Math 475, Fall 2015
Homework 2
Due: Friday, Sep. 18
Notation: $[n]=\{1,2, \ldots, n\}$.
(1) Bóna 3.26: How many ways are there to list the letters of the word ALABAMA?
(2) Bóna 3.30: How many four-digit positive integers are there in which all digits are different?
(3) Bóna 3.41: We want to select three subsets A, B, and C of $[n]$ so that $A \subseteq C, B \subseteq C$, and $A \cap B \neq \emptyset$. In how many different ways can we do this?
(4) Fix a positive integer $n \geq 1$. Let A_{1} be the set of subsets $S \subseteq[n]$ with no consecutive elements, i.e., if $i \in S$, then $i+1 \notin S$.

For example, when $n=3,\left|A_{1}\right|=5$ and A_{1} is the following set of subsets:

$$
\emptyset,\{1\},\{2\},\{3\},\{1,3\} .
$$

Let A_{2} be the set of ways of tiling the $2 \times(n+1)$ rectangle with the shapes: 2×1 rectangle \square and 1×2 rectangle \square without any overlaps.

For example, when $n=3,\left|A_{2}\right|=5$ and A_{2} is the following set of tilings:

Find a bijection between A_{1} and A_{2}.
(5) Let n and k be positive integers. Show that the number of ordered collections $\left(X_{1}, \ldots, X_{k}\right)$, where each X_{i} is a subset of $[n]$, and $X_{1} \cap X_{2} \cap \cdots \cap X_{k}=\emptyset$ (i.e., there is no element which is in all of the $\left.X_{i}\right)$ is $\left(2^{k}-1\right)^{n}$.

For example, when $k=2$ and $n=2$, here are the 9 ordered collections:

$$
\begin{array}{rrr}
(\emptyset, \emptyset) & (\emptyset,\{1\}) & (\emptyset,\{2\}) \\
(\emptyset,\{1,2\}) & (\{1\}, \emptyset) & (\{2\}, \emptyset) \\
(\{1,2\}, \emptyset) & (\{1\},\{2\}) & (\{2\},\{1\}) .
\end{array}
$$

(6) How many 6 -card hands from a standard deck of cards (i.e., 4 suits and 13 face values) contain exactly 2 pairs? (In other words, there are 2 cards with the same face value, another 2 cards with the same face value, but these two face values are different, and the remaining 2 cards have different face values from these two pairs and each other.)

