Math 475, Fall 2015
Homework 11
Due: Monday, Dec. 14
(1) Show that every red-blue coloring of the edges of $K_{3,3}$ either has a red path of length 3 or a blue path of length 3 .
(2) (a) Show that every red-blue coloring of the edges of K_{7} either has a red triangle or a blue 4-cycle.
(b) Give an example of a red-blue coloring of the edges of K_{6} which has no red triangle and no blue 4-cycle.
(3) Prove the following inequality for the generalized Ramsey number:

$$
R\left(s_{1}, s_{2}, \ldots, s_{k}\right) \leq \frac{\left(s_{1}+s_{2}+\cdots+s_{k}-k\right)!}{\left(s_{1}-1\right)!\left(s_{2}-1\right)!\cdots\left(s_{k}-1\right)!}
$$

(4) Let r be a positive integer. A red-blue coloring of the r-subsets of $[n]$ is a choice of red or blue for each subset of size r. Given a coloring and $k \geq r$, a subset $S \subseteq[n]$ with $|S|=k$ is red (respectively, blue) if all of its r-element subsets are red (respectively, blue). Given integers $k, \ell \geq r$, let $R_{r}(k, \ell)$ be the smallest integer n (if it exists) such that if $m \geq n$, then any red-blue coloring of the r-subsets of $[m$] either has a red subset of size k or a blue subset of size ℓ. (If $r=2$, then $R_{2}(k, \ell)=R(k, \ell)$.)

Use a double induction (first on r, second on $k+\ell$) to show that the numbers $R_{r}(k, \ell)$ always exist, and that if $r \geq 2$ and $k, \ell>r$, then

$$
R_{r}(k, \ell) \leq R_{r-1}\left(R_{r}(k-1, \ell), R_{r}(k, \ell-1)\right)+1
$$

[Hint: When $r=2$, this inequality is the one we proved for Ramsey numbers. Here's how to generalize that argument. Let n be the right side of the inequality. Pick a redblue coloring of the r-subsets of $[n]$. Define a red-blue coloring of the $(r-1)$-subsets on [$n-1$] by letting the color of $S \subseteq[n-1]$ be the color of $S \cup\{n\}$ in the original coloring.]
(5) The goal of this exercise is to prove that $R(3,5)=14$.
(a) Show that $R(3,5) \leq 14$.
(b) Construct a red-blue coloring of the edges of K_{13} as follows. The vertices are the numbers $\{0,1, \ldots, 12\}$. Color the following edges red ${ }^{1}$

$$
\begin{array}{lll}
\{i, i+1\} & (\text { for } 0 \leq i \leq 11), & \{i, i+5\} \\
\{i, i+8\} & (\text { for } 0 \leq i \leq 4), & \{0,12\} .
\end{array}
$$

All other edges are blue.
Show that there is no red triangle or blue K_{5}. In particular, $R(3,5) \geq 14$.
[Hint: This is the same as saying there is no choice of $0 \leq a<b<c \leq 12$ such that $b-a, c-b, c-a \in\{1,5,8,12\}$ and no choice of $0 \leq a<b<c<d<e \leq 12$ such that all of the differences are in $\{2,3,4,6,7,9,10,11\}$. For the second claim, note that the sum of all 4 differences is $e-a$ must be ≥ 8 since the smallest value of a difference is 2.]

[^0]
[^0]: ${ }^{1}$ Alternatively: the vertices are the integers modulo 13 and $\{i, j\}$ is a red edge if and only if there is a solution in x to $x^{3} \equiv i-j(\bmod 13)$. You may use this if you like, but you're free to ignore this fact.

