
Math 475, Fall 2015
Homework 11
Due: Monday, Dec. 14

(1) Show that every red-blue coloring of the edges of K3,3 either has a red path of length 3
or a blue path of length 3.

(2) (a) Show that every red-blue coloring of the edges of K7 either has a red triangle or a
blue 4-cycle.

(b) Give an example of a red-blue coloring of the edges of K6 which has no red triangle
and no blue 4-cycle.

(3) Prove the following inequality for the generalized Ramsey number:

R(s1, s2, . . . , sk) ≤
(s1 + s2 + · · ·+ sk − k)!

(s1 − 1)!(s2 − 1)! · · · (sk − 1)!
.

(4) Let r be a positive integer. A red-blue coloring of the r-subsets of [n] is a choice of red or
blue for each subset of size r. Given a coloring and k ≥ r, a subset S ⊆ [n] with |S| = k

is red (respectively, blue) if all of its r-element subsets are red (respectively, blue). Given
integers k, ℓ ≥ r, let Rr(k, ℓ) be the smallest integer n (if it exists) such that if m ≥ n,
then any red-blue coloring of the r-subsets of [m] either has a red subset of size k or a
blue subset of size ℓ. (If r = 2, then R2(k, ℓ) = R(k, ℓ).)

Use a double induction (first on r, second on k+ ℓ) to show that the numbers Rr(k, ℓ)
always exist, and that if r ≥ 2 and k, ℓ > r, then

Rr(k, ℓ) ≤ Rr−1(Rr(k − 1, ℓ), Rr(k, ℓ− 1)) + 1.

[Hint: When r = 2, this inequality is the one we proved for Ramsey numbers. Here’s
how to generalize that argument. Let n be the right side of the inequality. Pick a red-
blue coloring of the r-subsets of [n]. Define a red-blue coloring of the (r − 1)-subsets on
[n−1] by letting the color of S ⊆ [n−1] be the color of S ∪{n} in the original coloring.]

(5) The goal of this exercise is to prove that R(3, 5) = 14.
(a) Show that R(3, 5) ≤ 14.
(b) Construct a red-blue coloring of the edges of K13 as follows. The vertices are the

numbers {0, 1, . . . , 12}. Color the following edges red1

{i, i+ 1} (for 0 ≤ i ≤ 11), {i, i+ 5} (for 0 ≤ i ≤ 7),

{i, i+ 8} (for 0 ≤ i ≤ 4), {0, 12}.

All other edges are blue.

Show that there is no red triangle or blue K5. In particular, R(3, 5) ≥ 14.
[Hint: This is the same as saying there is no choice of 0 ≤ a < b < c ≤ 12 such
that b − a, c − b, c − a ∈ {1, 5, 8, 12} and no choice of 0 ≤ a < b < c < d < e ≤ 12
such that all of the differences are in {2, 3, 4, 6, 7, 9, 10, 11}. For the second claim,
note that the sum of all 4 differences is e− a must be ≥ 8 since the smallest value
of a difference is 2.]

1Alternatively: the vertices are the integers modulo 13 and {i, j} is a red edge if and only if there is a
solution in x to x3 ≡ i− j (mod 13). You may use this if you like, but you’re free to ignore this fact.


