Math 475, Fall 2015 Homework 2 Due: Friday, Sep. 18

Notation: $[n] = \{1, 2, ..., n\}.$

- (1) Bóna 3.26: How many ways are there to list the letters of the word ALABAMA?
- (2) Bóna 3.30: How many four-digit positive integers are there in which all digits are different?
- (3) Bóna 3.41: We want to select three subsets A, B, and C of [n] so that $A \subseteq C, B \subseteq C$, and $A \cap B \neq \emptyset$. In how many different ways can we do this?
- (4) Fix a positive integer $n \ge 1$. Let A_1 be the set of subsets $S \subseteq [n]$ with no consecutive elements, i.e., if $i \in S$, then $i + 1 \notin S$.

For example, when n = 3, $|A_1| = 5$ and A_1 is the following set of subsets:

$$\emptyset, \{1\}, \{2\}, \{3\}, \{1,3\}, \{1,3\}$$

Let A_2 be the set of ways of tiling the $2 \times (n+1)$ rectangle with the shapes: 2×1

rectangle and
$$1 \times 2$$
 rectangle without any overlaps.

For example, when n = 3, $|A_2| = 5$ and A_2 is the following set of tilings:

[

Find a bijection between A_1 and A_2 .

(5) Let n and k be positive integers. Show that the number of ordered collections (X_1, \ldots, X_k) , where each X_i is a subset of [n], and $X_1 \cap X_2 \cap \cdots \cap X_k = \emptyset$ (i.e., there is no element which is in all of the X_i) is $(2^k - 1)^n$.

For example, when k = 2 and n = 2, here are the 9 ordered collections:

(\emptyset, \emptyset)	$(\emptyset, \{1\})$	$(\emptyset, \{2\})$
$(\emptyset, \{1, 2\})$	$(\{1\}, \emptyset)$	$(\{2\}, \emptyset)$
$(\{1,2\},\emptyset)$	$(\{1\},\{2\})$	$(\{2\},\{1\}).$

(6) How many 6-card hands from a standard deck of cards (i.e., 4 suits and 13 face values) contain exactly 2 pairs? (In other words, there are 2 cards with the same face value, another 2 cards with the same face value, but these two face values are different, and the remaining 2 cards have different face values from these two pairs and each other.)