Math 475, Fall 2015
Homework 4
Due: Friday, Oct. 2
Notation: $[n]=\{1, \ldots, n\}$.
Convention: $p(0)=1$, i.e., there is exactly one partition of the integer 0
(1) Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be an integer partition and let $\mu=\left(\mu_{1}, \ldots, \mu_{m}\right)$ be the conjugate partition of λ. Prove that

$$
\sum_{i=1}^{n}(i-1) \lambda_{i}=\sum_{j=1}^{m} \frac{\mu_{j}\left(\mu_{j}-1\right)}{2}
$$

(2) A consequence of the binomial theorem is

$$
(n-1)^{n}=\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} n^{n-j}
$$

Find an alternative explanation for this identity by counting the number of functions $f:[n] \rightarrow[n]$ that satisfy $f(i) \neq i$ for all $i=1, \ldots, n$ in two different ways (directly, and using inclusion-exclusion).
(3) Bóna 7.27: How many positive integers ≤ 1000 are neither perfect squares nor perfect cubes? [Recall that a perfect square is an integer of the form n^{2} where n is an integer, and a perfect cube is an integer of the form n^{3} where n is an integer.]
(4) Let λ be an integer partition. Write $\lambda \subseteq m \times n$ if $\ell(\lambda) \leq m$ and $\lambda_{1} \leq n$, i.e., the Young diagram of λ fits inside of a $m \times n$ rectangle. For $0<k<n$, define the q-binomial coefficient by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\sum_{\lambda \subseteq k \times(n-k)} q^{|\lambda|} .
$$

In other words, $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ is a polynomial in the variable q, where the coefficient of q^{i} is the number of partitions of i whose Young diagram fits into the $k \times(n-k)$ rectangle. By convention, $\left[\begin{array}{l}n \\ n\end{array}\right]_{q}=\left[\begin{array}{l}n \\ 0\end{array}\right]_{q}=1$. As an example, $\left[\begin{array}{l}4 \\ 2\end{array}\right]_{q}=1+q+2 q^{2}+q^{3}+q^{4}$ (the 1 corresponds to the fact that there is a single partition of size 0).
(a) Show that $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}=\left[\begin{array}{c}n \\ n-k\end{array}\right]_{q}$.
(b) If $0<k<n$, show that

$$
\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q}=q^{k}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{q}+\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q} .
$$

(continued on next page)
(c) Using (b), show that plugging in $q=1$, the q-binomial coefficient becomes the ordinary binomial coefficient. In symbols, $\left[\begin{array}{l}n \\ k\end{array}\right]_{1}=\binom{n}{k}$ for all $0 \leq k \leq n$.
[If you cannot solve (b), you can still use it to solve this problem for credit.]
(d) Find a direct explanation for why $\left[\begin{array}{l}n \\ k\end{array}\right]_{1}=\binom{n}{k}$. In other words, show that the number of Young diagrams that fit inside the $k \times(n-k)$ rectangle is $\binom{n}{k}$.
[Hint: Given a Young diagram $Y(\lambda) \subseteq k \times(n-k)$, we can remove it, and the top boundary of the resulting shape is a path from the bottom left corner of the rectangle to the top right corner using the steps "up" and "right". Show these are counted by $\binom{n}{k}$.]

