Math 475, Fall 2015
Homework 1
Due: Friday, Sep. 11
(1) Take a 6×6 grid of squares of equal size and remove two diagonally opposite corner squares:

Prove that you cannot tile this with the shapes \square and $\square \square$ without any overlaps.
(2) Bóna 1.11: We chose $n+2$ numbers from the set $1,2, \ldots, 3 n$. Prove that there are always two among the chosen numbers whose difference is more than n but less than $2 n$.
(3) Bóna 1.24: Find all 4-tuples (a, b, c, d) of distinct positive integers so that $a<b<$ $c<d$ and

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}=1
$$

(4) Bóna 2.1: Let $p(k)$ be a polynomial of degree d. Prove that $q(n)=\sum_{k=1}^{n} p(k)$ is a polynomial of degree $d+1$. Prove that this polynomial q satisfies $q(0)=0$.
[Hint: Define $f^{(0)}(x)=1$ and for each $d>0$, define a degree d polynomial

$$
f^{(d)}(x)=x(x-1)(x-2) \cdots(x-d+1)
$$

(a) Show that the conclusion holds for each $f^{(d)}(x)$ with $d>0$ by proving that

$$
\sum_{k=1}^{n} f^{(d)}(k)=\frac{f^{(d+1)}(n+1)}{d+1}
$$

Verify the conclusion directly for $f^{(0)}(x)$.
(b) Show that if the conclusion holds for polynomials $p_{1}(x), \ldots, p_{r}(x)$, then it also holds for any linear combination $\alpha_{1} p_{1}(x)+\cdots+\alpha_{r} p_{r}(x)$ (here α_{i} are scalars).
(c) Show, by induction on d, that any polynomial of degree d is a linear combination of $f^{(0)}(x), f^{(1)}(x), \ldots, f^{(d)}(x)$. For the induction step, note that if c is the leading coefficient of $p(x)$, then $p(x)-c f^{(d)}(x)$ is a polynomial of degree $\leq d-1$.]
(5) Bóna 2.22: Prove that for all positive integers n,

$$
1^{3}+2^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2} .
$$

(6) Bóna 2.24: Find a closed formula (no summation signs) for the expression

$$
\sum_{i=1}^{n} i(i+1) .
$$

Prove that your formula is correct.

