surjective
dist/dist	n^k , see (1)	$(n)_k$, see (2)	n!S(k,n), see (3)
indist/dist	$\binom{n+k-1}{k}$, see (4)	$\binom{n}{k}$, see (5)	$\binom{k-1}{n-1}$, see (6)
dist/indist	$\sum_{i=1}^{n} S(k,i), \text{ see } (7)$	$\begin{cases} 1 & \text{if } n \ge k \\ 0 & \text{if } n < k \end{cases}, \text{ see } (8)$	S(k, n), see (9)
indist/indist	$\sum_{i=1}^{n} p_i(k)$, see (10)	$\begin{cases} 1 & \text{if } n \ge k \\ 0 & \text{if } n < k \end{cases}, \text{ see (11)}$	$p_n(k)$, see (12)

(1) These are strings of length k in an alphabet of size n.

(2) These are strings of length k without repetitions in an alphabet of size n. Recall that

$$(n)_k = n(n-1)(n-2)\cdots(n-k+1).$$

- (3) These are ordered set partitions of [k] into n blocks. Recall that S(k, n) is the Stirling number of the second kind, i.e., the number of partitions of [k] into n blocks.
- (4) These are multisets of [n] of size k; equivalently, weak compositions of k into n parts.
- (5) These are subsets of [n] of size k.
- (6) These are compositions of k into n parts.
- (7) These are set partitions of [k] where the number of blocks is $\leq n$.
- (8) If n < k, then we can't assign k balls to n boxes without some box receiving more than one ball (pigeonhole principle), so the answer is 0 in that case. If $n \ge k$, then there is certainly a way to make an assignment, but they're all the same: we can't tell the boxes apart, so it doesn't matter where the balls go.
- (9) These are set partitions of [k] into n blocks.
- (10) These are the number of integer partitions of k where the number of parts is $\leq n$. Remember that $p_i(k)$ is the notation for the number of integer partitions of k into i parts.
- (11) The reasoning here is the same as (8).
- (12) These are the number of integer partitions of k into n parts.