Math 475, Fall 2015
Homework 3
Due: Friday, Sep. 25
Notation: $[n]=\{1, \ldots, n\}$.
(1) Bóna 5.23: Find the number of compositions of 10 into even pieces (i.e., compositions $\left(a_{1}, \ldots, a_{k}\right)$ of 10 so that each a_{i} is even).
(2) Bóna 5.27: Fix an integer $n \geq 3$. Find a simple formula for $S(n, n-2)$, i.e., the number of partitions of $[n]$ into $n-2$ parts.
(3) Bóna 5.32: Fix an integer $n \geq 1$. Let $F(n)$ be the number of all partitions of $[n]$ such that every block has size ≥ 2. Prove that $B(n)=F(n)+F(n+1)$, where $B(n)$ is the nth Bell number, i.e., the number of all partitions of $[n]$.
(4) Bóna 4.38: Fix a positive integer n. Show that

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

(5) Bóna 4.43: Fix a positive integer n. Show that

$$
\sum_{k=0}^{n} \frac{(-1)^{k+1}}{k+1}\binom{n}{k}=-\frac{1}{n+1}
$$

[Hint: Take an antiderivative of something related to the binomial theorem.]
(6) Fix an integer $n \geq 2$. Call a composition $\left(a_{1}, \ldots, a_{k}\right)$ of n doubly even if the number of a_{i} which are even is also even (i.e., there could be no even a_{i}, or 2 of them, or 4, or ...).

Show that the number of doubly even compositions of n is 2^{n-2}.
For example, if $n=4$, then here are the 4 doubly even compositions of 4 :

$$
(2,2), \quad(3,1), \quad(1,3), \quad(1,1,1,1)
$$

[Hint: Find a bijection between the set of doubly even compositions of n and the set of compositions of n which are not doubly even. This shows that exactly half of all compositions of n are doubly even.]

